1
|
Wang X, Zhang Y, Guo T, Wu S, Zhong J, Cheng C, Sui X. Selective intrafascicular stimulation of myelinated and unmyelinated nerve fibers through a longitudinal electrode: A computational study. Comput Biol Med 2024; 176:108556. [PMID: 38733726 DOI: 10.1016/j.compbiomed.2024.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Carbon nanotube (CNT) fiber electrodes have demonstrated exceptional spatial selectivity and sustained reliability in the context of intrafascicular electrical stimulation, as evidenced through rigorous animal experimentation. A significant presence of unmyelinated C fibers, known to induce uncomfortable somatosensory experiences, exists within peripheral nerves. This presence poses a considerable challenge to the excitation of myelinated Aβ fibers, which are crucial for tactile sensation. To achieve nuanced tactile sensory feedback utilizing CNT fiber electrodes, the selective stimulation of Aβ sensory afferents emerges as a critical factor. In confronting this challenge, the present investigation sought to refine and apply a rat sciatic-nerve model leveraging the capabilities of the COMSOL-NEURON framework. This approach enables a systematic evaluation of the influence exerted by stimulation parameters and electrode geometry on the activation dynamics of both myelinated Aβ and unmyelinated C fibers. The findings advocate for the utilization of current pulses featuring a pulse width of 600 μs, alongside the deployment of CNT fibers characterized by a diminutive diameter of 10 μm, with an exclusively exposed cross-sectional area, to facilitate reduced activation current thresholds. Comparative analysis under monopolar and bipolar electrical stimulation conditions revealed proximate activation thresholds, albeit with bipolar stimulation exhibiting superior fiber selectivity relative to its monopolar counterpart. Concerning pulse waveform characteristics, the adoption of an anodic-first biphasic stimulation modality is favored, taking into account the dual criteria of activation threshold and fiber selectivity optimization. Consequently, this investigation furnishes an efficacious stimulation paradigm for the selective activation of touch-related nerve fibers, alongside provisioning a comprehensive theoretical foundation for the realization of natural tactile feedback within the domain of prosthetic hand applications.
Collapse
Affiliation(s)
- Xintong Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yapeng Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shuhui Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junwen Zhong
- Department of Electromechanical Engineering, University of Macau, Macau SAR, 999078, China
| | - Chengkung Cheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Med-X Research Institute, Shanghai Jiao Tong University, Engineering Research Center of Digital Medicine, Ministry of Education, Shanghai, China
| | - Xiaohong Sui
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Xia H, Zhang Y, Rajabi N, Taleb F, Yang Q, Kragic D, Li Z. Shaping high-performance wearable robots for human motor and sensory reconstruction and enhancement. Nat Commun 2024; 15:1760. [PMID: 38409128 PMCID: PMC10897332 DOI: 10.1038/s41467-024-46249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024] Open
Abstract
Most wearable robots such as exoskeletons and prostheses can operate with dexterity, while wearers do not perceive them as part of their bodies. In this perspective, we contend that integrating environmental, physiological, and physical information through multi-modal fusion, incorporating human-in-the-loop control, utilizing neuromuscular interface, employing flexible electronics, and acquiring and processing human-robot information with biomechatronic chips, should all be leveraged towards building the next generation of wearable robots. These technologies could improve the embodiment of wearable robots. With optimizations in mechanical structure and clinical training, the next generation of wearable robots should better facilitate human motor and sensory reconstruction and enhancement.
Collapse
Affiliation(s)
- Haisheng Xia
- School of Mechanical Engineering, Tongji University, Shanghai, 201804, China
- Translational Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University, Shanghai, 201619, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230026, China
| | - Yuchong Zhang
- Robotics, Perception and Learning Lab, EECS at KTH Royal Institute of Technology Stockholm, 114 17, Stockholm, Sweden
| | - Nona Rajabi
- Robotics, Perception and Learning Lab, EECS at KTH Royal Institute of Technology Stockholm, 114 17, Stockholm, Sweden
| | - Farzaneh Taleb
- Robotics, Perception and Learning Lab, EECS at KTH Royal Institute of Technology Stockholm, 114 17, Stockholm, Sweden
| | - Qunting Yang
- Department of Automation, University of Science and Technology of China, Hefei, 230026, China
| | - Danica Kragic
- Robotics, Perception and Learning Lab, EECS at KTH Royal Institute of Technology Stockholm, 114 17, Stockholm, Sweden
| | - Zhijun Li
- School of Mechanical Engineering, Tongji University, Shanghai, 201804, China.
- Translational Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University, Shanghai, 201619, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230026, China.
| |
Collapse
|
3
|
Pan L, Ren Z, Zhu K, Li J. Eliciting tactile sensations in the hand through non-invasive proximal nerve stimulation: a feasibility study. Med Biol Eng Comput 2023; 61:3225-3232. [PMID: 37721698 DOI: 10.1007/s11517-023-02923-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Recently, non-invasive proximal nerve stimulation has been widely investigated to restore tactile sensations. It has been demonstrated that tactile sensations in the hand could be elicited by nerve stimulation on the upper arm. However, it is still unknown whether tactile sensations could be elicited by stimulation at a proximal location close to the neck. In this study, non-invasive proximal nerve stimulation tests were performed to elicit tactile sensations in the hand of subjects. Six Ag/AgCl gel electrodes (2 × 3) were placed on the supraclavicular fossa where the proximal parts of the brachial plexus nerves were located. Then, fifteen potential electrode pairs were tested to explore whether tactile sensations could be elicited by non-invasive proximal nerve stimulation. Eight able-bodied subjects (male) were recruited to participate in the test. The stimulated sensation regions in the hand and the sensory intensity were reported and recorded during the experiment. The results demonstrated that the tactile sensations in various regions in the hand could be elicited through non-invasive nerve stimulation at the proximal location close to the neck.
Collapse
Affiliation(s)
- Lizhi Pan
- The Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Zhihao Ren
- The Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Kun Zhu
- The Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Jianmin Li
- The Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
4
|
Bensmaia SJ, Tyler DJ, Micera S. Restoration of sensory information via bionic hands. Nat Biomed Eng 2023; 7:443-455. [PMID: 33230305 PMCID: PMC10233657 DOI: 10.1038/s41551-020-00630-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 09/13/2020] [Indexed: 12/19/2022]
Abstract
Individuals who have lost the use of their hands because of amputation or spinal cord injury can use prosthetic hands to restore their independence. A dexterous prosthesis requires the acquisition of control signals that drive the movements of the robotic hand, and the transmission of sensory signals to convey information to the user about the consequences of these movements. In this Review, we describe non-invasive and invasive technologies for conveying artificial sensory feedback through bionic hands, and evaluate the technologies' long-term prospects.
