1
|
Skovgaard Jensen J, Holsgaard-Larsen A, Stengaard Sørensen A, Aagaard P, Bojsen-Møller J. Acute effects of robot-assisted body weight unloading on biomechanical movement patterns during overground walking. J Biomech 2024; 162:111862. [PMID: 37976689 DOI: 10.1016/j.jbiomech.2023.111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Body weight unloading (BWU) is used in rehabilitation/training settings to reduce kinetic requirements, however different BWU methods may be unequally capable of preserving biomechanical movement patterns. Biomechanical analysis of both kinetic and kinematic movement trajectories rather than discrete variables has not previously been performed to describe the effect of BWU on gait patterns during horizontal walking. The aim of the present study was to investigate how robot-assisted BWU producing an dynamic unloading force on the body centre of mass, affects kinematic, kinetic, and spatiotemporal gait parameters in healthy young adults by use of time-continuous analysis. Twenty participants walked overground in a 3-D motion-capture lab at 0, 10, 20, 30, 40, and 50 % BWU at a self-selected speed. Vertical and anterior-posterior ground reaction forces (GRFs) and lower limb internal joint moments were obtained during the stance phase, while joint angles were obtained during entire strides. Time-continuous data were analysed using Statistical Parametric Mapping (SPM) and discrete data using conventional statistics to compare different BWU conditions by means of One-Way Repeated Measures Anova. With increasing BWU, corresponding reductions were observed for GRFs, internal joint moments, joint angles, walking speed, stride/step length and cadence. Observed effects were partially caused by decreased walking speed and increased BWU. While amplitude reductions were observed for kinetic and kinematic variables, trajectory shapes were largely preserved. In conclusion, dynamic robot-assisted BWU enables reduced kinetic requirements without distorting biomechanically normal gait patterns during overground walking in young healthy adults.
Collapse
Affiliation(s)
| | | | | | - Per Aagaard
- Research Unit of Muscle Physiology and Biomechanics, Department of Sport Science and Clinical Biomechanics, SDU, Denmark
| | - Jens Bojsen-Møller
- Research Unit of Muscle Physiology and Biomechanics, Department of Sport Science and Clinical Biomechanics, SDU, Denmark
| |
Collapse
|
2
|
Malaya CA, Parikh PJ, Smith DL, Riaz A, Chandrasekaran S, Layne CS. Effects of simulated hypo-gravity on lower limb kinematic and electromyographic variables during anti-gravitational treadmill walking. Front Physiol 2023; 14:1141015. [PMID: 37362436 PMCID: PMC10285399 DOI: 10.3389/fphys.2023.1141015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: This study investigated kinematic and EMG changes in gait across simulated gravitational unloading levels between 100% and 20% of normal body weight. This study sought to identify if each level of unloading elicited consistent changes-particular to that percentage of normal body weight-or if the changes seen with unloading could be influenced by the previous level(s) of unloading. Methods: 15 healthy adult participants (26.3 ± 2.5 years; 53% female) walked in an Alter-G anti-gravity treadmill unloading system (mean speed: 1.49 ± 0.37 mph) for 1 min each at 100%, 80%, 60%, 40% and 20% of normal body weight, before loading back to 100% in reverse order. Lower-body kinematic data were captured by inertial measurement units, and EMG data were collected from the rectus femoris, biceps femoris, medial gastrocnemius, and anterior tibialis. Data were compared across like levels of load using repeated measures ANOVA and statistical parametric mapping. Difference waveforms for adjacent levels were created to examine the rate of change between different unloading levels. Results: This study found hip, knee, and ankle kinematics as well as activity in the rectus femoris, and medial gastrocnemius were significantly different at the same level of unloading, having arrived from a higher, or lower level of unloading. There were no significant changes in the kinematic difference waveforms, however the waveform representing the change in EMG between 100% and 80% load was significantly different from all other levels. Discussion: This study found that body weight unloading from 100% to 20% elicited distinct responses in the medial gastrocnemius, as well as partly in the rectus femoris. Hip, knee, and ankle kinematics were also affected differentially by loading and unloading, especially at 40% of normal body weight. These findings suggest the previous level of gravitational load is an important factor to consider in determining kinematic and EMG responses to the current level during loading and unloading below standard g. Similarly, the rate of change in kinematics from 100% to 20% appears to be linear, while the rate of change in EMG was non-linear. This is of particular interest, as it suggests that kinematic and EMG measures decouple with unloading and may react to unloading uniquely.
