1
|
Filius SJ, van der Burgh BJ, Harlaar J. The Design of the Dummy Arm: A Verification Tool for Arm Exoskeleton Development. Biomimetics (Basel) 2024; 9:579. [PMID: 39451785 PMCID: PMC11504320 DOI: 10.3390/biomimetics9100579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Motorised arm supports for individuals with severe arm muscle weakness require precise compensation for arm weight and elevated passive joint impedance (e.g., joint stiffness as a result of muscle atrophy and fibrosis). Estimating these parameters in vivo, along with the arm's centre of mass, is challenging, and human evaluations of assistance can be subjective. To address this, a dummy arm was designed to replicate the human arm's anthropometrics, degrees of freedom, adjustable segment masses, and passive elbow joint impedance (eJimp). This study presents the design, anthropometrics, and verification of the dummy arm. It successfully mimics the human arm's range of motion, mass, and centre of mass. The dummy arm also demonstrates the ability to replicate various eJimp torque-angle profiles. Additionally, it allows for the tuning of the segment masses, centres of mass, and eJimp to match a representative desired target population. This simple, cost-effective tool has proven valuable for the development and verification of the Duchenne ARm ORthosis (DAROR), a motorised arm support, or 'exoskeleton'. This study includes recommendations for practical applications and provides insights into optimising design specifications based on the final design. It supplements the CAD design, enhancing the dummy arm's application for future arm-assistive devices.
Collapse
Affiliation(s)
- Suzanne J. Filius
- Department of BioMechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands;
| | - Bas J. van der Burgh
- Department of Precision and Microsystems Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Jaap Harlaar
- Department of BioMechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands;
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
2
|
Lee SY, Seo J, Seo CH, Cho YS, Joo SY. Gait Performance and Brain Activity Are Improved by Gait Automatization during Robot-Assisted Gait Training in Patients with Burns: A Prospective, Randomized, Single-Blinded Study. J Clin Med 2024; 13:4838. [PMID: 39200980 PMCID: PMC11355861 DOI: 10.3390/jcm13164838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Patients with lower extremity burn injuries have decreased gait function. Gait dysfunctions are compensated by activation of executive areas such as the prefrontal cortex (PFC). Although robot-assisted gait training (RAGT) can improve gait function, the training mechanisms of RAGT are unknown. We aimed to determine the clinical effects of RAGT in patients with burns and investigate their underlying mechanisms. Methods: This single-blind, randomized controlled trial involved 54 patients with lower extremity burns. The RAGT group underwent RAGT using SUBAR® and conventional training. The control (CON) group underwent only conventional training. The primary outcome was cortical activity measured using a functional near-infrared spectroscopy device before and after 8 weeks of training to confirm the compensatory effect of gait dysfunction. The secondary outcomes were the functional ambulation category (FAC) to evaluate gait performance, 6-min walking test (6 MWT) distance to measure gait speed, isometric force and range of motion (ROM) of lower extremities to evaluate physical function, and the visual analog scale (VAS) score to evaluate subjective pain during gait. Results: PFC activation during the gait phase in the RAGT group decreased significantly compared with that of the CON. The VAS score decreased and FAC score improved after 8 weeks of training in both groups. The 6 MWT scores, isometric strengths (the left knee flexor and bilateral ankle plantar flexors), and the ROMs (the extensions of bilateral hip and bilateral knee) of the RAGT group were significantly improved compared with those of the CON. RAGT improved gait speed, lower extremity ROMs, and lower extremity muscles strengths in patients with burns. Conclusions: The improvement in gait speed and cerebral blood flow evaluation results suggests that the automatization of gait is related to the treatment mechanism during RAGT.
Collapse
Affiliation(s)
- Seung Yeol Lee
- Department of Physical Medicine and Rehabilitation, College of Medicine, Soonchunhyang University Hospital, Bucheon 14584, Republic of Korea;
| | - Jisu Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 01000, Republic of Korea; (J.S.); (C.H.S.); (Y.S.C.)
| | - Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 01000, Republic of Korea; (J.S.); (C.H.S.); (Y.S.C.)
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 01000, Republic of Korea; (J.S.); (C.H.S.); (Y.S.C.)
| | - So Young Joo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 01000, Republic of Korea; (J.S.); (C.H.S.); (Y.S.C.)
| |
Collapse
|
3
|
Castillo-López DN, Gómez-Pavón LDC, Gutíerrez-Nava A, Zaca-Morán P, Arriaga-Arriaga CA, Muñoz-Pacheco JM, Luis-Ramos A. Flexible Force Sensor Based on a PVA/AgNWs Nanocomposite and Cellulose Acetate. SENSORS (BASEL, SWITZERLAND) 2024; 24:2819. [PMID: 38732927 PMCID: PMC11086214 DOI: 10.3390/s24092819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Nanocomposites are materials of special interest for the development of flexible electronic, optical, and mechanical devices in applications such as transparent conductive electrodes and flexible electronic sensors. These materials take advantage of the electrical, chemical, and mechanical properties of a polymeric matrix, especially in force sensors, as well as the properties of a conductive filler such as silver nanowires (AgNWs). In this work, the fabrication of a force sensor using AgNWs synthesized via the polyol chemical technique is presented. The nanowires were deposited via drop-casting in polyvinyl alcohol (PVA) to form the active (electrode) and resistive (nanocomposite) sensor films, with both films separated by a cellulose acetate substrate. The dimensions of the resulting sensor are 35 mm × 40 mm × 0.1 mm. The sensor shows an applied force ranging from 0 to 3.92 N, with a sensitivity of 0.039 N. The sensor stand-off resistance, exceeding 50 MΩ, indicates a good ability to detect changes in applied force without an external force. Additionally, studies revealed a response time of 10 ms, stabilization of 9 s, and a degree of hysteresis of 1.9%. The voltage response of the sensor under flexion at an angle of 85° was measured, demonstrating its functionality over a prolonged period. The fabricated sensor can be used in applications that require measuring pressure on irregular surfaces or systems with limited space, such as for estimating movement in robot joints.
Collapse
Affiliation(s)
- Dulce Natalia Castillo-López
- Grupo de Sistemas Fotónicos y Nanoóptica, Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.N.C.-L.); (A.G.-N.); (C.A.A.-A.); (J.M.M.-P.); (A.L.-R.)
| | - Luz del Carmen Gómez-Pavón
- Grupo de Sistemas Fotónicos y Nanoóptica, Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.N.C.-L.); (A.G.-N.); (C.A.A.-A.); (J.M.M.-P.); (A.L.-R.)
| | - Alfredo Gutíerrez-Nava
- Grupo de Sistemas Fotónicos y Nanoóptica, Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.N.C.-L.); (A.G.-N.); (C.A.A.-A.); (J.M.M.-P.); (A.L.-R.)
| | - Placido Zaca-Morán
- Instituto de Ciencias, Ecocampus Valsequillo, Benemérita Universidad Autónoma de Puebla, Puebla 72960, Mexico;
| | - Cesar Augusto Arriaga-Arriaga
- Grupo de Sistemas Fotónicos y Nanoóptica, Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.N.C.-L.); (A.G.-N.); (C.A.A.-A.); (J.M.M.-P.); (A.L.-R.)
| | - Jesús Manuel Muñoz-Pacheco
- Grupo de Sistemas Fotónicos y Nanoóptica, Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.N.C.-L.); (A.G.-N.); (C.A.A.-A.); (J.M.M.-P.); (A.L.-R.)
| | - Arnulfo Luis-Ramos
- Grupo de Sistemas Fotónicos y Nanoóptica, Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.N.C.-L.); (A.G.-N.); (C.A.A.-A.); (J.M.M.-P.); (A.L.-R.)
| |
Collapse
|
4
|
Willaert J, Desloovere K, Van Campenhout A, Ting LH, De Groote F. Identification of Neural and Non-Neural Origins of Joint Hyper-Resistance Based on a Novel Neuromechanical Model. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1435-1444. [PMID: 38526884 PMCID: PMC11032725 DOI: 10.1109/tnsre.2024.3381739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Joint hyper-resistance is a common symptom in neurological disorders. It has both neural and non-neural origins, but it has been challenging to distinguish different origins based on clinical tests alone. Combining instrumented tests with parameter identification based on a neuromechanical model may allow us to dissociate the different origins of joint hyper-resistance in individual patients. However, this requires that the model captures the underlying mechanisms. Here, we propose a neuromechanical model that, in contrast to previously proposed models, accounts for muscle short-range stiffness (SRS) and its interaction with muscle tone and reflex activity. We collected knee angle trajectories during the pendulum test in 15 children with cerebral palsy (CP) and 5 typically developing children. We did the test in two conditions - hold and pre-movement - that have been shown to alter knee movement. We modeled the lower leg as an inverted pendulum actuated by two antagonistic Hill-type muscles extended with SRS. Reflex activity was modeled as delayed, linear feedback from muscle force. We estimated neural and non-neural parameters by optimizing the fit between simulated and measured knee angle trajectories during the hold condition. The model could fit a wide range of knee angle trajectories in the hold condition. The model with personalized parameters predicted the effect of pre-movement demonstrating that the model captured the underlying mechanism and subject-specific deficits. Our model may help with the identification of neural and non-neural origins of joint hyper-resistance and thereby opens perspectives for improved diagnosis and treatment selection in children with spastic CP, but such applications require further studies to establish the method's reliability.
Collapse
|
5
|
Maggioni S, Lünenburger L, Riener R, Curt A, Bolliger M, Melendez-Calderon A. Assessing walking ability using a robotic gait trainer: opportunities and limitations of assist-as-needed control in spinal cord injury. J Neuroeng Rehabil 2023; 20:121. [PMID: 37735690 PMCID: PMC10515081 DOI: 10.1186/s12984-023-01226-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/27/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Walking impairments are a common consequence of neurological disorders and are assessed with clinical scores that suffer from several limitations. Robot-assisted locomotor training is becoming an established clinical practice. Besides training, these devices could be used for assessing walking ability in a controlled environment. Here, we propose an adaptive assist-as-needed (AAN) control for a treadmill-based robotic exoskeleton, the Lokomat, that reduces the support of the device (body weight support and impedance of the robotic joints) based on the ability of the patient to follow a gait pattern displayed on screen. We hypothesize that the converged values of robotic support provide valid and reliable information about individuals' walking ability. METHODS Fifteen participants with spinal cord injury and twelve controls used the AAN software in the Lokomat twice within a week and were assessed using clinical scores (10MWT, TUG). We used a regression method to identify the robotic measure that could provide the most relevant information about walking ability and determined the test-retest reliability. We also checked whether this result could be extrapolated to non-ambulatory and to unimpaired subjects. RESULTS The AAN controller could be used in patients with different injury severity levels. A linear model based on one variable (robotic knee stiffness at terminal swing) could explain 74% of the variance in the 10MWT and 61% in the TUG in ambulatory patients and showed good relative reliability but poor absolute reliability. Adding the variable 'maximum hip flexor torque' to the model increased the explained variance above 85%. This did not extend to non-ambulatory nor to able-bodied individuals, where variables related to stance phase and to push-off phase seem more relevant. CONCLUSIONS The novel AAN software for the Lokomat can be used to quantify the support required by a patient while performing robotic gait training. The adaptive software might enable more challenging training conditions tuned to the ability of the individuals. While the current implementation is not ready for assessment in clinical practice, we could demonstrate that this approach is safe, and it could be integrated as assist-as-needed training, rather than as assessment. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02425332.