Collapse
Affiliation(s)
- Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA.
- Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, IL, USA.
| | - Dustin J Tyler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.
- Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Vargas L, Huang H, Zhu Y, Kamper D, Hu X. Resembled Tactile Feedback for Object Recognition Using a Prosthetic Hand. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3196958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Luis Vargas
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Raleigh, NC, USA
| | - He Huang
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Raleigh, NC, USA
| | - Yong Zhu
- Mechanical and Aerospace Engineering Department, NC State University, Raleigh, NC, USA
| | - Derek Kamper
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Raleigh, NC, USA
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Raleigh, NC, USA
| |
Collapse
|
6
|
Vargas L, Huang H, Zhu Y, Hu X. Evoked Tactile Feedback and Control Scheme on Functional Utility of Prosthetic Hand. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2021.3139147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Pandarinath C, Bensmaia SJ. The science and engineering behind sensitized brain-controlled bionic hands. Physiol Rev 2022; 102:551-604. [PMID: 34541898 PMCID: PMC8742729 DOI: 10.1152/physrev.00034.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Advances in our understanding of brain function, along with the development of neural interfaces that allow for the monitoring and activation of neurons, have paved the way for brain-machine interfaces (BMIs), which harness neural signals to reanimate the limbs via electrical activation of the muscles or to control extracorporeal devices, thereby bypassing the muscles and senses altogether. BMIs consist of reading out motor intent from the neuronal responses monitored in motor regions of the brain and executing intended movements with bionic limbs, reanimated limbs, or exoskeletons. BMIs also allow for the restoration of the sense of touch by electrically activating neurons in somatosensory regions of the brain, thereby evoking vivid tactile sensations and conveying feedback about object interactions. In this review, we discuss the neural mechanisms of motor control and somatosensation in able-bodied individuals and describe approaches to use neuronal responses as control signals for movement restoration and to activate residual sensory pathways to restore touch. Although the focus of the review is on intracortical approaches, we also describe alternative signal sources for control and noninvasive strategies for sensory restoration.
Collapse
Affiliation(s)
- Chethan Pandarinath
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
- Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois
| |
Collapse
|
8
|
Jabban L, Dupan S, Zhang D, Ainsworth B, Nazarpour K, Metcalfe BW. Sensory Feedback for Upper-Limb Prostheses: Opportunities and Barriers. IEEE Trans Neural Syst Rehabil Eng 2022; 30:738-747. [PMID: 35290188 DOI: 10.1109/tnsre.2022.3159186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The addition of sensory feedback to upper-limb prostheses has been shown to improve control, increase embodiment, and reduce phantom limb pain. However, most commercial prostheses do not incorporate sensory feedback due to several factors. This paper focuses on the major challenges of a lack of deep understanding of user needs, the unavailability of tailored, realistic outcome measures and the segregation between research on control and sensory feedback. The use of methods such as the Person-Based Approach and co-creation can improve the design and testing process. Stronger collaboration between researchers can integrate different prostheses research areas to accelerate the translation process.
Collapse
|
9
|
Dupan S, McNeill Z, Sarda E, Brunton E, Nazarpour K. How fast is too fast? Boundaries to the perception of electrical stimulation of peripheral nerves. IEEE Trans Neural Syst Rehabil Eng 2022; 30:782-788. [PMID: 35271444 DOI: 10.1109/tnsre.2022.3158067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transcutaneous electrical stimulation is a promising technique for providing prosthetic hand users with information about sensory events. However, questions remain over how to design the stimulation paradigms to provide users the best opportunity to discriminate these events. Here, we investigate if the refractory period influences how the amplitude of the applied stimulus is perceived. Twenty participants completed a two-alternative forced choice experiment. We delivered two stimuli spaced between 250 ms to 450 ms apart (inter-stimulus-interval, isi). The participants reported which stimulus they perceived as strongest. Each stimulus consisted of either a single or paired pulse delivered transcutaneously. The inter-pulse interval (ipi) for the paired pulse stimuli varied between 6 and 10 ms. We found paired pulses with an ipi of 6 ms were perceived stronger than a single pulse less often than paired pulses with an ipi of 8 ms (p = 0.001) or 10 ms (p < 0.0001). Additionally, we found when the isi was 250 ms, participants were less likely to identify the paired pulse as strongest, than when the isi was 350 or 450 ms. This study emphasizes the importance of basing stimulation paradigms on the underlying neural physiology. The results indicate there is an upper limit to the commonly accepted notion that higher stimulation frequencies lead to stronger perception. If frequency is to be used to encode sensory events, then the results suggest stimulus paradigms should be designed using frequencies below 125 Hz.
Collapse
|
10
|
Su S, Chai G, Meng J, Sheng X, Mouraux A, Zhu X. Towards optimizing the non-invasive sensory feedback interfaces in a neural prosthetic control. J Neural Eng 2022; 19. [DOI: 10.1088/1741-2552/ac4e1b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. The somatotopic interface (SI) and non-somatotopic interface (NI) are commonly used to provide non-invasive sensory feedback. Nevertheless, differences between SI and NI are rarely reported, and objective evaluations of the corresponding brain response are missing as well. Few studies have reported how to design the stimulation encoding based on the two interfaces. The objective of this study was to investigate the difference in sensory characteristics between SI and NI, and propose an optimal encoding method for non-invasive feedback interfaces. Approach. We recruited seven amputees and compared the tactile sensitivity to stimulated positions and intensities between SI (phantom finger area) and NI (upper arm) in a tactile discrimination task. Electroencephalography (EEG) evaluation task was subsequently conducted to objectively evaluate the stimulus-evoked brain response. Finally, the two kinds of tactile information (stimulated position and intensity) was applied to an object recognition task. Specifically, the object size was reflected by the prosthetic finger position through stimulated position encoding, and the object stiffness was reflected by the contact force of prosthetic fingers through stimulated intensity encoding. We compared the performance under four feedback conditions (combinations between two kinds of tactile information and two interfaces). Results. Behavioral results showed that NI was more sensitive to position information while SI was more sensitive to intensity information. EEG results were consistent with behavioral results, showing a higher sensitivity of sensory alpha ERD for NI in the position discrimination, while the trend was opposite in the intensity discrimination. The feedback encoding allowed amputees to discriminate the size and stiffness of nine objects with the best performance of 62% overall accuracy (84% for size discrimination, 71% for stiffness discrimination) when position and intensity information was delivered on the NI and SI, respectively. Signicance. Our results provided an instructive strategy for sensory feedback via non-invasive solutions.