Collapse
Affiliation(s)
- Christopher A. Malaya
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, United States
- Grail Laboratory, Parker University, Dallas, TX, United States
| | - Pranav J. Parikh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Dean L. Smith
- Nutrition and Health, Department of Kinesiology, Miami University, Oxford, OH, United States
| | - Arshia Riaz
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Subhalakshmi Chandrasekaran
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Charles S. Layne
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| |
Collapse
|
3
|
Saveko A, Brykov V, Kitov V, Shpakov A, Tomilovskaya E. Adaptation in Gait to Lunar and Martian Gravity Unloading During Long-Term Isolation in the Ground-Based Space Station Model. Front Hum Neurosci 2022; 15:742664. [PMID: 35095445 PMCID: PMC8790089 DOI: 10.3389/fnhum.2021.742664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
The aim of the experiment was to evaluate the adaptive responses of biomechanical and electromyographic parameters to vertical unloading (Lunar—0.15 G and Martian—0.35 G) when walking during the 4-month isolation experiment SIRIUS-19 in the ground-based space station model (GBI). The study involved 6 healthy international crew members of the SIRIUS-19 project aged 34 ± 6.2 years (3 women and 3 men). Body Weight Unloading (BWU) conditions was created by the h/p/cosmos airwalk system. The locomotor test included walking (3.5 ± 0.3 km/h) with a sequential change of BWU modes: 5-min walking with 0% BWU (1 G), 5-min walking with 65% BWU (0.35 G) and 5-min walking with 85% BWU (0.15 G). Ground Reaction Force was recorded by the h/p/cosmos treadmill device. Muscle Lab Model 4000e device was used to record the electromyographic signals of the hip and shin muscles. The locomotor test was performed twice before GBI, monthly during GBI and 1 week after leaving isolation. The results obtained before GBI demonstrate that the changes of support and proprioceptive afferentation signals play significant role in reorganizing of the biomechanical structure of motor acts and the development of new movement patterns. The results of the study are consistent with the previously obtained results of other studies in this direction. Despite the fact that during the GBI the participants of the experiment performed regular physical training, a decrease in the performance indicators values was detected, especially pronounced after 100 days of GBI. This is probably due to limited space of a space station model, as well as the development of a special motor stereotype in it. Noteworthy are the results obtained after the 4th session of the experiment, indicating the effect of sensorimotor learning. We think that the data obtained in this study will be useful in research both in gravitational physiology and in clinical medicine.