Collapse
Affiliation(s)
| | | | - Robert Riener
- Sensory-Motor Systems (SMS) Lab, ETH Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Alejandro Melendez-Calderon
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia.
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia.
- Jamieson Trauma Institute, Metro North Health, Brisbane, Australia.
| |
Collapse
|
6
|
Filius S, Janssen M, van der Kooij H, Harlaar J. Comparison of Lower Arm Weight and Passive Elbow Joint Impedance Compensation Strategies in Non-Disabled Participants. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941250 DOI: 10.1109/icorr58425.2023.10304707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
People with severe muscle weakness in the upper extremity are in need of an arm support to enhance arm function and improve their quality of life. In addition to weight support, compensation of passive joint impedance (pJimp) seems necessary. Existing devices do not compensate for pJimp yet, and the best way to compensate for it is still unknown. The aim of this study is to 1) identify pJimp of the elbow, and 2) compare four different compensation strategies of weight and combined weight and pJimp in an active elbow support system. The passive elbow joint moments, including gravitational and pJimp contributions, were measured in 12 non-disabled participants. The four compensation strategies (scaled-model, measured, hybrid, and fitted-model) were compared using a position-tracking task in the near vertical plane. All four strategies showed a significant reduction (20-47%) in the anti-gravity elbow flexor activity measured by surface electromyography. The pJimp turned out to contribute to a large extent to the passive elbow joint moments (range took up 60%) in non-disabled participants. This underlines the relevance of compensating for pJimp in arm support systems. The parameters of the scaled-model and hybrid strategy seem to overestimate the gravitational component. Therefore, the measured and fitted-model strategies are expected to be most promising to test in people with severe muscle weakness combined with elevated pJimp.
Collapse
|
7
|
Tesfazgi S, Sangouard R, Endo S, Hirche S. Uncertainty-aware automated assessment of the arm impedance with upper-limb exoskeletons. Front Neurorobot 2023; 17:1167604. [PMID: 37692885 PMCID: PMC10490610 DOI: 10.3389/fnbot.2023.1167604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/17/2023] [Indexed: 09/12/2023] Open
Abstract
Providing high degree of personalization to a specific need of each patient is invaluable to improve the utility of robot-driven neurorehabilitation. For the desired customization of treatment strategies, precise and reliable estimation of the patient's state becomes important, as it can be used to continuously monitor the patient during training and to document the rehabilitation progress. Wearable robotics have emerged as a valuable tool for this quantitative assessment as the actuation and sensing are performed on the joint level. However, upper-limb exoskeletons introduce various sources of uncertainty, which primarily result from the complex interaction dynamics at the physical interface between the patient and the robotic device. These sources of uncertainty must be considered to ensure the correctness of estimation results when performing the clinical assessment of the patient state. In this work, we analyze these sources of uncertainty and quantify their influence on the estimation of the human arm impedance. We argue that this mitigates the risk of relying on overconfident estimates and promotes more precise computational approaches in robot-based neurorehabilitation.
Collapse
Affiliation(s)
- Samuel Tesfazgi
- Chair of Information-oriented Control (ITR), TUM School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | | | | | | |
Collapse
|
8
|
Figueiredo J, Fernandes PN, Moreno JC, Santos CP. Feedback-Error Learning for time-effective gait trajectory tracking in wearable exoskeletons. Anat Rec (Hoboken) 2023; 306:728-740. [PMID: 35869906 DOI: 10.1002/ar.25031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022]
Abstract
The use of exoskeletons in gait rehabilitation implies user-oriented and efficient responses of exoskeletons' controllers with adaptability for human-robot interaction. This study investigates the performance of a bioinspired hybrid control, the Feedback-Error Learning (FEL) controller, to time-effectively track user-oriented gait trajectories and adapt the exoskeletons' response to dynamic changes due to the interaction with the user. It innovates with a controller benchmarking analysis. FEL combines a proportional-integral-derivative (PID) feedback controller with a three-layer neural network feedforward controller that learns the inverse dynamics of the exoskeleton based on real-time feedback commands. FEL validation involved able-bodied subjects walking with knee and ankle exoskeletons at different gait speeds while considering gait disturbances. Results showed that the FEL control accurately (tracking error <7%) and timely (delay <30 ms) tracked gait trajectories. The feedforward controller learned the inverse dynamics of the exoskeletons in a time compliant for clinical use and adapted to variations in the gait trajectories, such as speed and position range, while the feedback controller compensated for random disturbances. FEL was more accurate and time-effective controller for tracking gait trajectories than a PID control (error <27%, delay <260 ms) and a lookup table feedforward combined with PID control (error <17%, delay >160 ms). These findings aligned with FEL's time-effectiveness favors its use in wearable exoskeletons for repetitive gait training.
Collapse
Affiliation(s)
- Joana Figueiredo
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, Guimarães, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro Nuno Fernandes
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, Guimarães, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Juan C Moreno
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council, Madrid, Spain
| | - Cristina P Santos
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, Guimarães, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
- LIACC - Artificial Intelligence and Computer Science Lab, porto, Portugal
| |
Collapse
|
9
|
Moeller T, Moehler F, Krell-Roesch J, Dežman M, Marquardt C, Asfour T, Stein T, Woll A. Use of Lower Limb Exoskeletons as an Assessment Tool for Human Motor Performance: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:3032. [PMID: 36991743 PMCID: PMC10057915 DOI: 10.3390/s23063032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Exoskeletons are a promising tool to support individuals with a decreased level of motor performance. Due to their built-in sensors, exoskeletons offer the possibility of continuously recording and assessing user data, for example, related to motor performance. The aim of this article is to provide an overview of studies that rely on using exoskeletons to measure motor performance. Therefore, we conducted a systematic literature review, following the PRISMA Statement guidelines. A total of 49 studies using lower limb exoskeletons for the assessment of human motor performance were included. Of these, 19 studies were validity studies, and six were reliability studies. We found 33 different exoskeletons; seven can be considered stationary, and 26 were mobile exoskeletons. The majority of the studies measured parameters such as range of motion, muscle strength, gait parameters, spasticity, and proprioception. We conclude that exoskeletons can be used to measure a wide range of motor performance parameters through built-in sensors, and seem to be more objective and specific than manual test procedures. However, since these parameters are usually estimated from built-in sensor data, the quality and specificity of an exoskeleton to assess certain motor performance parameters must be examined before an exoskeleton can be used, for example, in a research or clinical setting.
Collapse
Affiliation(s)
- Tobias Moeller
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Felix Moehler
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Janina Krell-Roesch
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Miha Dežman
- Institute for Anthropomatics and Robotics, High Performance Humanoid Technologies (H2T), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Charlotte Marquardt
- Institute for Anthropomatics and Robotics, High Performance Humanoid Technologies (H2T), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Tamim Asfour
- Institute for Anthropomatics and Robotics, High Performance Humanoid Technologies (H2T), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Thorsten Stein
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Alexander Woll
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
10
|
Maura RM, Rueda Parra S, Stevens RE, Weeks DL, Wolbrecht ET, Perry JC. Literature review of stroke assessment for upper-extremity physical function via EEG, EMG, kinematic, and kinetic measurements and their reliability. J Neuroeng Rehabil 2023; 20:21. [PMID: 36793077 PMCID: PMC9930366 DOI: 10.1186/s12984-023-01142-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Significant clinician training is required to mitigate the subjective nature and achieve useful reliability between measurement occasions and therapists. Previous research supports that robotic instruments can improve quantitative biomechanical assessments of the upper limb, offering reliable and more sensitive measures. Furthermore, combining kinematic and kinetic measurements with electrophysiological measurements offers new insights to unlock targeted impairment-specific therapy. This review presents common methods for analyzing biomechanical and neuromuscular data by describing their validity and reporting their reliability measures. METHODS This paper reviews literature (2000-2021) on sensor-based measures and metrics for upper-limb biomechanical and electrophysiological (neurological) assessment, which have been shown to correlate with clinical test outcomes for motor assessment. The search terms targeted robotic and passive devices developed for movement therapy. Journal and conference papers on stroke assessment metrics were selected using PRISMA guidelines. Intra-class correlation values of some of the metrics are recorded, along with model, type of agreement, and confidence intervals, when reported. RESULTS A total of 60 articles are identified. The sensor-based metrics assess various aspects of movement performance, such as smoothness, spasticity, efficiency, planning, efficacy, accuracy, coordination, range of motion, and strength. Additional metrics assess abnormal activation patterns of cortical activity and interconnections between brain regions and muscle groups; aiming to characterize differences between the population who had a stroke and the healthy population. CONCLUSION Range of motion, mean speed, mean distance, normal path length, spectral arc length, number of peaks, and task time metrics have all demonstrated good to excellent reliability, as well as provide a finer resolution compared to discrete clinical assessment tests. EEG power features for multiple frequency bands of interest, specifically the bands relating to slow and fast frequencies comparing affected and non-affected hemispheres, demonstrate good to excellent reliability for populations at various stages of stroke recovery. Further investigation is needed to evaluate the metrics missing reliability information. In the few studies combining biomechanical measures with neuroelectric signals, the multi-domain approaches demonstrated agreement with clinical assessments and provide further information during the relearning phase. Combining the reliable sensor-based metrics in the clinical assessment process will provide a more objective approach, relying less on therapist expertise. This paper suggests future work on analyzing the reliability of metrics to prevent biasedness and selecting the appropriate analysis.