Collapse
|
11
|
Vargas L, Huang H, Zhu Y, Hu X. Object Recognition via Evoked Sensory Feedback during Control of a Prosthetic Hand. IEEE Robot Autom Lett 2022; 7:207-214. [PMID: 35784093 PMCID: PMC9248871 DOI: 10.1109/lra.2021.3122897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Haptic and proprioceptive feedback is critical for sensorimotor integration when we use our hand to perform daily tasks. Here, we evaluated how externally evoked haptic and proprioceptive feedback and myoelectric control strategies affected the recognition of object properties when participants controlled a prosthetic hand. Fingertip haptic sensation was elicited using a transcutaneous nerve stimulation grid to encode the prosthetic's fingertip forces. An array of tactors elicited patterned vibratory stimuli to encode tactile-proprioceptive kinematic information of the prosthetic finger joint. Myoelectric signals of the finger flexor and extensor were used to control the position or velocity of joint angles of the prosthesis. Participants were asked to perform object property (stiffness and size) recognition, by controlling the prosthetic hand with concurrent haptic and tactile-proprioceptive feedback. With the evoked feedback, intact and amputee participants recognized the object stiffness and size at success rates ranging from 50% to 100% in both position and velocity control with no significant difference across control schemes. Our findings show that evoked somatosensory feedback in a non-invasive manner can facilitate closed-loop control of the prosthetic hand and allowed for simultaneous recognition of different object properties. The outcomes can facilitate our understanding on the role of sensory feedback during bidirectional human-machine interactions, which can potentially promote user experience in object interactions using prosthetic hands.
Collapse
Affiliation(s)
- Luis Vargas
- Joint Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University
| | - He Huang
- Joint Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University
| | - Yong Zhu
- Mechanical and Aerospace Engineering Department at NC State University
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University
| |
Collapse
|
12
|
Marchand C, De Graaf JB, Jarrassé N. Measuring mental workload in assistive wearable devices: a review. J Neuroeng Rehabil 2021; 18:160. [PMID: 34743700 PMCID: PMC8573948 DOI: 10.1186/s12984-021-00953-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/26/2021] [Indexed: 12/21/2022] Open
Abstract
As wearable assistive devices, such as prostheses and exoskeletons, become increasingly sophisticated and effective, the mental workload associated with their use remains high and becomes a major challenge to their ecological use and long-term adoption. Numerous methods of measuring mental workload co-exist, making analysis of this research topic difficult. The aim of this review is to examine how mental workload resulting from the use of wearable assistive devices has been measured, in order to gain insight into the specific possibilities and limitations of this field. Literature searches were conducted in the main scientific databases and 60 articles measuring the mental workload induced by the use of a wearable assistive device were included in this study. Three main families of methods were identified, the most common being 'dual task' and 'subjective assessment' methods, followed by those based on 'physiological measures', which included a wide variety of methods. The variability of the measurements was particularly high, making comparison difficult. There is as yet no evidence that any particular method of measuring mental workload is more appropriate to the field of wearable assistive devices. Each method has intrinsic limitations such as subjectivity, imprecision, robustness or complexity of implementation or interpretation. A promising metric seems to be the measurement of brain activity, as it is the only method that is directly related to mental workload. Finally, regardless of the measurement method chosen, special attention should be paid to the measurement of mental workload in the context of wearable assistive devices. In particular, certain practical considerations, such as ecological situations and environments or the level of expertise of the participants tested, may be essential to ensure the validity of the mental workload assessed.
Collapse
Affiliation(s)
- Charlotte Marchand
- CNRS, UMR 7222, ISIR / INSERM, U1150 Agathe-ISIR, Sorbonne Université, Paris, France
| | | | - Nathanaël Jarrassé
- CNRS, UMR 7222, ISIR / INSERM, U1150 Agathe-ISIR, Sorbonne Université, Paris, France.
| |
Collapse
|
13
|
Vargas L, Huang H(H, Zhu Y, Hu X. Static and dynamic proprioceptive recognition through vibrotactile stimulation. J Neural Eng 2021; 18:10.1088/1741-2552/ac0d43. [PMID: 34153955 PMCID: PMC8715509 DOI: 10.1088/1741-2552/ac0d43] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/21/2021] [Indexed: 11/12/2022]
Abstract
Objective.Proprioceptive information provides individuals with a sense of our limb's static position and dynamic movement. Impaired or a lack of such feedback can diminish our ability to perform dexterous motions with our biological limbs or assistive devices. Here we seek to determine whether both static and dynamic components of proprioception can be recognized using variation of the spatial and temporal components of vibrotactile feedback.Approach.An array of five vibrotactors was placed on the forearm of each subject. Each tactor was encoded to represent one of the five forearm postures. Vibratory stimulus was elicited to convey the static position and movement of the forearm. Four experimental blocks were performed to test each subject's recognition of a forearm's simulated static position, rotational amplitude, rotational amplitude and direction, and rotational speed.Main results.Our results showed that the subjects were able to perform proprioceptive recognition based on the delivered vibrotactile information. Specifically, rotational amplitude recognition resulted in the highest level of accuracy (99.0%), while the recognition accuracy of the static position and the rotational amplitude-direction was the lowest (91.7% and 90.8%, respectively). Nevertheless, all proprioceptive properties were perceived with >90% accuracy, indicating that the implemented vibrotactile encoding scheme could effectively provide proprioceptive information to the users.Significance.The outcomes suggest that information pertaining to static and dynamic aspects of proprioception can be accurately delivered using an array of vibrotactors. This feedback approach could be used to potentially evaluate the sensorimotor integration processes during human-machine interactions, and to improve sensory feedback in clinical populations with somatosensory impairments.