Collapse
Affiliation(s)
- Alina Saveko
- Russian Federation State Scientific Center, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Vitaly Brykov
- Russian Federation State Scientific Center, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Kitov
- Russian Federation State Scientific Center, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey Shpakov
- Russian Federation State Scientific Center, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia.,Federal Science Center of Physical Culture and Sport (VNIIFK), Moscow, Russia
| | - Elena Tomilovskaya
- Russian Federation State Scientific Center, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Haufe FL, Kober AM, Wolf P, Riener R, Xiloyannis M. Learning to walk with a wearable robot in 880 simple steps: a pilot study on motor adaptation. J Neuroeng Rehabil 2021; 18:157. [PMID: 34724940 PMCID: PMC8561899 DOI: 10.1186/s12984-021-00946-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wearable robots have been shown to improve the efficiency of walking in diverse scenarios. However, it is unclear how much practice is needed to fully adapt to robotic assistance, and which neuromotor processes underly this adaptation. Familiarization strategies for novice users, robotic optimization techniques (e.g. human-in-the-loop), and meaningful comparative assessments depend on this understanding. METHODS To better understand the process of motor adaptation to robotic assistance, we analyzed the energy expenditure, gait kinematics, stride times, and muscle activities of eight naïve unimpaired participants across three 20-min sessions of robot-assisted walking. Experimental outcomes were analyzed with linear mixed effect models and statistical parametric mapping techniques. RESULTS Most of the participants' kinematic and muscular adaptation occurred within the first minute of assisted walking. After ten minutes, or 880 steps, the energetic benefits of assistance were realized (an average of 5.1% (SD 2.4%) reduction in energy expenditure compared to unassisted walking). Motor adaptation was likely driven by the formation of an internal model for feedforward motor control as evidenced by the reduction of burst-like muscle activity at the cyclic end of robotic assistance and an increase in arm-swing asymmetry previously associated with increased cognitive load. CONCLUSION Humans appear to adapt to walking assistance from a wearable robot over 880 steps by forming an internal model for feedforward control. The observed adaptation to the wearable robot is well-described by existing three-stage models that start from a cognitive stage, continue with an associative stage, and end in autonomous task execution. Trial registration Not applicable.
Collapse
Affiliation(s)
- Florian L Haufe
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Alessia M Kober
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Peter Wolf
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Robert Riener
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland.,Spinal Cord Injury Center, Medical Faculty, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michele Xiloyannis
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
van Hedel HJA, Rosselli I, Baumgartner-Ricklin S. Clinical utility of the over-ground bodyweight-supporting walking system Andago in children and youths with gait impairments. J Neuroeng Rehabil 2021; 18:29. [PMID: 33557834 PMCID: PMC7871598 DOI: 10.1186/s12984-021-00827-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/22/2021] [Indexed: 01/28/2023] Open
Abstract
Background The Andago is a rehabilitation robot that allows training walking over-ground while providing bodyweight unloading (BWU). We investigated the practicability, acceptability, and appropriateness of the device in children with gait impairments undergoing neurorehabilitation. Concerning appropriateness, we investigated whether (i) stride-to-stride variability of the stride time and inter-joint coordination was higher when walking over-ground in Andago versus treadmill walking, and (ii) activation of antigravity leg muscles decreased with higher levels of BWU. Methods Eighteen children and adolescents with gait impairments participated in three sessions. Practicability was assessed by determining the time needed to get a patient in and out of Andago, the accuracy of the BWU system, and other aspects. Acceptability was assessed by patients responding to questions, while six therapists filled out the System Usability Scale. To determine appropriateness, the participants were equipped with surface electromyography (sEMG) electrodes, electrogoniometers and accelerometers. Various parameters were compared between walking over-ground and on a treadmill, and between walking with three different levels of BWU (median: 20%, 35% and 50% of the bodyweight) over-ground. Results Practicability: the average time needed to get in and out of Andago amounted to 60 s and 16 s, respectively. The BWU system seemed accurate, especially at higher levels. We experienced no technical difficulties and Andago prevented 12 falls. However, participants had difficulties walking through a door without bumping into it. Acceptability: after the second session, nine participants felt safer walking in Andago compared to normal walking, 15 preferred walking in Andago compared to treadmill walking, and all wanted to train again with Andago. Therapists rated the usability of the Andago as excellent. Appropriateness: stride-to-stride variability of stride duration and inter-joint coordination was higher in Andago compared to treadmill walking. sEMG activity was not largely influenced by the levels of BWU investigated in this study, except for a reduced M. Gluteus Medius activity at the highest level of BWU tested. Conclusions The Andago is a practical and well-accepted device to train walking over-ground with BWU in children and adolescents with gait impairments safely. The system allows individual stride-to-stride variability of temporospatial gait parameters without affecting antigravity muscle activity strongly. Trial registration: ClinicalTrials.gov Identifier: NCT03787199.