Collapse
Affiliation(s)
- Rene M. Maura
- Mechanical Engineering Department, University of Idaho, Moscow, ID USA
| | | | - Richard E. Stevens
- Engineering and Physics Department, Whitworth University, Spokane, WA USA
| | - Douglas L. Weeks
- College of Medicine, Washington State University, Spokane, WA USA
| | - Eric T. Wolbrecht
- Mechanical Engineering Department, University of Idaho, Moscow, ID USA
| | - Joel C. Perry
- Mechanical Engineering Department, University of Idaho, Moscow, ID USA
| |
Collapse
|
11
|
Simonetti D, Koopman B, Sartori M. Automated estimation of ankle muscle EMG envelopes and resulting plantar-dorsi flexion torque from 64 garment-embedded electrodes uniformly distributed around the human leg. J Electromyogr Kinesiol 2022; 67:102701. [PMID: 36096035 DOI: 10.1016/j.jelekin.2022.102701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 12/14/2022] Open
Abstract
The design of personalized movement training and rehabilitation pipelines relies on the ability of assessing the activation of individual muscles concurrently with the resulting joint torques exerted during functional movements. Despite advances in motion capturing, force sensing and bio-electrical recording technologies, the estimation of muscle activation and resulting force still relies on lengthy experimental and computational procedures that are not clinically viable. This work proposes a wearable technology for the rapid, yet quantitative, assessment of musculoskeletal function. It comprises of (1) a soft leg garment sensorized with 64 uniformly distributed electromyography (EMG) electrodes, (2) an algorithm that automatically groups electrodes into seven muscle-specific clusters, and (3) a EMG-driven musculoskeletal model that estimates the resulting force and torque produced about the ankle joint sagittal plane. Our results show the ability of the proposed technology to automatically select a sub-set of muscle-specific electrodes that enabled accurate estimation of muscle excitations and resulting joint torques across a large range of biomechanically diverse movements, underlying different excitation patterns, in a group of eight healthy individuals. This may substantially decrease time needed for localization of muscle sites and electrode placement procedures, thereby facilitating applicability of EMG-driven modelling pipelines in standard clinical protocols.
Collapse
Affiliation(s)
- Donatella Simonetti
- Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands.
| | - Bart Koopman
- Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| | - Massimo Sartori
- Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| |
Collapse
|
12
|
Neťuková S, Bejtic M, Malá C, Horáková L, Kutílek P, Kauler J, Krupička R. Lower Limb Exoskeleton Sensors: State-of-the-Art. SENSORS (BASEL, SWITZERLAND) 2022; 22:9091. [PMID: 36501804 PMCID: PMC9738474 DOI: 10.3390/s22239091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Due to the ever-increasing proportion of older people in the total population and the growing awareness of the importance of protecting workers against physical overload during long-time hard work, the idea of supporting exoskeletons progressed from high-tech fiction to almost commercialized products within the last six decades. Sensors, as part of the perception layer, play a crucial role in enhancing the functionality of exoskeletons by providing as accurate real-time data as possible to generate reliable input data for the control layer. The result of the processed sensor data is the information about current limb position, movement intension, and needed support. With the help of this review article, we want to clarify which criteria for sensors used in exoskeletons are important and how standard sensor types, such as kinematic and kinetic sensors, are used in lower limb exoskeletons. We also want to outline the possibilities and limitations of special medical signal sensors detecting, e.g., brain or muscle signals to improve data perception at the human-machine interface. A topic-based literature and product research was done to gain the best possible overview of the newest developments, research results, and products in the field. The paper provides an extensive overview of sensor criteria that need to be considered for the use of sensors in exoskeletons, as well as a collection of sensors and their placement used in current exoskeleton products. Additionally, the article points out several types of sensors detecting physiological or environmental signals that might be beneficial for future exoskeleton developments.
Collapse
|
13
|
van der Kooij H, Fricke SS, Veld RCV, Prieto AV, Keemink AQL, Schouten AC, van Asseldonk EHF. Identification of Hip and Knee Joint Impedance During the Swing Phase of Walking. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1203-1212. [PMID: 35503817 DOI: 10.1109/tnsre.2022.3172497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Knowledge on joint impedance during walking in various conditions is relevant for clinical decision-making and the development of robotic gait trainers, leg prostheses, leg orthotics and wearable exoskeletons. Whereas ankle impedance during walking has been experimentally assessed, knee and hip joint impedance during walking have not been identified yet. Here we developed and evaluated a lower limb perturbator to identify hip, knee and ankle joint impedance during treadmill walking. The lower limb perturbator (LOPER) consists of an actuator connected to the thigh via rods. The LOPER allows to apply force perturbations to a free-hanging leg, while standing on the contralateral leg, with a bandwidth of up to 39 Hz. While walking in minimal impedance mode, the interaction forces between LOPER and the thigh were low (<5 N) and the effect on the walking pattern was smaller than the within-subject variability during normal walking. Using a non-linear multibody dynamical model of swing leg dynamics, the hip, knee and ankle joint impedance were estimated at three time points during the swing phase for nine subjects walking at a speed of 0.5 m/s. The identified model was well able to predict the experimental responses for the hip and knee, since the mean variance accounted (VAF) for was 99% and 96%, respectively. The ankle lacked a consistent response and the mean VAF of the model fit was only 77%, and therefore the estimated ankle impedance was not reliable. The averaged across-subjects stiffness varied between the three time points within 34-66 and 0-3.5 Nm/rad Nm/rad for the hip and knee joint respectively. The damping varied between 1.9-4.6 and 0.02-0.14 Nms/rad Nms/rad for hip and knee respectively. The developed LOPER has a negligible effect on the unperturbed walking pattern and allows to identify hip and knee impedance during the swing phase.
Collapse
|
14
|
Tamburella F, Lorusso M, Tramontano M, Fadlun S, Masciullo M, Scivoletto G. Overground robotic training effects on walking and secondary health conditions in individuals with spinal cord injury: systematic review. J Neuroeng Rehabil 2022; 19:27. [PMID: 35292044 PMCID: PMC8922901 DOI: 10.1186/s12984-022-01003-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Overground powered lower limb exoskeletons (EXOs) have proven to be valid devices in gait rehabilitation in individuals with spinal cord injury (SCI). Although several articles have reported the effects of EXOs in these individuals, the few reviews available focused on specific domains, mainly walking. The aim of this systematic review is to provide a general overview of the effects of commercial EXOs (i.e. not EXOs used in military and industry applications) for medical purposes in individuals with SCI. This systematic review was conducted following the PRISMA guidelines and it referred to MED-LINE, EMBASE, SCOPUS, Web of Science and Cochrane library databases. The studies included were Randomized Clinical Trials (RCTs) and non-RCT based on EXOs intervention on individuals with SCI. Out of 1296 studies screened, 41 met inclusion criteria. Among all the EXO studies, the Ekso device was the most discussed, followed by ReWalk, Indego, HAL and Rex devices. Since 14 different domains were considered, the outcome measures were heterogeneous. The most investigated domain was walking, followed by cardiorespiratory/metabolic responses, spasticity, balance, quality of life, human–robot interaction, robot data, bowel functionality, strength, daily living activity, neurophysiology, sensory function, bladder functionality and body composition/bone density domains. There were no reports of negative effects due to EXOs trainings and most of the significant positive effects were noted in the walking domain for Ekso, ReWalk, HAL and Indego devices. Ekso studies reported significant effects due to training in almost all domains, while this was not the case with the Rex device. Not a single study carried out on sensory functions or bladder functionality reached significance for any EXO. It is not possible to draw general conclusions about the effects of EXOs usage due to the lack of high-quality studies as addressed by the Downs and Black tool, the heterogeneity of the outcome measures, of the protocols and of the SCI epidemiological/neurological features. However, the strengths and weaknesses of EXOs are starting to be defined, even considering the different types of adverse events that EXO training brought about. EXO training showed to bring significant improvements over time, but whether its effectiveness is greater or less than conventional therapy or other treatments is still mostly unknown. High-quality RCTs are necessary to better define the pros and cons of the EXOs available today. Studies of this kind could help clinicians to better choose the appropriate training for individuals with SCI.
Collapse
Affiliation(s)
- Federica Tamburella
- I.R.C.C.S. Santa Lucia Foundation (FSL), Via Ardeatina, 306, 00179, Rome, Italy.
| | - Matteo Lorusso
- I.R.C.C.S. Santa Lucia Foundation (FSL), Via Ardeatina, 306, 00179, Rome, Italy
| | - Marco Tramontano
- I.R.C.C.S. Santa Lucia Foundation (FSL), Via Ardeatina, 306, 00179, Rome, Italy
| | - Silvia Fadlun
- I.R.C.C.S. Santa Lucia Foundation (FSL), Via Ardeatina, 306, 00179, Rome, Italy
| | - Marcella Masciullo
- I.R.C.C.S. Santa Lucia Foundation (FSL), Via Ardeatina, 306, 00179, Rome, Italy
| | - Giorgio Scivoletto
- I.R.C.C.S. Santa Lucia Foundation (FSL), Via Ardeatina, 306, 00179, Rome, Italy
| |
Collapse
|
15
|
van der Velden LL, de Koff MAC, Ribbers GM, Selles RW. The diagnostic levels of evidence of instrumented devices for measuring viscoelastic joint properties and spasticity; a systematic review. J Neuroeng Rehabil 2022; 19:16. [PMID: 35148805 PMCID: PMC8832664 DOI: 10.1186/s12984-022-00996-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many diagnostic robotic devices have been developed to quantify viscoelastic properties and spasticity of patients with upper motor neuron lesions. However, in clinical practice, subjective and nonvalid clinical scales are still commonly used. To understand the limited use of diagnostic robotic devices assessing viscoelastic joint properties and spasticity in clinical practice, we evaluate the diagnostic level of evidence of studies on these devices. METHOD A systematic literature review was performed using multiple databases. Two of the authors independently screened all articles. Studies investigating human subjects diagnosed with stroke or cerebral palsy, measured with a mechanical device to assess viscoelastic joint properties and/or spasticity of an extremity. All articles were assigned a diagnostic level of evidence, which was established with a classification strategy based on the number of participants and the design of the study, from a Level 0 (less than 10 subjects) to a Level IV, reporting the long-term clinical consequences in daily care. RESULTS Fifty-nine articles were included. Most studies measured the upper limb (64%) in stroke patients (81%). The highest level of evidence found was Level IIa (53%); these studies correlated the test values of the robotic device with a clinical test or within subgroups. Level 0 (30%) and Level I (17%; determining the range of values of the robotic test) were also common. None of the studies tested their device for diagnostic accuracy (Level III), clinical added value (Level IV). CONCLUSION The diagnostic evidence needed for implementing robotic devices in clinical practice is lacking. Our findings indicate that more effort should be invested in studying diagnostic accuracy (Level III) or added value for clinical care (Level IV); only these studies can provide clinicians with evidence that robotic devices have added value above the currently-used clinical scales.