Collapse
Affiliation(s)
- Luis Vargas
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC and North Carolina State University, 10206B Mary Ellen Jones Bldg, Raleigh, NC 27599, United States of America
| | - He (Helen) Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC and North Carolina State University, 10206B Mary Ellen Jones Bldg, Raleigh, NC 27599, United States of America
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States of America
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC and North Carolina State University, 10206B Mary Ellen Jones Bldg, Raleigh, NC 27599, United States of America
| |
Collapse
|
14
|
Pena AE, Abbas JJ, Jung R. Channel-hopping during surface electrical neurostimulation elicits selective, comfortable, distally referred sensations. J Neural Eng 2021; 18. [PMID: 33770781 DOI: 10.1088/1741-2552/abf28c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/23/2021] [Indexed: 11/12/2022]
Abstract
Objective.Lack of sensation from a hand or prosthesis can result in substantial functional deficits. Surface electrical stimulation of the peripheral nerves is a promising non-invasive approach to restore lost sensory function. However, the utility of standard surface stimulation methods has been hampered by localized discomfort caused by unintended activation of afferents near the electrodes and limited ability to specifically target underlying neural tissue. The objectives of this work were to develop and evaluate a novel channel-hopping interleaved pulse scheduling (CHIPS) strategy for surface stimulation that is designed to activate deep nerves while reducing activation of fibers near the electrodes.Approach.The median nerve of able-bodied subjects was activated by up to two surface stimulating electrode pairs placed around their right wrist. Subjects received biphasic current pulses either from one electrode pair at a time (single-channel), or interleaved between two electrode pairs (multi-channel). Percept thresholds were characterized for five pulse durations under each approach, and psychophysical questionnaires were used to interrogate the perceived modality, quality and location of evoked sensations.Main results.Stimulation with CHIPS elicited enhanced tactile percepts that were distally referred, while avoiding the distracting sensations and discomfort associated with localized charge densities. These effects were reduced after introduction of large delays between interleaved pulses.Significance.These findings demonstrate that our pulse scheduling strategy can selectively elicit referred sensations that are comfortable, thus overcoming the primary limitations of standard surface stimulation methods. Implementation of this strategy with an array of spatially distributed electrodes may allow for rapid and effective stimulation fitting. The ability to elicit comfortable and referred tactile percepts may enable the use of this neurostimulation strategy to provide meaningful and intuitive feedback from a prosthesis, enhance tactile feedback after sensory loss secondary to nerve damage, and deliver non-invasive stimulation therapies to treat various pain conditions.
Collapse
Affiliation(s)
- A E Pena
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States of America
| | - J J Abbas
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| | - R Jung
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States of America
| |
Collapse
|
15
|
Li K, Zhou Y, Zhou D, Zeng J, Fang Y, Yang J, Liu H. Electrotactile Feedback-Based Muscle Fatigue Alleviation for Hand Manipulation. INT J HUM ROBOT 2020. [DOI: 10.1142/s0219843620500243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tactile feedback is beneficial to improve the hand prosthesis performance, alleviate phantom pain, reduce muscle fatigue, etc. During the manipulation process, muscle fatigue not only causes discomfort to prosthesis users but also disturbs the surface electromyographic (sEMG)-based motion recognition, which significantly deteriorates the prosthesis functional performance. Efforts have been made to explore appropriate signal processing algorithms which could be less influenced by muscle fatigue. However, few studies concern how to alleviate muscle fatigue directly. Thus, this study proposes a novel method to avoid excessive muscle fatigue based on electrotactile feedback. A potable electrotactile stimulator is developed with adjustable parameters, multiple channels and wireless communication. It is implemented in a virtual hand grasping platform driven by sEMG signals to investigate the impact of tactile feedback on muscle fatigue. Experimental results show a higher success rate of grasping with electrotactile feedback than that with no feedback. Moreover, compared with grasp in the no feedback condition, there is an observable decrease of sEMG intensity when grasping a heavy object with electrotactile feedback, despite a comparable performance on the light and medium objects in both feedback conditions. It indicates that tactile feedback helps to alleviate muscle fatigue caused by excessive muscle contraction, especially when large strength is needed.
Collapse
Affiliation(s)
- Kairu Li
- School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, P. R. China
| | - Yu Zhou
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Dalin Zhou
- School of Computing, University of Portsmouth, Portsmouth PO1 3HE, UK
| | - Jia Zeng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yinfeng Fang
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Junyou Yang
- School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, P. R. China
| | - Honghai Liu
- School of Computing, University of Portsmouth, Portsmouth PO1 3HE, UK
| |
Collapse
|
16
|
Leo F, Nataletti S, Brayda L. Non-informative vision improves spatial tactile discrimination on the shoulder but does not influence detection sensitivity. Exp Brain Res 2020; 238:2865-2875. [PMID: 33051694 PMCID: PMC7644450 DOI: 10.1007/s00221-020-05944-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
Abstract
Vision of the body has been reported to improve tactile acuity even when vision is not informative about the actual tactile stimulation. However, it is currently unclear whether this effect is limited to body parts such as hand, forearm or foot that can be normally viewed, or it also generalizes to body locations, such as the shoulder, that are rarely before our own eyes. In this study, subjects consecutively performed a detection threshold task and a numerosity judgment task of tactile stimuli on the shoulder. Meanwhile, they watched either a real-time video showing their shoulder or simply a fixation cross as control condition. We show that non-informative vision improves tactile numerosity judgment which might involve tactile acuity, but not tactile sensitivity. Furthermore, the improvement in tactile accuracy modulated by vision seems to be due to an enhanced ability in discriminating the number of adjacent active electrodes. These results are consistent with the view that bimodal visuotactile neurons sharp tactile receptive fields in an early somatosensory map, probably via top-down modulation of lateral inhibition.
Collapse
Affiliation(s)
- Fabrizio Leo
- Robotics, Brain, and Cognitive Sciences, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Sara Nataletti
- Robotics, Brain, and Cognitive Sciences, Istituto Italiano di Tecnologia, Genoa, Italy.,DIBRIS, University of Genoa, Genoa, Italy
| | - Luca Brayda
- Robotics, Brain, and Cognitive Sciences, Istituto Italiano di Tecnologia, Genoa, Italy.,Acoesis s.r.l, Genoa, Italy
| |
Collapse
|
17
|
Pan L, Vargas L, Fleming A, Hu X, Zhu Y, Huang HH. Evoking haptic sensations in the foot through high-density transcutaneous electrical nerve stimulations. J Neural Eng 2020; 17:036020. [PMID: 32348977 DOI: 10.1088/1741-2552/ab8e8d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Evoking haptic sensation on upper limb amputees via peripheral nerve stimulation has been investigated intensively in the past decade, but related studies involving lower limb amputees are limited. This study aimed to evaluate the feasibility of using non-invasive transcutaneous electrical nerve stimulation to evoke haptic sensation along the phantom limb of the amputated foot of transtibial amputees. APPROACH A high-density electrode grid (4 × 4) was placed over the skin surface above the distal branching of the sciatic, tibial, and common peroneal nerves. We hypothesized that electrical stimulation delivered to distinct electrode pairs created unique electric fields, which can activate selective sets of sensory axons innervating different skin regions of the foot. Five transtibial amputee subjects (three unilateral and two bilateral) and one able-bodied subject were tested by scanning all possible electrode pair combinations. MAIN RESULTS All subjects reported various haptic percepts at distinct regions along the foot with each corresponding to specific electrode pairs. These results demonstrated the capability of our non-invasive nerve stimulation method to evoke haptic sensations in the foot of transtibial amputees and the able-bodied subject. SIGNIFICANCE The outcomes contribute important knowledge and evidence regarding missing tactile sensation in the foot of lower limb amputees and might also facilitate future development of strategies to manage phantom pain and enhance embodiment of prosthetic legs in the future.