Collapse
Affiliation(s)
- Hubertus J A van Hedel
- Research Department, Swiss Children's Rehab, University Children's Hospital Zurich, Mühlebergstrasse 104, 8910, Affoltern am Albis, Switzerland. .,Children's Research Centre, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.
| | - Irene Rosselli
- Research Department, Swiss Children's Rehab, University Children's Hospital Zurich, Mühlebergstrasse 104, 8910, Affoltern am Albis, Switzerland.,Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland
| | - Sandra Baumgartner-Ricklin
- Research Department, Swiss Children's Rehab, University Children's Hospital Zurich, Mühlebergstrasse 104, 8910, Affoltern am Albis, Switzerland.,Children's Research Centre, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| |
Collapse
|
6
|
Richter C, Braunstein B, Staeudle B, Attias J, Suess A, Weber T, Mileva KN, Rittweger J, Green DA, Albracht K. Gastrocnemius Medialis Contractile Behavior Is Preserved During 30% Body Weight Supported Gait Training. Front Sports Act Living 2021; 2:614559. [PMID: 33537667 PMCID: PMC7849151 DOI: 10.3389/fspor.2020.614559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Rehabilitative body weight supported gait training aims at restoring walking function as a key element in activities of daily living. Studies demonstrated reductions in muscle and joint forces, while kinematic gait patterns appear to be preserved with up to 30% weight support. However, the influence of body weight support on muscle architecture, with respect to fascicle and series elastic element behavior is unknown, despite this having potential clinical implications for gait retraining. Eight males (31.9 ± 4.7 years) walked at 75% of the speed at which they typically transition to running, with 0% and 30% body weight support on a lower-body positive pressure treadmill. Gastrocnemius medialis fascicle lengths and pennation angles were measured via ultrasonography. Additionally, joint kinematics were analyzed to determine gastrocnemius medialis muscle-tendon unit lengths, consisting of the muscle's contractile and series elastic elements. Series elastic element length was assessed using a muscle-tendon unit model. Depending on whether data were normally distributed, a paired t-test or Wilcoxon signed rank test was performed to determine if body weight supported walking had any effects on joint kinematics and fascicle-series elastic element behavior. Walking with 30% body weight support had no statistically significant effect on joint kinematics and peak series elastic element length. Furthermore, at the time when peak series elastic element length was achieved, and on average across the entire stance phase, muscle-tendon unit length, fascicle length, pennation angle, and fascicle velocity were unchanged with respect to body weight support. In accordance with unchanged gait kinematics, preservation of fascicle-series elastic element behavior was observed during walking with 30% body weight support, which suggests transferability of gait patterns to subsequent unsupported walking.
Collapse
Affiliation(s)
- Charlotte Richter
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany.,Department of Medical Engineering and Technomathematics, University of Applied Sciences Aachen, Aachen, Germany
| | - Bjoern Braunstein
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany.,Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany.,Centre for Health and Integrative Physiology in Space (CHIPS), Cologne, Germany.,German Research Centre of Elite Sport, Cologne, Germany
| | - Benjamin Staeudle
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany.,Department of Medical Engineering and Technomathematics, University of Applied Sciences Aachen, Aachen, Germany
| | - Julia Attias
- Centre of Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | - Alexander Suess
- European Astronaut Centre (EAC), European Space Agency, Space Medicine Team (HRE-OM), Cologne, Germany
| | - Tobias Weber
- European Astronaut Centre (EAC), European Space Agency, Space Medicine Team (HRE-OM), Cologne, Germany.,KBR GmbH, Cologne, Germany
| | - Katya N Mileva
- School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Joern Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - David A Green
- Centre of Human and Applied Physiological Sciences, King's College London, London, United Kingdom.,European Astronaut Centre (EAC), European Space Agency, Space Medicine Team (HRE-OM), Cologne, Germany.,KBR GmbH, Cologne, Germany
| | - Kirsten Albracht
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany.,Department of Medical Engineering and Technomathematics, University of Applied Sciences Aachen, Aachen, Germany.,Institute for Bioengineering, University of Applied Sciences Aachen, Aachen, Germany
| |
Collapse
|
7
|
Huber JP, Sawaki L. Dynamic body-weight support to boost rehabilitation outcomes in patients with non-traumatic spinal cord injury: an observational study. J Neuroeng Rehabil 2020; 17:157. [PMID: 33256797 PMCID: PMC7706039 DOI: 10.1186/s12984-020-00791-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