Collapse
Affiliation(s)
- Levinia Lara van der Velden
- Department of Rehabilitation Medicine, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands. .,Rijndam Rehabilitation, Rotterdam, The Netherlands.
| | | | - Gerard Maria Ribbers
- Department of Rehabilitation Medicine, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Rijndam Rehabilitation, Rotterdam, The Netherlands
| | - Ruud Willem Selles
- Department of Rehabilitation Medicine, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Rijndam Rehabilitation, Rotterdam, The Netherlands.,Department of Plastic and Reconstructive Surgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Selamat SNS, Che Me R, Ahmad Ainuddin H, Salim MSF, Ramli HR, Romli MH. The Application of Technological Intervention for Stroke Rehabilitation in Southeast Asia: A Scoping Review With Stakeholders' Consultation. Front Public Health 2022; 9:783565. [PMID: 35198531 PMCID: PMC8858807 DOI: 10.3389/fpubh.2021.783565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/31/2021] [Indexed: 01/03/2023] Open
Abstract
Background The technological intervention is considered as an adjunct to the conventional therapies applied in the rehabilitation session. In most high-income countries, technology has been widely used in assisting stroke survivors to undergo their treatments. However, technology use is still lacking in Southeast Asia, especially in middle- and low-income countries. This scoping review identifies and summarizes the technologies and related gaps available in Southeast Asia pertaining to stroke rehabilitation. Methods The JBI manual for evidence synthesis was used to conduct a scoping study. Until September 2021, an electronic search was performed using four databases (Medline, CINAHL, Scopus, ASEAN Citation Index). Only the studies that were carried out in Southeast Asia were chosen. Results Forty-one articles were chosen in the final review from 6,873 articles found during the initial search. Most of the studies reported the implementation of technological intervention combined with conventional therapies in stroke rehabilitation. Advanced and simple technologies were found such as robotics, virtual reality, telerehabilitation, motion capture, assistive devices, and mobility training from Singapore, Thailand, Malaysia, and Indonesia. The majority of the studies show that technological interventions can enhance the recovery period of stroke survivors. The consultation session suggested that the technological interventions should facilitate the needs of the survivors, caregivers, and practitioners during the rehabilitation. Conclusions The integration of technology into conventional therapies has shown a positive outcome and show significant improvement during stroke recovery. Future studies are recommended to investigate the potential of home-based technological intervention and lower extremities.
Collapse
Affiliation(s)
- Siti Nur Suhaidah Selamat
- Department of Industrial Design, Faculty of Design and Architecture, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Rosalam Che Me
- Department of Industrial Design, Faculty of Design and Architecture, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- *Correspondence: Rosalam Che Me
| | - Husna Ahmad Ainuddin
- Department of Rehabilitation Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Centre of Occupational Therapy Studies, Faculty of Health Sciences, Universiti Teknologi MARA Selangor, Shah Alam, Malaysia
| | - Mazatulfazura S. F. Salim
- Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Department of Rehabilitation Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Department of Rehabilitation Medicine, Hospital Pengajar, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Hafiz Rashidi Ramli
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Muhammad Hibatullah Romli
- Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Department of Rehabilitation Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Department of Rehabilitation Medicine, Hospital Pengajar, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
17
|
Vasudeva A, Sheikh NA, Sahu S. International Classification of Functioning, Disability, and Health augmented by telemedicine and artificial intelligence for assessment of functional disability. J Family Med Prim Care 2021; 10:3535-3539. [PMID: 34934642 PMCID: PMC8653435 DOI: 10.4103/jfmpc.jfmpc_692_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 11/04/2022] Open
Abstract
The concept of functional disability is aligned with the biopsycho-social model of disability. However, there are reasons why the antiquated measurement of medical impairment continues to be in use. We propose solutions for a fairer process using the International Classification of Functioning, Disability, and Health (ICF) at the level of the medical boards augmented by telemedicine and artificial intelligence (AI). The proposed technologies (Level 1 and Level 2 AI) need to be tried in pilot projects. It will accomplish two goals, the first being the measurement of disability and not merely the impairment. Second, and perhaps more importantly, making the process more transparent in creating a "just" society.
Collapse
Affiliation(s)
- Abhimanyu Vasudeva
- Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| | - Nishat A Sheikh
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| | - Samantak Sahu
- Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
18
|
Brambilla C, Pirovano I, Mira RM, Rizzo G, Scano A, Mastropietro A. Combined Use of EMG and EEG Techniques for Neuromotor Assessment in Rehabilitative Applications: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:7014. [PMID: 34770320 PMCID: PMC8588321 DOI: 10.3390/s21217014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Electroencephalography (EEG) and electromyography (EMG) are widespread and well-known quantitative techniques used for gathering biological signals at cortical and muscular levels, respectively. Indeed, they provide relevant insights for increasing knowledge in different domains, such as physical and cognitive, and research fields, including neuromotor rehabilitation. So far, EEG and EMG techniques have been independently exploited to guide or assess the outcome of the rehabilitation, preferring one technique over the other according to the aim of the investigation. More recently, the combination of EEG and EMG started to be considered as a potential breakthrough approach to improve rehabilitation effectiveness. However, since it is a relatively recent research field, we observed that no comprehensive reviews available nor standard procedures and setups for simultaneous acquisitions and processing have been identified. Consequently, this paper presents a systematic review of EEG and EMG applications specifically aimed at evaluating and assessing neuromotor performance, focusing on cortico-muscular interactions in the rehabilitation field. A total of 213 articles were identified from scientific databases, and, following rigorous scrutiny, 55 were analyzed in detail in this review. Most of the applications are focused on the study of stroke patients, and the rehabilitation target is usually on the upper or lower limbs. Regarding the methodological approaches used to acquire and process data, our results show that a simultaneous EEG and EMG acquisition is quite common in the field, but it is mostly performed with EMG as a support technique for more specific EEG approaches. Non-specific processing methods such as EEG-EMG coherence are used to provide combined EEG/EMG signal analysis, but rarely both signals are analyzed using state-of-the-art techniques that are gold-standard in each of the two domains. Future directions may be oriented toward multi-domain approaches able to exploit the full potential of combined EEG and EMG, for example targeting a wider range of pathologies and implementing more structured clinical trials to confirm the results of the current pilot studies.
Collapse
Affiliation(s)
- Cristina Brambilla
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy; (C.B.); (R.M.M.); (A.S.)
| | - Ileana Pirovano
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (A.M.)
| | - Robert Mihai Mira
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy; (C.B.); (R.M.M.); (A.S.)
| | - Giovanna Rizzo
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (A.M.)
| | - Alessandro Scano
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy; (C.B.); (R.M.M.); (A.S.)
| | - Alfonso Mastropietro
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (A.M.)
| |
Collapse
|
19
|
Wang S, Zhang B, Yu Z, Yan Y. Differential Soft Sensor-Based Measurement of Interactive Force and Assistive Torque for a Robotic Hip Exoskeleton. SENSORS (BASEL, SWITZERLAND) 2021; 21:6545. [PMID: 34640867 PMCID: PMC8512818 DOI: 10.3390/s21196545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/24/2022]
Abstract
With the emerging of wearable robots, the safety and effectiveness of human-robot physical interaction have attracted extensive attention. Recent studies suggest that online measurement of the interaction force between the robot and the human body is essential to the aspects above in wearable exoskeletons. However, a large proportion of existing wearable exoskeletons monitor and sense the delivered force and torque through an indirect-measure method, in which the torque is estimated by the motor current. Direct force/torque measuring through low-cost and compact wearable sensors remains an open problem. This paper presents a compact soft sensor system for wearable gait assistance exoskeletons. The contact force is converted into a voltage signal by measuring the air pressure within a soft pneumatic chamber. The developed soft force sensor system was implemented on a robotic hip exoskeleton, and the real-time interaction force between the human thigh and the exoskeleton was measured through two differential soft chambers. The delivered torque of the hip exoskeleton was calculated based on a characterization model. Experimental results suggested that the sensor system achieved direct force measurement with an error of 10.3 ± 6.58%, and torque monitoring for a hip exoskeleton which provided an understanding for the importance of direct force/torque measurement for assistive performance. Compared with traditional rigid force sensors, the proposed system has several merits, as it is compact, low-cost, and has good adaptability to the human body due to the soft structure.
Collapse
Affiliation(s)
- Sun’an Wang
- School of Mechanical Engineering, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (B.Z.); (Z.Y.); (Y.Y.)
| | | | | | | |
Collapse
|
20
|
Vandael K, Stanton TR, Meulders A. Assessing kinesthetic proprioceptive function of the upper limb: a novel dynamic movement reproduction task using a robotic arm. PeerJ 2021; 9:e11301. [PMID: 33987004 PMCID: PMC8101453 DOI: 10.7717/peerj.11301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/29/2021] [Indexed: 01/19/2023] Open
Abstract
Background Proprioception refers to the perception of motion and position of the body or body segments in space. A wide range of proprioceptive tests exists, although tests dynamically evaluating sensorimotor integration during upper limb movement are scarce. We introduce a novel task to evaluate kinesthetic proprioceptive function during complex upper limb movements using a robotic device. We aimed to evaluate the test–retest reliability of this newly developed Dynamic Movement Reproduction (DMR) task. Furthermore, we assessed reliability of the commonly used Joint Reposition (JR) task of the elbow, evaluated the association between both tasks, and explored the influence of visual information (viewing arm movement or not) on performance during both tasks. Methods During the DMR task, participants actively reproduced movement patterns while holding a handle attached to the robotic arm, with the device encoding actual position throughout movement. In the JR task, participants actively reproduced forearm positions; with the final arm position evaluated using an angle measurement tool. The difference between target movement pattern/position and reproduced movement pattern/position served as measures of accuracy. In study 1 (N = 23), pain-free participants performed both tasks at two test sessions, 24-h apart, both with and without visual information available (i.e., vision occluded using a blindfold). In study 2 (N = 64), an independent sample of pain-free participants performed the same tasks in a single session to replicate findings regarding the association between both tasks and the influence of visual information. Results The DMR task accuracy showed good-to-excellent test–retest reliability, while JR task reliability was poor: measurements did not remain sufficiently stable over testing days. The DMR and JR tasks were only weakly associated. Adding visual information (i.e., watching arm movement) had different performance effects on the tasks: it increased JR accuracy but decreased DMR accuracy, though only when the DMR task started with visual information available (i.e., an order effect). Discussion The DMR task’s highly standardized protocol (i.e., largely automated), precise measurement and involvement of the entire upper limb kinetic chain (i.e., shoulder, elbow and wrist joints) make it a promising tool. Moreover, the poor association between the JR and DMR tasks indicates that they likely capture unique aspects of proprioceptive function. While the former mainly captures position sense, the latter appears to capture sensorimotor integration processes underlying kinesthesia, largely independent of position sense. Finally, our results show that the integration of visual and proprioceptive information is not straightforward: additional visual information of arm movement does not necessarily make active movement reproduction more accurate, on the contrary, when movement is complex, vision appears to make it worse.