Collapse
Affiliation(s)
- Lizhi Pan
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Su S, Chai G, Shu X, Sheng X, Zhu X. Electrical stimulation-induced SSSEP as an objective index to evaluate the difference of tactile acuity between the left and right hand. J Neural Eng 2020; 17:016053. [PMID: 31801122 DOI: 10.1088/1741-2552/ab5ee9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The objective of this study is to propose an objective index to evaluate the difference of tactile acuity between the left and right hand based on steady-state somatosensory evoked potential (SSSEP). APPROACH Two kinds of tactile sensations (vibration and pressure) with three levels of intensities (low/medium/high) were evoked on two finger areas of the left or right hand (thumb and index for healthy hands, thumb and index-projected areas for disabled hands) via transcutaneous electrical nerve stimulation (TENS). Three forearm amputees and 13 able-bodied subjects were recruited to discriminate the specific level and area of the applied stimulation. Electroencephalography was adopted to simultaneously record the somatosensory cortex response to TENS. We assessed the discrimination performance (discrimination accuracy rate (AR) and response time (RT)) to quantify the tactile acuity, while the evoked SSSEP was synchronously analyzed. Linear regression analyses were performed between the difference of SSSEP amplitudes and the difference of discrimination performance for the left and right hand stimulation. MAIN RESULTS Frequency domain analysis revealed that SSSEP amplitude increased with the increase of the stimulation intensity. There were positive correlations between the difference of SSSEP amplitudes and the difference of ARs for the left and right hand stimulation in the sensations of vibration (R 2 = 0.6389 for able-bodied subjects, R 2 = 0.5328 for amputees) and pressure (R 2 = 0.6102 for able-bodied subjects, R 2 = 0.5452 for amputees), respectively. Significance The SSSEP amplitude could be used as an objective index to evaluate the difference of the tactile acuity between the left and right hand and has the potential to be applied in sensory rehabilitation for amputees or stroke patients.
Collapse
Affiliation(s)
- Shiyong Su
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
19
|
Vargas L, Shin H, Huang H(H, Zhu Y, Hu X. Object stiffness recognition using haptic feedback delivered through transcutaneous proximal nerve stimulation. J Neural Eng 2019; 17:016002. [PMID: 31610530 PMCID: PMC7237382 DOI: 10.1088/1741-2552/ab4d99] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Haptic feedback is crucial when we manipulate objects. Information pertaining to an object's stiffness in particular can help facilitate fine motor control. In this study, we seek to determine whether objects of different stiffness levels can be recognized using haptic feedback provided by transcutaneous electrical stimulation of peripheral nerves. APPROACH Using a stimulation electrode grid placed along the medial side of the upper arm, the median and ulnar nerve bundles were targeted to evoke haptic sensation on the palmar side of the hand. Stimulation current amplitude was modulated in real-time with the fingertip force recorded from a sensorized prosthetic hand. In order to evaluate which stimulation pattern was more critical, object stiffness was encoded either by the rate of change of the stimulus amplitude or the level of peak stimulus amplitude, as the prosthesis grasped the objects. MAIN RESULTS Both encoding methods allowed the subjects to differentiate objects of different stiffness levels with >90% accuracy. No significant difference was observed between the two encoding methods, which indicated that both the rate of change of the stimulation amplitude and the peak stimulation amplitude could effectively provide stiffness information of the objects. SIGNIFICANCE The outcomes suggest that it is possible to elicit haptic sensations describing various object stiffness levels using transcutaneous nerve stimulation. The haptic feedback associated with object stiffness can facilitate object manipulation/interactions. It may also improve user experience during human-machine interactions, when object stiffness information is incorporated.
Collapse
Affiliation(s)
- Luis Vargas
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, United States of America
| | - Henry Shin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, United States of America
| | - He (Helen) Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, United States of America
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States of America
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, United States of America
| |
Collapse
|
20
|
Dong J, Geng B, Niazi IK, Amjad I, Dosen S, Jensen W, Kamavuako EN. The Variability of Psychophysical Parameters Following Surface and Subdermal Stimulation: A Multiday Study in Amputees. IEEE Trans Neural Syst Rehabil Eng 2019; 28:174-180. [PMID: 31796411 DOI: 10.1109/tnsre.2019.2956836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electrotactile stimulation has been suggested as a modality for providing sensory feedback in upper limb prostheses. This study investigates the multiday variability of subdermal and surface stimulation. Electrical stimulation was delivered using either surface or fine wire electrodes placed right under the skin in eight amputees for seven consecutive days. The variability of psychophysical measurements, including detection threshold (DT), pain threshold (PT), dynamic range (DR), just noticeable difference (JND), Weber fraction (WF) and quality of evoked sensations, was evaluated using the coefficient of variation (CoV). In addition, the systematic change in the mean of the parameters across days was assessed in both stimulation modalities. In the case of DT, PT, DR, and perceived intensity at 100 Hz, the CoV of surface stimulation was significantly smaller than that of subdermal stimulation. Only PT showed a significant systematic change in the mean value across days for both modalities. The outcome of this study has implications for the choice of modality in delivering sensory feedback, though the significance of the quantified variability needs to be evaluated using usability tests with user feedback.