Background Dynamic body-weight support (DBWS) may play an important role in rehabilitation outcomes, but the potential benefit among disease-specific populations is unclear. In this study, we hypothesize that overground therapy with DBWS during inpatient rehabilitation yields greater functional improvement than standard-of-care in adults with non-traumatic spinal cord injury (NT-SCI). Methods This retrospective cohort study included individuals diagnosed with NT-SCI and undergoing inpatient rehabilitation. All participants were recruited at a freestanding inpatient rehabilitation hospital. Individuals who trained with DBWS for at least three sessions were allocated to the experimental group. Participants in the historical control group received standard-of-care (i.e., no DBWS). The primary outcome was change in the Functional Independence Measure scores (FIMgain). Results During an inpatient rehabilitation course, participants in the experimental group (n = 11), achieved a mean (SD) FIMgain of 48 (11) points. For the historical control group (n = 11), participants achieved a mean (SD) FIMgain of 36 (12) points. From admission to discharge, both groups demonstrated a statistically significant FIMgain. Between groups analysis revealed no significant difference in FIMgain (p = 0.022; 95% CI 2.0–22) after a post hoc correction for multiple comparisons. In a secondary subscore analysis, the experimental group achieved significantly higher gains in sphincter control (p = 0.011: 95% CI 0.83–5.72) with a large effect size (Cohen’s d 1.19). Locomotion subscores were not significantly different (p = 0.026; 95% CI 0.37–5.3) nor were the remaining subscores in self-care, mobility, cognition, and social cognition. Conclusions This is the first study to explore the impact of overground therapy with DBWS on inpatient rehabilitation outcomes for persons with NT-SCI. Overground therapy with DBWS appears to significantly improve functional gains in sphincter control compared to the standard-of-care. Gains achieved in locomotion, mobility, cognition, and social cognition did not meet significance. Findings from the present study will benefit from future large prospective and randomized studies.
Collapse
Affiliation(s)
- Justin P Huber
- Department of Physical Medicine and Rehabilitation, University of Kentucky, 2050 Versailles Road, Lexington, KY, 40504, USA.,Department of Mechanical Engineering, University of Kentucky, 2050 Versailles Road, Lexington, KY, 40504, USA
| | - Lumy Sawaki
- Department of Physical Medicine and Rehabilitation, University of Kentucky, 2050 Versailles Road, Lexington, KY, 40504, USA. .,Department of Neurology, University of Kentucky, 2050 Versailles Road, Lexington, KY, 40504, USA.
| |
Collapse
|
8
|
Bannwart M, Bayer SL, König Ignasiak N, Bolliger M, Rauter G, Easthope CA. Mediolateral damping of an overhead body weight support system assists stability during treadmill walking. J Neuroeng Rehabil 2020; 17:108. [PMID: 32778127 PMCID: PMC7418206 DOI: 10.1186/s12984-020-00735-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/28/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Body weight support systems with three or more degrees of freedom (3-DoF) are permissive and safe environments that provide unloading and allow unrestricted movement in any direction. This enables training of walking and balance control at an early stage in rehabilitation. Transparent systems generate a support force vector that is near vertical at all positions in the workspace to only minimally interfere with natural movement patterns. Patients with impaired balance, however, may benefit from additional mediolateral support that can be adjusted according to their capacity. An elegant solution for providing balance support might be by rendering viscous damping along the mediolateral axis via the software controller. Before use with patients, we evaluated if control-rendered mediolateral damping evokes the desired stability enhancement in able-bodied individuals. METHODS A transparent, cable-driven robotic body weight support system (FLOAT) was used to provide transparent body weight support with and without mediolateral damping to 21 able-bodied volunteers while walking at preferred gait velocity on a treadmill. Stability metrics reflecting resistance to small and large perturbations were derived from walking kinematics and compared between conditions and to free walking. RESULTS Compared to free walking, the application of body weight support per-se resulted in gait alterations typically associated with body weight support, namely increased step length and swing phase. Frontal plane dynamic stability, measured by kinematic variability and nonlinear dynamics of the center of mass, was increased under body weight support, indicating reduced balance requirements in both damped and undamped support conditions. Adding damping to the body weight support resulted in a greater increase of frontal plane stability. CONCLUSION Adding mediolateral damping to 3-DoF body weight support systems is an effective method of increasing frontal plane stability during walking in able-bodied participants. Building on these results, adjustable mediolateral damping could enable therapists to select combinations of unloading and stability specifically for each patient and to adapt this in a task specific manner. This could extend the impact of transparent 3-DoF body weight support systems, enabling training of gait and active balance from an early time point onwards in the rehabilitation process for a wide range of mobility activities of daily life.