Collapse
Affiliation(s)
- Kristof Vandael
- Experimental Health Psychology, University of Maastricht, Maastricht, Netherlands.,Laboratory of Biological Psychology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Tasha R Stanton
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,IIMPACT in Health, University of South Australia, Adelaide, South Australia, Australia
| | - Ann Meulders
- Experimental Health Psychology, University of Maastricht, Maastricht, Netherlands.,Research Group Health Psychology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Lee T, Kim I, Lee SH. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network. SENSORS 2021; 21:s21082807. [PMID: 33923587 PMCID: PMC8072591 DOI: 10.3390/s21082807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022]
Abstract
A lower-limb exoskeleton robot identifies the wearer's walking intention and assists the walking movement through mechanical force; thus, it is important to be able to identify the wearer's movement in real-time. Measurement of the angle of the knee and ankle can be difficult in the case of patients who cannot move the lower-limb joint properly. Therefore, in this study, the knee angle as well as the angles of the talocrural and subtalar joints of the ankle were estimated during walking by applying the neural network to two inertial measurement unit (IMU) sensors attached to the thigh and shank. First, for angle estimation, the gyroscope and accelerometer data of the IMU sensor were obtained while walking at a treadmill speed of 1 to 2.5 km/h while wearing an exoskeleton robot. The weights according to each walking speed were calculated using a neural network algorithm programmed in MATLAB software. Second, an appropriate weight was selected according to the walking speed through the IMU data, and the knee angle and the angles of the talocrural and subtalar joints of the ankle were estimated in real-time during walking through a feedforward neural network using the IMU data received in real-time. We confirmed that the angle estimation error was accurately estimated as 1.69° ± 1.43 (mean absolute error (MAE) ± standard deviation (SD)) for the knee joint, 1.29° ± 1.01 for the talocrural joint, and 0.82° ± 0.69 for the subtalar joint. Therefore, the proposed algorithm has potential for gait rehabilitation as it addresses the difficulty of estimating angles of lower extremity patients using torque and EMG sensors.
Collapse
|
22
|
Erwin A, McDonald CG, Moser N, O'Malley MK. The SE-AssessWrist for robot-aided assessment of wrist stiffness and range of motion: Development and experimental validation. J Rehabil Assist Technol Eng 2021; 8:2055668320985774. [PMID: 33912353 PMCID: PMC8050761 DOI: 10.1177/2055668320985774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/15/2020] [Indexed: 12/04/2022] Open
Abstract
Introduction Physical human-robot interaction offers a compelling platform for assessing
recovery from neurological injury; however, robots currently used for
assessment have typically been designed for the requirements of
rehabilitation, not assessment. In this work, we present the design,
control, and experimental validation of the SE-AssessWrist, which extends
the capabilities of prior robotic devices to include complete wrist range of
motion assessment in addition to stiffness evaluation. Methods The SE-AssessWrist uses a Bowden cable-based transmission in conjunction with
series elastic actuation to increase device range of motion while not
sacrificing torque output. Experimental validation of robot-aided wrist
range of motion and stiffness assessment was carried out with five
able-bodied individuals. Results The SE-AssessWrist achieves the desired maximum wrist range of motion, while
having sufficient position and zero force control performance for wrist
biomechanical assessment. Measurements of two-degree-of-freedom wrist range
of motion and stiffness envelopes revealed that the axis of greatest range
of motion and least stiffness were oblique to the conventional anatomical
axes, and approximately parallel to each other. Conclusions Such an assessment could be beneficial in the clinic, where standard clinical
measures of recovery after neurological injury are subjective, labor
intensive, and graded on an ordinal scale.
Collapse
Affiliation(s)
- Andrew Erwin
- Department of Mechanical Engineering, Rice University, Houston, TX, USA
| | - Craig G McDonald
- Department of Mechanical Engineering, Rice University, Houston, TX, USA
| | - Nicholas Moser
- Department of Mechanical Engineering, Rice University, Houston, TX, USA
| | - Marcia K O'Malley
- Department of Mechanical Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
23
|
Shi XQ, Heung HL, Tang ZQ, Tong KY, Li Z. Verification of Finger Joint Stiffness Estimation Method With Soft Robotic Actuator. Front Bioeng Biotechnol 2020; 8:592637. [PMID: 33392166 PMCID: PMC7775510 DOI: 10.3389/fbioe.2020.592637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/03/2020] [Indexed: 12/03/2022] Open
Abstract
Stroke has been the leading cause of disability due to the induced spasticity in the upper extremity. The constant flexion of spastic fingers following stroke has not been well described. Accurate measurements for joint stiffness help clinicians have a better access to the level of impairment after stroke. Previously, we conducted a method for quantifying the passive finger joint stiffness based on the pressure-angle relationship between the spastic fingers and the soft-elastic composite actuator (SECA). However, it lacks a ground-truth to demonstrate the compatibility between the SECA-facilitated stiffness estimation and standard joint stiffness quantification procedure. In this study, we compare the passive metacarpophalangeal (MCP) joint stiffness measured using the SECA with the results from our designed standalone mechatronics device, which measures the passive metacarpophalangeal joint torque and angle during passive finger rotation. Results obtained from the fitting model that concludes the stiffness characteristic are further compared with the results obtained from SECA-Finger model, as well as the clinical score of Modified Ashworth Scale (MAS) for grading spasticity. These findings suggest the possibility of passive MCP joint stiffness quantification using the soft robotic actuator during the performance of different tasks in hand rehabilitation.
Collapse
Affiliation(s)
- Xiang Qian Shi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ho Lam Heung
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhi Qiang Tang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kai Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zheng Li
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
24
|
Barsotti A, Khalaf K, Gan D. Muscle fatigue evaluation with EMG and Acceleration data: a case study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3138-3141. [PMID: 33018670 DOI: 10.1109/embc44109.2020.9175315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The design of effective rehabilitation protocols relies on the ability to accurately assess the physical condition and the rehabilitative needs of the patient. Monitoring muscle fatigue can increase the usability of rehabilitative and restorative devices as it helps avoiding premature tiring and injury of patients whose resistance is already compromised. In this study, we collected EMG and accelerometer data from one healthy subject during a 30-minute walk on treadmill to determine the variations of muscle activation, and gait acceleration patterns, which, however subtle, could be interpreted as early indicators of muscle fatigue. Results show an increasing Tibialis Anterior (TA) and decreasing Soleus (SOL) and Gastrocnemius (GASL, GASM) activation towards the end of the task as compared to the beginning, as well as increasing acceleration peaks during the middle swing phase. By following the approach outlined here we can assess the efficiency and reduction of metabolic cost achieved by an exoskeleton. Furthermore, muscle fatigue may be linked to the efficacy of gait rehabilitation, where decreased muscle fatigue across sessions possibly indicates longer retention of benefits after training and increased walking capacity. This methodology can be used to benchmark novel exoskeletons, monitor fatigue to avoid premature tiring of patients, and optimize rehabilitation therapies.
Collapse
|
25
|
Joo SY, Lee SY, Cho YS, Lee KJ, Seo CH. Effects of Robot-Assisted Gait Training in Patients with Burn Injury on Lower Extremity: A Single-Blind, Randomized Controlled Trial. J Clin Med 2020; 9:jcm9092813. [PMID: 32878085 PMCID: PMC7563213 DOI: 10.3390/jcm9092813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/29/2020] [Indexed: 12/20/2022] Open
Abstract
This study investigated the effects of robot-assisted gait training (RAGT) on gait function in burn patients. Briefly, 40 burn patients were randomly divided into an RAGT group or a conventional training (CON) group. SUBAR® (Cretem, Korea) is a wearable robot with a footplate that simulates normal gait cycles. The RAGT group underwent 30 min of robot-assisted training using SUBAR® with 30 min of conventional physiotherapy once a day, 5 days a week for 12 weeks. Patients in the CON group received 30 min of overground gait training and range-of-motion (ROM) exercises twice a day for 5 days a week for 12 weeks. The RAGT group and the CON group underwent 60 min of training per day. The intervention frequency and duration did not differ between the RAGT group and the CON group. The main outcomes were functional ambulatory category (FAC); 6-min walking test (6MWT); visual analogue scale (VAS) during gait movement; ROM; and isometric forces of bilateral hip, knee, and ankle muscles before and after 12 weeks of training. The results of the VAS, FAC, and 6MWT (8.06 ± 0.66, 1.76 ± 0.56, and 204.41 ± 85.60) before training in the RAGT group improved significantly (4.41 ± 1.18, 4.18 ± 0.39, and 298.53 ± 47.75) after training (p < 0.001, p < 0.001, and p < 0.001). The results of the VAS, FAC, and 6MWT (8.00 ± 1.21, 1.75 ± 0.58, and 220.94 ± 116.88) before training in the CON group improved significantly (5.00 ± 1.03, 3.81 ± 1.05, and 272.19 ± 110.14) after training (p < 0.001, p < 0.001, and p = 0.05). There were differences in the improvement of results of the VAS, FAC, and 6MWT between groups after training, but they were not statistically significant (p = 0.23, p = 0.14, and p = 0.05). The isometric strengths of the right hip extensor (p = 0.02), bilateral knee flexor (p = 0.04 in the right, and p = 0.001 in the left), bilateral knee extensor (p = 0.003 in the right, and p = 0.002 in the left), bilateral ankle dorsiflexor (p = 0.04 in the right, and p = 0.02 in the left), and bilateral ankle plantarflexor (p = 0.001 in the right, and p = 0.008 in the left) after training were significantly improved compared with those before training in the RAGT group. The ROMs of the right knee extension (p = 0.03) and bilateral ankle plantarflexion (p = 0.008 in the right, and p = 0.03 in the left) were significantly improved compared with measurements before training in the RAGT. There were no significant differences of the isometric strengths and ROMs of the bilateral hip, knee, and ankle muscles after training in the CON group. There were significant improvements in the isometric strengths of the left knee flexor (p = 0.01), left ankle dorsiflexor (p = 0.01), and left ankle plantarflexor (p = 0.003) between the two groups. The results suggested that RAGT is effective to facilitate early recovery of muscles strength after a burn injury. This is the first study to evaluate the effectiveness of RAGT in patients with burns compared with those receiving conventional training. The absence of complications in burn patients provides an opportunity to enlarge the application area of RAGT.