Collapse
|
21
|
D' Alonzo M, Engels LF, Controzzi M, Cipriani C. Electro-cutaneous stimulation on the palm elicits referred sensations on intact but not on amputated digits. J Neural Eng 2019; 15:016003. [PMID: 28741593 DOI: 10.1088/1741-2552/aa81e2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Grasping and manipulation control critically depends on tactile feedback. Without this feedback, the ability for fine control of a prosthesis is limited in upper limb amputees. Early studies have shown that non-invasive electro-cutaneous stimulation (ES) can induce referred sensations that are spread to a wider and/or more distant area, with respect to the electrodes. Building on this, we sought to exploit this effect to provide somatotopically matched sensory feedback to people with partial hand (digital) amputations. APPROACH For the first time, this work investigated the possibility of inducing referred sensations in the digits by activating the palmar nerves. Specifically, we electrically stimulated 18 sites on the palm of non-amputees to evaluate the effects of sites and stimulation parameters on modality, magnitude, and location of the evoked sensations. We performed similar tests with partial hand amputees by testing those sites that had most consistently elicited referred sensations in non-amputees. MAIN RESULTS We demonstrated referred sensations in non-amputees from all stimulation sites in one form or another. Specifically, the stimulation of 16 of the 18 sites gave rise to reliable referred sensations. Amputees experienced referred sensations to unimpaired digits, just like non-amputees, but we were unable to evoke referred sensations in their missing digits: none of them reported sensations that extended beyond the tip of the stump. SIGNIFICANCE The possibility of eliciting referred sensations on the digits may be exploited in haptic systems for providing touch sensations without obstructing the fingertips or their movements. The study also suggests that the phenomenon of referred sensations through ES may not be exploited for partial hand prostheses, and it invites researchers to explore alternative approaches. Finally, the results seem to confirm previous studies suggesting that the stumps in partial hand amputees partially acquire the role of the missing fingertips, physiologically and cognitively.
Collapse
|
22
|
Vargas L, Whitehouse G, Huang H, Zhu Y, Hu X. Evoked Haptic Sensation in the Hand With Concurrent Non-Invasive Nerve Stimulation. IEEE Trans Biomed Eng 2019; 66:2761-2767. [PMID: 30703003 DOI: 10.1109/tbme.2019.2895575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Haptic perception is critical for prosthetic users to control their prosthetic hand intuitively. In this study, we seek to evaluate the haptic perception evoked from concurrent stimulation trains through multiple channels using transcutaneous nerve stimulation. METHODS A 2 × 8 electrode grid was used to deliver current to the median and ulnar nerves in the upper arm. Different electrodes were first selected to activate the sensory axons, which can elicit sensations at different locations of the hand. Charge-balanced bipolar stimulation was then delivered to two sets of electrodes concurrently with a phase delay (dual stimulation) to determine whether the evoked sensation can be constructed from sensations of single stimulation delivered separately at different locations (single stimulation) along the electrode grid. The temporal delay between the two stimulation trains was altered to evaluate potential interference. The short-term stability of the haptic sensation within a testing session was also evaluated. RESULTS The evoked sensation during dual stimulation was largely a direct summation of the sensation from single stimulations. The delay between the two stimulation locations had minimal effect on the evoked sensations, which was also stable over repeated testing within a session. CONCLUSION Our results indicated that the haptic sensations at different regions of the hand can be constructed by combining the response from multiple stimulation trains directly. The interference between stimulations were minimal. SIGNIFICANCE The outcomes will allow us to construct specific haptic sensation patterns when the prosthesis interacts with different objects, which may help improve user embodiment of the prosthesis.
Collapse
|
23
|
Petrini FM, Valle G, Strauss I, Granata G, Di Iorio R, D'Anna E, Čvančara P, Mueller M, Carpaneto J, Clemente F, Controzzi M, Bisoni L, Carboni C, Barbaro M, Iodice F, Andreu D, Hiairrassary A, Divoux JL, Cipriani C, Guiraud D, Raffo L, Fernandez E, Stieglitz T, Raspopovic S, Rossini PM, Micera S. Six-Month Assessment of a Hand Prosthesis with Intraneural Tactile Feedback. Ann Neurol 2018; 85:137-154. [DOI: 10.1002/ana.25384] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Francesco M. Petrini
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering; Swiss Federal Institute of Technology of Lausanne (EPFL); Lausanne Switzerland
| | - Giacomo Valle
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering; Swiss Federal Institute of Technology of Lausanne (EPFL); Lausanne Switzerland
- Biorobotics Institute; Sant'Anna School of Advanced Studies (SSSA); Pisa Italy
| | - Ivo Strauss
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering; Swiss Federal Institute of Technology of Lausanne (EPFL); Lausanne Switzerland
- Biorobotics Institute; Sant'Anna School of Advanced Studies (SSSA); Pisa Italy
| | - Giuseppe Granata
- Institute of Neurology; Catholic University; Rome Italy
- Department of Geriatrics, Neuroscience, and Orthopedics; Policlinic A. Gemelli Foundation-IRCCS; Rome Italy
| | - Riccardo Di Iorio
- Institute of Neurology; Catholic University; Rome Italy
- Department of Geriatrics, Neuroscience, and Orthopedics; Policlinic A. Gemelli Foundation-IRCCS; Rome Italy
| | - Edoardo D'Anna
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering; Swiss Federal Institute of Technology of Lausanne (EPFL); Lausanne Switzerland
| | - Paul Čvančara
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Bernstein Center Freiburg and BrainLinks-BrainTools Center; University of Freiburg; Freiburg Germany
| | - Matthias Mueller
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Bernstein Center Freiburg and BrainLinks-BrainTools Center; University of Freiburg; Freiburg Germany
| | - Jacopo Carpaneto
- Biorobotics Institute; Sant'Anna School of Advanced Studies (SSSA); Pisa Italy
| | - Francesco Clemente
- Biorobotics Institute; Sant'Anna School of Advanced Studies (SSSA); Pisa Italy
| | - Marco Controzzi
- Biorobotics Institute; Sant'Anna School of Advanced Studies (SSSA); Pisa Italy
| | - Lorenzo Bisoni
- Department of Electrical and Electronic Engineering; University of Cagliari; Cagliari Italy
| | - Caterina Carboni
- Department of Electrical and Electronic Engineering; University of Cagliari; Cagliari Italy
| | - Massimo Barbaro
- Department of Electrical and Electronic Engineering; University of Cagliari; Cagliari Italy
| | - Francesco Iodice
- Institute of Neurology; Catholic University; Rome Italy
- Department of Geriatrics, Neuroscience, and Orthopedics; Policlinic A. Gemelli Foundation-IRCCS; Rome Italy
| | - David Andreu
- INRIA, CAMIN Team; University of Montpellier; Montpellier France
| | | | | | - Christian Cipriani
- Biorobotics Institute; Sant'Anna School of Advanced Studies (SSSA); Pisa Italy
| | - David Guiraud
- INRIA, CAMIN Team; University of Montpellier; Montpellier France
| | - Luigi Raffo
- Department of Electrical and Electronic Engineering; University of Cagliari; Cagliari Italy
| | - Eduardo Fernandez
- Institute of Neurology; Catholic University; Rome Italy
- Department of Geriatrics, Neuroscience, and Orthopedics; Policlinic A. Gemelli Foundation-IRCCS; Rome Italy
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Bernstein Center Freiburg and BrainLinks-BrainTools Center; University of Freiburg; Freiburg Germany