Collapse
Affiliation(s)
- M. Bannwart
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Sensory Motor Systems Laboratory, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - S. L. Bayer
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | | | - M. Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - G. Rauter
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Sensory Motor Systems Laboratory, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
- BIROMED-Laboratory, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - C. A. Easthope
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- cereneo Center for Interdisciplinary Research, Vitznau, Switzerland
| |
Collapse
|
9
|
Bannwart M, Rohland E, Easthope CA, Rauter G, Bolliger M. Robotic body weight support enables safe stair negotiation in compliance with basic locomotor principles. J Neuroeng Rehabil 2019; 16:157. [PMID: 31870393 PMCID: PMC6929285 DOI: 10.1186/s12984-019-0631-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/11/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND After a neurological injury, mobility focused rehabilitation programs intensively train walking on treadmills or overground. However, after discharge, quite a few patients are not able to independently negotiate stairs, a real-world task with high physical and psychological demands and a high injury risk. To decrease fall risk and improve patients' capacity to navigate typical environments, early stair negotiation training can help restore competence and confidence in safe stair negotiation. One way to enable early training in a safe and permissive environment is to unload the patient with a body weight support system. We here investigated if unloaded stair negotiation complies with basic locomotor principles, in terms of enabling performance of a physiological movement pattern with minimal compensation. METHODS Seventeen able-bodied participants were unloaded with 0-50% bodyweight during self-paced ascent and descent of a 4-tread staircase. Spatio-temporal parameters, joint ranges of motion, ground reaction forces and myoelectric activity in the main lower limb muscles of participants were compared between unloading levels. Likelihood ratio tests of separated linear mixed models of the investigated outcomes assessed if unloading affects the parameters in general. Subsequent post-hoc testing revealed which levels of unloading differed from unsupported stair negotiation. RESULTS Unloading affected walking velocity, joint ranges of motion, vertical ground reaction force parameters and myoelectric activity in all investigated muscles for stair ascent and descent while step width and single support duration were only affected during ascent. A reduction with increasing levels of body weight support was seen in walking velocity (0.07-0.12 m/s), ranges of motion of the knee and hip (2-10°), vertical ground reaction force peaks (10-70%) and myoelectric activity (17-70%). An increase with unloading was only seen during ascent for ankle range of motion and tibialis anterior activity at substantial unloading. CONCLUSIONS Body weight support facilitates stair negotiation by providing safety and support against gravity. Although unloading effects are present in most parameters, up to 30% body weight support these changes are small, and no dysfunctional patterns are introduced. Body weight support therefore fulfills all the necessary requirements for early stair negotiation training.