Collapse
Affiliation(s)
- So Young Joo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Korea; (S.Y.J.); (Y.S.C.)
| | - Seung Yeol Lee
- Department of Physical Medicine and Rehabilitation, College of Medicine, Soonchunhyang University Hospital, Bucheon 14584, Korea;
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Korea; (S.Y.J.); (Y.S.C.)
| | - Kuem Ju Lee
- Department of Rehabilitation & Assistive Technology, Korea National Rehabilitation Research Institute, National Rehabilitation Center, Seoul 01022, Korea;
| | - Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Korea; (S.Y.J.); (Y.S.C.)
- Correspondence: ; Tel.: +82-2-2639-5738; Fax: +82-2-2635-7820
| |
Collapse
|
26
|
Høyer E, Opheim A, Jørgensen V. Implementing the exoskeleton Ekso GT TM for gait rehabilitation in a stroke unit - feasibility, functional benefits and patient experiences. Disabil Rehabil Assist Technol 2020; 17:473-479. [PMID: 32838594 DOI: 10.1080/17483107.2020.1800110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Reports on the implementation of exoskeletons for gait rehabilitation in clinical settings are limited. OBJECTIVES How feasible is the introduction of exoskeleton gait training for patients with subacute stroke in a specialized rehabilitation hospital?What are the functional benefits and the patient experiences with training in the Ekso GTTM exoskeleton? DESIGN Explorative study. METHODS During an 18 months inclusion period, 255 in-patients were screened for eligibility. Inclusion criteria were; walking difficulties, able to stand 10 min in a standing frame, fitting into the robot and able to cooperate. One-hour training sessions 2-3 times per week for approximately 3 weeks were applied as a part of the patients' ordinary rehabilitation programme. Assessments: Functional Independence Measure, Motor Assessment Scale (MAS), Ekso GTTM walking data, patient satisfaction and perceived exertion of the training sessions (Borg scale). RESULTS Two physiotherapists were certified at the highest level of Ekso GTTM. Twenty-six patients, median age 54 years, were included. 177 training sessions were performed. Statistical significant changes were found in MAS total score (p < 0.003) and in the gait variables walking time, up-time, and a number of steps (p < 0.001). Patients reported fairly light perceived exertion and a high level of satisfaction and usefulness with the training sessions. Few disadvantages were reported. Most patients would like to repeat this training if offered. CONCLUSIONS Ekso GTTM can safely be implemented as a training tool in ordinary rehabilitation under the prerequisite of a structured organization and certified personnel. The patients progressed in all outcome measures and reported a high level of satisfaction.Implications for rehabilitationThe powered exoskeleton Ekso GTTM was found feasible as a training option for in-patients with severe gait disorders after stroke within an ordinary rehabilitation setting.The Ekso GTTM must be operated by a certified physiotherapist, and sufficient assistive personnel must be available for safe implementation.Patients' perceived exertion when training in the Ekso GTTM was relatively low.The patients expressed satisfaction with this training option.
Collapse
Affiliation(s)
- Ellen Høyer
- Competence Unit/Department of Brain Injury, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway
| | - Arve Opheim
- Competence Unit/Department of Brain Injury, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway.,Rehabilitation Medicine, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Habilitation & Health, Västra Götaland, Sweden
| | - Vivien Jørgensen
- Competence Unit/Department of Brain Injury, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway
| |
Collapse
|
27
|
Hidayah R, Bishop L, Jin X, Chamarthy S, Stein J, Agrawal SK. Gait Adaptation Using a Cable-Driven Active Leg Exoskeleton (C-ALEX) With Post-Stroke Participants. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1984-1993. [PMID: 32746320 DOI: 10.1109/tnsre.2020.3009317] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Individuals with chronic hemiparesis post-stroke exhibit gait impairments that require functional rehabilitation through training. Exoskeletal robotic assistive devices can provide a user with continuous assistance but impose movement restrictions. There are currently devices that allow unrestricted movement but provide assistance only intermittently at specific points of the gait cycle. Our design, a cable-driven active leg exoskeleton (C-ALEX), allows the user both unrestricted movement and continuous force assistance throughout the gait cycle to assist the user in new walking patterns. In this study, we assessed the ability of C-ALEX to induce a change in the walking patterns of ten post-stroke participants using a single-session training protocol. The ability of C-ALEX to accurately provide forces and torques in the desired directions was also evaluated to compare its design performance to traditional rigid-link designs. Participants were able to reach 91% ± 12% of their target step length and 89% ± 13% of their target step height. The achieved step parameters differed significantly from participant baselines ( ). To quantify the performance, the forces in each cable's out of the plane movements were evaluated relative to the in-plane desired cable tension magnitudes. This corresponded to an error of under 2Nm in the desired controlled joint torques. This error magnitude is low compared to the system command torques and typical adult biological torques during walking (2-4%). These results point to the utility of using non-restrictive cable-driven architectures in gait retraining, in which future focus can be on rehabilitating gait pathologies seen in stroke survivors.
Collapse
|
28
|
Liao Y, Vakanski A, Xian M, Paul D, Baker R. A review of computational approaches for evaluation of rehabilitation exercises. Comput Biol Med 2020; 119:103687. [PMID: 32339122 PMCID: PMC7189627 DOI: 10.1016/j.compbiomed.2020.103687] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 12/27/2022]
Abstract
Recent advances in data analytics and computer-aided diagnostics stimulate the vision of patient-centric precision healthcare, where treatment plans are customized based on the health records and needs of every patient. In physical rehabilitation, the progress in machine learning and the advent of affordable and reliable motion capture sensors have been conducive to the development of approaches for automated assessment of patient performance and progress toward functional recovery. The presented study reviews computational approaches for evaluating patient performance in rehabilitation programs using motion capture systems. Such approaches will play an important role in supplementing traditional rehabilitation assessment performed by trained clinicians, and in assisting patients participating in home-based rehabilitation. The reviewed computational methods for exercise evaluation are grouped into three main categories: discrete movement score, rule-based, and template-based approaches. The review places an emphasis on the application of machine learning methods for movement evaluation in rehabilitation. Related work in the literature on data representation, feature engineering, movement segmentation, and scoring functions is presented. The study also reviews existing sensors for capturing rehabilitation movements and provides an informative listing of pertinent benchmark datasets. The significance of this paper is in being the first to provide a comprehensive review of computational methods for evaluation of patient performance in rehabilitation programs.
Collapse
Affiliation(s)
- Yalin Liao
- Department of Computer Science, University of Idaho, Idaho Falls, USA
| | | | - Min Xian
- Department of Computer Science, University of Idaho, Idaho Falls, USA
| | - David Paul
- Department of Movement Sciences, University of Idaho, Moscow, USA
| | - Russell Baker
- Department of Movement Sciences, University of Idaho, Moscow, USA
| |
Collapse
|
29
|
Iandolo R, Bommarito G, Falcitano L, Schiavi S, Piaggio N, Mancardi GL, Casadio M, Inglese M. Position Sense Deficits at the Lower Limbs in Early Multiple Sclerosis: Clinical and Neural Correlates. Neurorehabil Neural Repair 2020; 34:260-270. [PMID: 32028846 DOI: 10.1177/1545968320902126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background/Objective. Position sense, defined as the ability to identify joint and limb position in space, is crucial for balance and gait but has received limited attention in patients with multiple sclerosis (MS). We investigated lower limb position sense deficits, their neural correlates, and their effects on standing balance in patients with early MS. Methods. A total of 24 patients with early relapsing-remitting MS and 24 healthy controls performed ipsilateral and contralateral matching tasks with the right foot during functional magnetic resonance imaging. Corpus callosum (CC) integrity was estimated with diffusion tensor imaging. Patients also underwent an assessment of balance during quiet standing. We investigated differences between the 2 groups and the relations among proprioceptive errors, balance performance, and functional/structural correlates. Results. During the contralateral matching task, patients demonstrated a higher matching error than controls, which correlated with the microstructural damage of the CC and with balance ability. In contrast, during the ipsilateral task, the 2 groups showed a similar matching performance, but patients displayed a functional reorganization involving the parietal areas. Neural activity in the frontoparietal regions correlated with the performance during both proprioceptive matching tasks and quiet standing. Conclusion. Patients with early MS had subtle, clinically undetectable, position sense deficits at the lower limbs that, nevertheless, affected standing balance. Functional changes allowed correct proprioception processing during the ipsilateral matching task but not during the more demanding bilateral task, possibly because of damage to the CC. These findings provide new insights into the mechanisms underlying disability in MS and could influence the design of neurorehabilitation protocols.
Collapse
Affiliation(s)
- Riccardo Iandolo
- RBCS Department , Istituto Italiano di Tecnologia, Genova, Italy
- Department of Informatics, Bioengeneering, Robotics and System Engineering (DIBRIS), University of Genoa, Italy
| | - Giulia Bommarito
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI) University of Genova, Italy
| | - Laura Falcitano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI) University of Genova, Italy
| | - Simona Schiavi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI) University of Genova, Italy
| | - Niccolò Piaggio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI) University of Genova, Italy
| | - Giovanni Luigi Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI) University of Genova, Italy
| | - Maura Casadio
- RBCS Department , Istituto Italiano di Tecnologia, Genova, Italy
- Department of Informatics, Bioengeneering, Robotics and System Engineering (DIBRIS), University of Genoa, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI) University of Genova, Italy
- Ospedale Policlinico San Martino-IRCCS, Genova, Italy
| |
Collapse
|
30
|
He Y, Eguren D, Azorín JM, Grossman RG, Luu TP, Contreras-Vidal JL. Brain-machine interfaces for controlling lower-limb powered robotic systems. J Neural Eng 2019; 15:021004. [PMID: 29345632 DOI: 10.1088/1741-2552/aaa8c0] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Lower-limb, powered robotics systems such as exoskeletons and orthoses have emerged as novel robotic interventions to assist or rehabilitate people with walking disabilities. These devices are generally controlled by certain physical maneuvers, for example pressing buttons or shifting body weight. Although effective, these control schemes are not what humans naturally use. The usability and clinical relevance of these robotics systems could be further enhanced by brain-machine interfaces (BMIs). A number of preliminary studies have been published on this topic, but a systematic understanding of the experimental design, tasks, and performance of BMI-exoskeleton systems for restoration of gait is lacking. APPROACH To address this gap, we applied standard systematic review methodology for a literature search in PubMed and EMBASE databases and identified 11 studies involving BMI-robotics systems. The devices, user population, input and output of the BMIs and robot systems respectively, neural features, decoders, denoising techniques, and system performance were reviewed and compared. MAIN RESULTS Results showed BMIs classifying walk versus stand tasks are the most common. The results also indicate that electroencephalography (EEG) is the only recording method for humans. Performance was not clearly presented in most of the studies. Several challenges were summarized, including EEG denoising, safety, responsiveness and others. SIGNIFICANCE We conclude that lower-body powered exoskeletons with automated gait intention detection based on BMIs open new possibilities in the assistance and rehabilitation fields, although the current performance, clinical benefits and several key challenging issues indicate that additional research and development is required to deploy these systems in the clinic and at home. Moreover, rigorous EEG denoising techniques, suitable performance metrics, consistent trial reporting, and more clinical trials are needed to advance the field.