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology; Institute for Robotics and Intelligent Systems; ETH Zürich, Zürich Switzerland
| | - Paolo M. Rossini
- Institute of Neurology; Catholic University; Rome Italy
- Department of Geriatrics, Neuroscience, and Orthopedics; Policlinic A. Gemelli Foundation-IRCCS; Rome Italy
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering; Swiss Federal Institute of Technology of Lausanne (EPFL); Lausanne Switzerland
- Biorobotics Institute; Sant'Anna School of Advanced Studies (SSSA); Pisa Italy
| |
Collapse
|
24
|
Bilateral cortical representation of tactile roughness. Brain Res 2018; 1699:79-88. [PMID: 29908164 DOI: 10.1016/j.brainres.2018.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 11/21/2022]
Abstract
Roughness is the most important feature for texture discrimination. Here we investigate how the bilateral cortical representation of touch is modulated by tactile roughness by analyzing the neural responses elicited by stimuli with various coarseness levels ranging from fine to medium. A prolonged stimulation was delivered to 10 healthy subjects by passively sliding tactile stimuli under the fingertip while recording the EEG to study the modulation of Somatosensory Evoked Potentials (SEPs) as well as activity in the theta and alpha bands. Elicited long-latency SEPs, namely bilateral P100-N140 and frontal P240 were consistent across stimuli. On the contrary, the temporal lag N140 - P240 was nonlinearly modulated both in contralateral and ipsilateral sides, in agreement with literature. Using a time-frequency analysis approach, we identified a theta band power increase in the [0 0.5]s interval and a partially overlapped power decrease in the alpha band which lasted throughout the stimulation. The estimated time these two phenomena were overlapped was comparable across stimuli, whereas a linear decrease in alpha band amplitude was reported when increasing the stimulus roughness in both contralateral and ipsilateral sides. This study showed that the selected tactile stimuli generated physiological bilateral responses that were modulated in a diversified way according to the stimulus roughness and side. Specifically, we identified sensory processing features (i.e., theta and alpha time overlap) invariant to the stimulus roughness (i.e., associated to a basic cortical mechanism of touch) and roughness-dependent cortical outputs comparable in the contralateral and ipsilateral sides that confirm a bilateral processing of tactile information.
Collapse
|
25
|
Vargas L, Huang HH, Zhu Y, Hu X. Merged Haptic Sensation in the Hand during Concurrent Non-Invasive Proximal Nerve Stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:2186-2189. [PMID: 30440838 PMCID: PMC7233110 DOI: 10.1109/embc.2018.8512707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
When individuals interact with the environment, sensory feedback is a critical aspect of the experience. Individuals using prosthesis often have difficulty controlling their device, partly due to a lack of sensory information. Transcutaneous nerve stimulation has the potential to elicit focal haptic sensation when controlled electrical current was delivered to a pair of electrodes in proximity to the nerve. The objective of this preliminary study was to evaluate how different elicited focal haptic sensation were altered, when multiple concurrent electrical stimuli were delivered to different portions of the median and ulnar nerve bundles. The delay between the individual stimulation during concurrent stimuli was also varied to identify if this parameter could alter the resulting sensation region. Lastly, the stability/repeatability of the perceived sensation during concurrent stimuli was determined. Our preliminary results showed that the spatial distribution of the haptic sensation was largely a direct summation/merge of the sensation regions from the individual nerve stimulation when comparing the regions to that of the concurrent double stimulation. Our results also showed that merged sensation region was not sensitive to different time delays the two concurrent stimuli. Lastly, the sensation regions remained stable and showed repeatable sensation in the hand even with 20-60 minutes between repeated stimulations.
Collapse
|
26
|
Huang H, Bruschini C, Antfolk C, Enz C, Li T, Justiz J, Koch VM. Automatic hand phantom map generation and detection using decomposition support vector machines. Biomed Eng Online 2018; 17:74. [PMID: 29890988 PMCID: PMC5996576 DOI: 10.1186/s12938-018-0502-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/18/2018] [Indexed: 12/02/2022] Open
Abstract
Background There is a need for providing sensory feedback for myoelectric prosthesis users. Providing tactile feedback can improve object manipulation abilities, enhance the perceptual embodiment of myoelectric prostheses and help reduce phantom limb pain. Many amputees have referred sensation from their missing hand on their residual limbs (phantom maps). This skin area can serve as a target for providing amputees with non-invasive tactile sensory feedback. One of the challenges of providing sensory feedback on the phantom map is to define the accurate boundary of each phantom digit because the phantom map distribution varies from person to person. Methods In this paper, automatic phantom map detection methods based on four decomposition support vector machine algorithms and three sampling methods are proposed, complemented by fuzzy logic and active learning strategies. The algorithms and methods are tested on two databases: the first one includes 400 generated phantom maps, whereby the phantom map generation algorithm was based on our observation of the phantom maps to ensure smooth phantom digit edges, variety, and representativeness. The second database includes five reported phantom map images and transformations thereof. The accuracy and training/ classification time of each algorithm using a dense stimulation array (with 100 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\times $$\end{document}× 100 actuators) and two coarse stimulation arrays (with 3 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\times $$\end{document}× 5 and 4 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\times $$\end{document}× 6 actuators) are presented and compared. Results Both generated and reported phantom map images share the same trends. Majority-pooling sampling effectively increases the training size, albeit introducing some noise, and thus produces the smallest error rates among the three proposed sampling methods. For different decomposition architectures, one-vs-one reduces unclassified regions and in general has higher classification accuracy than the other architectures. By introducing fuzzy logic to bias the penalty parameter, the influence of pooling-induced noise is reduced. Moreover, active learning with different strategies was also tested and shown to improve the accuracy by introducing more representative training samples. Overall, dense arrays employing one-vs-one fuzzy support vector machines with majority-pooling sampling have the smallest average absolute error rate (8.78% for generated phantom maps and 11.5% for reported and transformed phantom map images). The detection accuracy of coarse arrays was found to be significantly lower than for dense array. Conclusions The results demonstrate the effectiveness of support vector machines using a dense array in detecting refined phantom map shapes, whereas coarse arrays are unsuitable for this task. We therefore propose a two-step approach, using first a non-wearable dense array to detect an accurate phantom map shape, then to apply a wearable coarse stimulation array customized according to the detection results. The proposed methodology can be used as a tool for helping haptic feedback designers and for tracking the evolvement of phantom maps.