Collapse
Affiliation(s)
- Yongtian He
- Department of Electrical and Computer Engineering, Noninvasive Brain-Machine Interface Systems Laboratory, University of Houston, Houston, TX 77204, United States of America
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The development of robotic devices for rehabilitation is a fast-growing field. Nowadays, thanks to novel technologies that have improved robots’ capabilities and offered more cost-effective solutions, robotic devices are increasingly being employed during clinical practice, with the goal of boosting patients’ recovery. Robotic rehabilitation is also widely used in the context of neurological disorders, where it is often provided in a variety of different fashions, depending on the specific function to be restored. Indeed, the effect of robot-aided neurorehabilitation can be maximized when used in combination with a proper training regimen (based on motor control paradigms) or with non-invasive brain machine interfaces. Therapy-induced changes in neural activity and behavioral performance, which may suggest underlying changes in neural plasticity, can be quantified by multimodal assessments of both sensorimotor performance and brain/muscular activity pre/post or during intervention. Here, we provide an overview of the most common robotic devices for upper and lower limb rehabilitation and we describe the aforementioned neurorehabilitation scenarios. We also review assessment techniques for the evaluation of robotic therapy. Additional exploitation of these research areas will highlight the crucial contribution of rehabilitation robotics for promoting recovery and answering questions about reorganization of brain functions in response to disease.
Collapse
|
32
|
Shirota C, Balasubramanian S, Melendez-Calderon A. Technology-aided assessments of sensorimotor function: current use, barriers and future directions in the view of different stakeholders. J Neuroeng Rehabil 2019; 16:53. [PMID: 31036003 PMCID: PMC6489331 DOI: 10.1186/s12984-019-0519-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND There is growing interest in the use of technology in neurorehabilitation, from robotic to sensor-based devices. These technologies are believed to be excellent tools for quantitative assessment of sensorimotor ability, addressing the shortcomings of traditional clinical assessments. However, clinical adoption of technology-based assessments is very limited. To understand this apparent contradiction, we sought to gather the points-of-view of different stakeholders in the development and use of technology-aided sensorimotor assessments. METHODS A questionnaire regarding motivators, barriers, and the future of technology-aided assessments was prepared and disseminated online. To promote discussion, we present an initial analysis of the dataset; raw responses are provided to the community as Supplementary Material. Average responses within stakeholder groups were compared across groups. Additional questions about respondent's demographics and professional practice were used to obtain a view of the current landscape of sensorimotor assessments and interactions between different stakeholders. RESULTS One hundred forty respondents from 23 countries completed the survey. Respondents were a mix of Clinicians (27%), Research Engineers (34%), Basic Scientists (15%), Medical Industry professionals (16%), Patients (2%) and Others (6%). Most respondents were experienced in rehabilitation within their professions (67% with > 5 years of experience), and had exposure to technology-aided assessments (97% of respondents). In general, stakeholders agreed on reasons for performing assessments, level of details required, current bottlenecks, and future directions. However, there were disagreements between and within stakeholders in aspects such as frequency of assessments, and important factors hindering adoption of technology-aided assessments, e.g., Clinicians' top factor was cost, while Research Engineers indicated device-dependent factors and lack of standardization. Overall, lack of time, cost, lack of standardization and poor understanding/lack of interpretability were the major factors hindering the adoption of technology-aided assessments in clinical practice. Reimbursement and standardization of technology-aided assessments were rated as the top two activities to pursue in the coming years to promote the field of technology-aided sensorimotor assessments. CONCLUSIONS There is an urgent need for standardization in technology-aided assessments. These efforts should be accompanied by quality cross-disciplinary activities, education and alignment of scientific language, to more effectively promote the clinical use of assessment technologies. TRIAL REGISTRATION NA; see Declarations section.
Collapse
Affiliation(s)
- Camila Shirota
- Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
| | | | - Alejandro Melendez-Calderon
- Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
- cereneo Advanced Rehabilitation Institute (CARINg), cereneo - Zentrum für Interdisziplinäre Forschung, Vitznau, Switzerland
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
| |
Collapse
|
33
|
Lowrey CR, Bourke TC, Bagg SD, Dukelow SP, Scott SH. A postural unloading task to assess fast corrective responses in the upper limb following stroke. J Neuroeng Rehabil 2019; 16:16. [PMID: 30691482 PMCID: PMC6350318 DOI: 10.1186/s12984-019-0483-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023] Open
Abstract
Background Robotic technologies to measure human behavior are emerging as a new approach to assess brain function. Recently, we developed a robot-based postural Load Task to assess corrective responses to mechanical disturbances to the arm and found impairments in many participants with stroke compared to a healthy cohort (Bourke et al, J NeuroEngineering Rehabil 12: 7, 2015). However, a striking feature was the large range and skewed distribution of healthy performance. This likely reflects the use of different strategies across the healthy control sample, making it difficult to identify impairments. Here, we developed an intuitive “Unload Task”. We hypothesized this task would reduce healthy performance variability and improve the detection of impairment following stroke. Methods Performance on the Load and Unload Task in the KINARM exoskeleton robot was directly compared for healthy control (n = 107) and stroke (n = 31) participants. The goal was to keep a cursor representing the hand inside a virtual target and return “quickly and accurately” if the robot applied (or removed) an unexpected load to the arm (0.5–1.5 Nm). Several kinematic parameters quantified performance. Impairment was defined as performance outside the 95% of controls (corrected for age, sex and handedness). Task Scores were calculated using standardized parameter scores reflecting overall task performance. Results The distribution of healthy control performance was smaller and less skewed for the Unload Task compared to the Load Task. Fewer task outliers (outside 99.9 percentile for controls) were removed from the Unload Task (3.7%) compared to the Load Task (7.4%) when developing normative models of performance. Critically, more participants with stroke failed the Unload Task based on Task Score with their affected arm (68%) compared to the Load Task (23%). More impairments were found at the parameter level for the Unload (median = 52%) compared to Load Task (median = 29%). Conclusions The Unload Task provides an improved approach to assess fast corrective responses of the arm. We found that corrective responses are impaired in persons living with stroke, often equally in both arms. Impairments in generating rapid motor corrections may place individuals at greater risk of falls when they move and interact in the environment.
Collapse
Affiliation(s)
- Catherine R Lowrey
- Laboratory of Integrative Motor Behaviour, Centre for Neuroscience Studies, Queen's University, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.
| | - Teige C Bourke
- Laboratory of Integrative Motor Behaviour, Centre for Neuroscience Studies, Queen's University, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.,Present Address: Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Stephen D Bagg
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, ON, Canada.,School of Medicine, Queen's University, Kingston, ON, Canada
| | - Sean P Dukelow
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Stephen H Scott
- Laboratory of Integrative Motor Behaviour, Centre for Neuroscience Studies, Queen's University, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
34
|
Tiseo C, Veluvolu KC, Ang WT. The bipedal saddle space: modelling and validation. BIOINSPIRATION & BIOMIMETICS 2018; 14:015001. [PMID: 30387438 DOI: 10.1088/1748-3190/aae7b0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Better understanding of human balance control is pivotal for applications such as bipedal robots and medical technologies/therapies targeting human locomotion. Despite the inverted pendulum model being popular for describing bipedal locomotion, it does not properly capture the step-to-step transition dynamics. The major drawback has been the requirement for both feet to be on the ground which generates a discontinuity along the intersection of the potential energy surfaces produced by the two legs. To overcome this problem, we propose a generalized inverted pendulum-based model that can describe both single and double support phases. The full characterization of the system's potential energy allows the proposed model to drop the main limitation. This framework also enables optimal strategies to be designed for the transition between the two feet without the optimization algorithms. The proposed theory has been validated by comparing the human locomotor strategies output of our planner with real data from multiple experimental studies. The results show that our model generates trajectories consistent with human variability and performs better than existing well-known methods.
Collapse
Affiliation(s)
- C Tiseo
- Robotic Research Centre, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue N3-01a-01, 639798, Singapore
| | | | | |
Collapse
|
35
|
Lajeunesse V, Routhier F, Vincent C, Lettre J, Michaud F. Perspectives of individuals with incomplete spinal cord injury concerning the usability of lower limb exoskeletons: An exploratory study. ACTA ACUST UNITED AC 2018. [DOI: 10.3233/tad-180195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Véronique Lajeunesse
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Centre intégré universitaire de santé et de services sociaux de la Capitale-Nationale (CIUSSS-CN), Institut de réadaptation en déficience physique de Québec (IRDPQ), Quebec City, QC, Canada
| | - François Routhier
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Centre intégré universitaire de santé et de services sociaux de la Capitale-Nationale (CIUSSS-CN), Institut de réadaptation en déficience physique de Québec (IRDPQ), Quebec City, QC, Canada
- Department of Rehabilitation, Université Laval, Quebec City, QC, Canada
| | - Claude Vincent
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Centre intégré universitaire de santé et de services sociaux de la Capitale-Nationale (CIUSSS-CN), Institut de réadaptation en déficience physique de Québec (IRDPQ), Quebec City, QC, Canada
- Department of Rehabilitation, Université Laval, Quebec City, QC, Canada
| | - Josiane Lettre
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Centre intégré universitaire de santé et de services sociaux de la Capitale-Nationale (CIUSSS-CN), Institut de réadaptation en déficience physique de Québec (IRDPQ), Quebec City, QC, Canada
| | - François Michaud
- IntRoLab – Laboratoire de robotique intelligente/interactive/intégrée/interdisciplinaire, Institut interdisciplinaire d’innovation technologique (3IT), Université de Sherbrooke, Sherbrooke, QC, Canada
- Département de génie électrique et de génie informatique, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
36
|
A novel sensor-based assessment of lower limb spasticity in children with cerebral palsy. J Neuroeng Rehabil 2018; 15:45. [PMID: 29866177 PMCID: PMC5987429 DOI: 10.1186/s12984-018-0388-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND To provide effective interventions for spasticity, accurate and reliable spasticity assessment is essential. For the assessment, the Modified Tardieu Scale (MTS) has been widely used owing to its simplicity and convenience. However, it has poor or moderate accuracy and reliability. METHODS We proposed a novel inertial measurement unit (IMU)-based MTS assessment system to improve the accuracy and reliability of the MTS itself. The proposed system consists of a joint angle calculation algorithm, a function to detect abnormal muscle reaction (a catch and clonus), and a visual biofeedback mechanism. Through spastic knee and ankle joint assessment, the proposed IMU-based MTS assessment system was compared with the conventional MTS assessment system in 28 children with cerebral palsy by two raters. RESULTS The results showed that the proposed system has good accuracy (root mean square error < 3.2°) and test-retest and inter-rater reliabilities (ICC > 0.8), while the conventional MTS system has poor or moderate reliability. Moreover, we found that the deteriorated reliability of the conventional MTS system comes from its goniometric measurement as well as from irregular passive stretch velocity. CONCLUSIONS The proposed system, which is clinically relevant, can significantly improve the accuracy and reliability of the MTS in lower limbs for children with cerebral palsy.
Collapse
|
37
|
Ballardini G, Carlini G, Giannoni P, Scheidt RA, Nisky I, Casadio M. Tactile-STAR: A Novel Tactile STimulator And Recorder System for Evaluating and Improving Tactile Perception. Front Neurorobot 2018; 12:12. [PMID: 29681809 PMCID: PMC5897626 DOI: 10.3389/fnbot.2018.00012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/05/2018] [Indexed: 11/13/2022] Open
Abstract
Many neurological diseases impair the motor and somatosensory systems. While several different technologies are used in clinical practice to assess and improve motor functions, somatosensation is evaluated subjectively with qualitative clinical scales. Treatment of somatosensory deficits has received limited attention. To bridge the gap between the assessment and training of motor vs. somatosensory abilities, we designed, developed, and tested a novel, low-cost, two-component (bimanual) mechatronic system targeting tactile somatosensation: the Tactile-STAR-a tactile stimulator and recorder. The stimulator is an actuated pantograph structure driven by two servomotors, with an end-effector covered by a rubber material that can apply two different types of skin stimulation: brush and stretch. The stimulator has a modular design, and can be used to test the tactile perception in different parts of the body such as the hand, arm, leg, big toe, etc. The recorder is a passive pantograph that can measure hand motion using two potentiometers. The recorder can serve multiple purposes: participants can move its handle to match the direction and amplitude of the tactile stimulator, or they can use it as a master manipulator to control the tactile stimulator as a slave. Our ultimate goal is to assess and affect tactile acuity and somatosensory deficits. To demonstrate the feasibility of our novel system, we tested the Tactile-STAR with 16 healthy individuals and with three stroke survivors using the skin-brush stimulation. We verified that the system enables the mapping of tactile perception on the hand in both populations. We also tested the extent to which 30 min of training in healthy individuals led to an improvement of tactile perception. The results provide a first demonstration of the ability of this new system to characterize tactile perception in healthy individuals, as well as a quantification of the magnitude and pattern of tactile impairment in a small cohort of stroke survivors. The finding that short-term training with Tactile-STAR can improve the acuity of tactile perception in healthy individuals suggests that Tactile-STAR may have utility as a therapeutic intervention for somatosensory deficits.
Collapse
Affiliation(s)
- Giulia Ballardini
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Giorgio Carlini
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Psiche Giannoni
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Robert A. Scheidt
- Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Division of Civil, Mechanical and Manufacturing Innovation, National Science Foundation, Alexandria, VA, United States
| | - Ilana Nisky
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Maura Casadio
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| |
Collapse
|
38
|
Jin X, Prado A, Agrawal SK. Retraining of Human Gait - Are Lightweight Cable-Driven Leg Exoskeleton Designs Effective? IEEE Trans Neural Syst Rehabil Eng 2018; 26:847-855. [DOI: 10.1109/tnsre.2018.2815656] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Lee J, Seo K, Lim B, Jang J, Kim K, Choi H. Effects of assistance timing on metabolic cost, assistance power, and gait parameters for a hip-type exoskeleton. IEEE Int Conf Rehabil Robot 2018; 2017:498-504. [PMID: 28813869 DOI: 10.1109/icorr.2017.8009297] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
There are many important factors in developing an exoskeleton for assisting human locomotion. For example, the weight should be sufficiently light, the assist torque should be high enough to assist joint motion, and the assistance timing should be just right. Understanding how these design parameters affect overall performance of a complex human-machine system is critical for the development of these types of systems. The present study introduces an assistance timing controller that regulates assistance timing such that peak joint velocity and peak assistance power are offset by a reference value for our hip-type exoskeleton. This is followed by measuring the manner in which various assistance timing references affect an important metric for performance, namely metabolic cost. The results indicate that net metabolic cost exhibits a concave up pattern with the most reduction of 21%, when compared to walking without the exoskeleton, at 0% assistance timing reference. The study also examines assistance timing's effect on gait parameters; increase in assistance timing reference increases step length, decreases cadence, and increases walk ratio (i.e. step length/cadence ratio) during treadmill walking.
Collapse
|
40
|
Augmented reality for personalized nanomedicines. Biotechnol Adv 2017; 36:335-343. [PMID: 29248686 DOI: 10.1016/j.biotechadv.2017.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/26/2022]
Abstract
As our understanding of onset and progress of diseases at the genetic and molecular level rapidly progresses, the potential of advanced technologies, such as 3D-printing, Socially-Assistive Robots (SARs) or augmented reality (AR), that are applied to personalized nanomedicines (PNMs) to alleviate pathological conditions, has become more prominent. Among advanced technologies, AR in particular has the greatest potential to address those challenges and facilitate the translation of PNMs into formidable clinical application of personalized therapy. As AR is about to adapt additional new methods, such as speech, voice recognition, eye tracing and motion tracking, to enable interaction with host response or biological systems in 3-D space, a combination of multiple approaches to accommodate varying environmental conditions, such as public noise and atmosphere brightness, will be explored to improve its therapeutic outcomes in clinical applications. For instance, AR glasses still being developed by Facebook or Microsoft will serve as new platform that can provide people with the health information they are interested in or various measures through which they can interact with medical services. This review has addressed the current progress and impact of AR on PNMs and its application to the biomedical field. Special emphasis is placed on the application of AR based PNMs to the treatment strategies against senior care, drug addiction and medication adherence.
Collapse
|
41
|
Espinoza EM, Larsen-Clinton JM, Krzeszewski M, Darabedian N, Gryko DT, Vullev VI. Bioinspired approach toward molecular electrets: synthetic proteome for materials. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractMolecular-level control of charge transfer (CT) is essential for both, organic electronics and solar-energy conversion, as well as for a wide range of biological processes. This article provides an overview of the utility of local electric fields originating from molecular dipoles for directing CT processes. Systems with ordered dipoles, i.e. molecular electrets, are the centerpiece of the discussion. The conceptual evolution from biomimicry to biomimesis, and then to biological inspiration, paves the roads leading from testing the understanding of how natural living systems function to implementing these lessons into optimal paradigms for specific applications. This progression of the evolving structure-function relationships allows for the development of bioinspired electrets composed of non-native aromatic amino acids. A set of such non-native residues that are electron-rich can be viewed as a synthetic proteome for hole-transfer electrets. Detailed considerations of the electronic structure of an individual residue prove of key importance for designating the points for optimal injection of holes (i.e. extraction of electrons) in electret oligomers. This multifaceted bioinspired approach for the design of CT molecular systems provides unexplored paradigms for electronic and energy science and engineering.
Collapse
Affiliation(s)
- Eli M. Espinoza
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | | | - Maciej Krzeszewski
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Narek Darabedian
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Daniel T. Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Valentine I. Vullev
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
42
|
Shirota C, van Asseldonk E, Matjačić Z, Vallery H, Barralon P, Maggioni S, Buurke JH, Veneman JF. Robot-supported assessment of balance in standing and walking. J Neuroeng Rehabil 2017; 14:80. [PMID: 28806995 PMCID: PMC5556664 DOI: 10.1186/s12984-017-0273-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/08/2017] [Indexed: 11/10/2022] Open
Abstract
Clinically useful and efficient assessment of balance during standing and walking is especially challenging in patients with neurological disorders. However, rehabilitation robots could facilitate assessment procedures and improve their clinical value. We present a short overview of balance assessment in clinical practice and in posturography. Based on this overview, we evaluate the potential use of robotic tools for such assessment. The novelty and assumed main benefits of using robots for assessment are their ability to assess 'severely affected' patients by providing assistance-as-needed, as well as to provide consistent perturbations during standing and walking while measuring the patient's reactions. We provide a classification of robotic devices on three aspects relevant to their potential application for balance assessment: 1) how the device interacts with the body, 2) in what sense the device is mobile, and 3) on what surface the person stands or walks when using the device. As examples, nine types of robotic devices are described, classified and evaluated for their suitability for balance assessment. Two example cases of robotic assessments based on perturbations during walking are presented. We conclude that robotic devices are promising and can become useful and relevant tools for assessment of balance in patients with neurological disorders, both in research and in clinical use. Robotic assessment holds the promise to provide increasingly detailed assessment that allows to individually tailor rehabilitation training, which may eventually improve training effectiveness.
Collapse
Affiliation(s)
- Camila Shirota
- Rehabilitation Engineering Lab, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zürich, Lengghalde 5, 8092, Zürich, Switzerland
| | - Edwin van Asseldonk
- Department of Biomechanical Engineering, MIRA, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Zlatko Matjačić
- University Rehabilitation Institute, Republic of Slovenia, Linhartova 51, SI-1000, Ljubljana, Slovenia
| | - Heike Vallery
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Pierre Barralon
- Health Division, Tecnalia Research and Innovation, Paseo Mikeletegi 1, 20009, Donostia-San Sebastian, Spain
| | - Serena Maggioni
- Sensory-Motor Systems Lab, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zürich, Sonneggstrasse 3, 8092, Zürich, Switzerland.,Hocoma AG, Industriestrasse 4a, 8604, Volketswil, Switzerland
| | - Jaap H Buurke
- Roessingh Research and Development, Roessinghsbleekweg 33b, 7522 AH, Enschede, The Netherlands
| | - Jan F Veneman
- Health Division, Tecnalia Research and Innovation, Paseo Mikeletegi 1, 20009, Donostia-San Sebastian, Spain.
| |
Collapse
|