Collapse
Affiliation(s)
- Huaiqi Huang
- BME Lab, Institute for Human Centered Engineering, Bern University of Applied Sciences, Quellgasse 21, 2502, Biel, Switzerland. .,Integrated Circuits Laboratory (ICLAB), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladiére 71b, 2002, Neuchâtel, Switzerland.
| | - Claudio Bruschini
- Integrated Circuits Laboratory (ICLAB), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladiére 71b, 2002, Neuchâtel, Switzerland
| | - Christian Antfolk
- Biomedical Engineering, Lund University, Ole Römers väg 3, 22100, Lund, Sweden
| | - Christian Enz
- Integrated Circuits Laboratory (ICLAB), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladiére 71b, 2002, Neuchâtel, Switzerland
| | - Tao Li
- BME Lab, Institute for Human Centered Engineering, Bern University of Applied Sciences, Quellgasse 21, 2502, Biel, Switzerland
| | - Jörn Justiz
- BME Lab, Institute for Human Centered Engineering, Bern University of Applied Sciences, Quellgasse 21, 2502, Biel, Switzerland
| | - Volker M Koch
- BME Lab, Institute for Human Centered Engineering, Bern University of Applied Sciences, Quellgasse 21, 2502, Biel, Switzerland
| |
Collapse
|
27
|
Shin H, Watkins Z, Huang H(H, Zhu Y, Hu X. Evoked haptic sensations in the hand via non-invasive proximal nerve stimulation. J Neural Eng 2018; 15:046005. [DOI: 10.1088/1741-2552/aabd5d] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
D'Anna E, Petrini FM, Artoni F, Popovic I, Simanić I, Raspopovic S, Micera S. A somatotopic bidirectional hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback. Sci Rep 2017; 7:10930. [PMID: 28883640 PMCID: PMC5589952 DOI: 10.1038/s41598-017-11306-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 08/22/2017] [Indexed: 11/11/2022] Open
Abstract
According to amputees, sensory feedback is amongst the most important features lacking from commercial prostheses. Although restoration of touch by means of implantable neural interfaces has been achieved, these approaches require surgical interventions, and their long-term usability still needs to be fully investigated. Here, we developed a non-invasive alternative which maintains some of the advantages of invasive approaches, such as a somatotopic sensory restitution scheme. We used transcutaneous electrical nerve stimulation (TENS) to induce referred sensations to the phantom hand of amputees. These sensations were characterized in four amputees over two weeks. Although the induced sensation was often paresthesia, the location corresponded to parts of the innervation regions of the median and ulnar nerves, and electroencephalographic (EEG) recordings confirmed the presence of appropriate responses in relevant cortical areas. Using these sensations as feedback during bidirectional prosthesis control, the patients were able to perform several functional tasks that would not be possible otherwise, such as applying one of three levels of force on an external sensor. Performance during these tasks was high, suggesting that this approach could be a viable alternative to the more invasive solutions, offering a trade-off between the quality of the sensation, and the invasiveness of the intervention.
Collapse
Affiliation(s)
- Edoardo D'Anna
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Francesco M Petrini
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fiorenzo Artoni
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Igor Popovic
- Specialized Hospital for rehabilitation and orthopaedic prosthetics, Belgrade, Serbia
| | - Igor Simanić
- Specialized Hospital for rehabilitation and orthopaedic prosthetics, Belgrade, Serbia
| | - Stanisa Raspopovic
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. .,The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
29
|
Choi K, Kim P, Kim KS, Kim S. Mixed-Modality Stimulation to Evoke Two Modalities Simultaneously in One Channel for Electrocutaneous Sensory Feedback. IEEE Trans Neural Syst Rehabil Eng 2017; 25:2258-2269. [PMID: 28742043 DOI: 10.1109/tnsre.2017.2730856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One of the long-standing challenges in upper limb prosthetics is restoring the sensory feedback that is missing due to amputation. Two approaches have previously been presented to provide various types of sensory information to users, namely, multi-modality sensory feedback and using an array of single-modality stimulators. However, the feedback systems used in these approaches were too bulky to be embedded in prosthesis sockets. In this paper, we propose an electrocutaneous sensory feedback method that is capable of conveying two modalities simultaneously with only one electrode. The stimulation method, which we call mixed-modality stimulation, utilizes the phenomenon in which the superposition of two electric pulse trains of different frequencies is able to evoke two different modalities (i.e., pressure and tapping) at the same time. We conducted psychophysical experiments in which healthy subjects were required to recognize the intensity of pressure or the frequency of tapping from mixed-modality or two-channel stimulations. The results demonstrated that the subjects were able to discriminate the features of the two modalities in one electrode during mixed-modality stimulation and that the accuracies of successful recognitions (mean ± standard deviation) for the two feedback variables were 84.3 ± 7% for mixed-modality stimulation and 89.5 ± 6% for two-channel dual-modality stimulation, showing no statistically significant difference. Therefore, mixed-modality stimulation is an attractive method for modulating two modalities independently with only one electrode, and it could be used for implementing a compact sensory feedback system that is able to provide two different types of sensory information from prosthetics.
Collapse
|
30
|
Jeong SH, Kim KS, Kim S. Designing Anthropomorphic Robot Hand With Active Dual-Mode Twisted String Actuation Mechanism and Tiny Tension Sensors. IEEE Robot Autom Lett 2017. [DOI: 10.1109/lra.2017.2647800] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Chai G, Zhang D, Zhu X. Developing Non-Somatotopic Phantom Finger Sensation to Comparable Levels of Somatotopic Sensation through User Training With Electrotactile Stimulation. IEEE Trans Neural Syst Rehabil Eng 2017; 25:469-480. [DOI: 10.1109/tnsre.2016.2580905] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|