Collapse
Affiliation(s)
- M. Bannwart
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, CH-8008 Zurich, Switzerland
- Sensory Motor Systems Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - E. Rohland
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, CH-8008 Zurich, Switzerland
| | - C. A. Easthope
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, CH-8008 Zurich, Switzerland
- Cereneo Center for Interdisciplinary Research, Vitznau, Switzerland
| | - G. Rauter
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, CH-8008 Zurich, Switzerland
- Sensory Motor Systems Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
- BIROMED-Lab, Department of Biomedical Engineering, University Basel, Gewerbestrasse 14, CH-4123 Basel, Allschwil Switzerland
| | - M. Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, CH-8008 Zurich, Switzerland
| |
Collapse
|
10
|
Characterization of lower limb muscle activation patterns during walking and running with Intravoxel Incoherent Motion (IVIM) MR perfusion imaging. Magn Reson Imaging 2019; 63:12-20. [DOI: 10.1016/j.mri.2019.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/10/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022]
|
11
|
Easthope CS, Traini LR, Awai L, Franz M, Rauter G, Curt A, Bolliger M. Overground walking patterns after chronic incomplete spinal cord injury show distinct response patterns to unloading. J Neuroeng Rehabil 2018; 15:102. [PMID: 30419945 PMCID: PMC6233558 DOI: 10.1186/s12984-018-0436-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Body weight support (BWS) is often provided to incomplete spinal cord injury (iSCI) patients during rehabilitation to enable gait training before full weight-bearing is recovered. Emerging robotic devices enable BWS during overground walking, increasing task-specificity of the locomotor training. However, in contrast to a treadmill setting, there is little information on how unloading is integrated into overground locomotion. We investigated the effect of a transparent multi-directional BWS system on overground walking patterns at different levels of unloading in individuals with chronic iSCI (CiSCI) compared to controls. METHODS Kinematics of 12 CiSCI were analyzed at six different BWS levels from 0 to 50% body weight unloading during overground walking at 2kmh- 1 and compared to speed-matched controls. RESULTS In controls, temporal parameters, single joint trajectories, and intralimb coordination responded proportionally to the level of unloading, while spatial parameters remained unaffected. In CiSCI, unloading induced similar changes in temporal parameters. CiSCI, however, did not adapt their intralimb coordination or single joint trajectories to the level of unloading. CONCLUSIONS The findings revealed that continuous, dynamic unloading during overground walking results in subtle and proportional gait adjustments corresponding to changes in body load. CiSCI demonstrated diminished responses in specific domains of gait, indicating that their altered neural processing impeded the adjustment to environmental constraints. CiSCI retain their movement patterns under overground unloading, indicating that this is a viable locomotor therapy tool that may also offer a potential window on the diminished neural control of intralimb coordination.
Collapse
Affiliation(s)
| | - Luca Renato Traini
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, CH-8008, Zürich, Switzerland
| | - Lea Awai
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, CH-8008, Zürich, Switzerland.,Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, UK
| | - Martina Franz
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, CH-8008, Zürich, Switzerland
| | - Georg Rauter
- BIROMED-Lab, Department of Biomedical Engineering, University Basel, Basel, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, CH-8008, Zürich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, CH-8008, Zürich, Switzerland
| |
Collapse
|
12
|
Lacquaniti F, Ivanenko YP, Sylos-Labini F, La Scaleia V, La Scaleia B, Willems PA, Zago M. Human Locomotion in Hypogravity: From Basic Research to Clinical Applications. Front Physiol 2017; 8:893. [PMID: 29163225 PMCID: PMC5682019 DOI: 10.3389/fphys.2017.00893] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/24/2017] [Indexed: 01/07/2023] Open
Abstract
We have considerable knowledge about the mechanisms underlying compensation of Earth gravity during locomotion, a knowledge obtained from physiological, biomechanical, modeling, developmental, comparative, and paleoanthropological studies. By contrast, we know much less about locomotion and movement in general under sustained hypogravity. This lack of information poses a serious problem for human space exploration. In a near future humans will walk again on the Moon and for the first time on Mars. It would be important to predict how they will move around, since we know that locomotion and mobility in general may be jeopardized in hypogravity, especially when landing after a prolonged weightlessness of the space flight. The combination of muscle weakness, of wearing a cumbersome spacesuit, and of maladaptive patterns of locomotion in hypogravity significantly increase the risk of falls and injuries. Much of what we currently know about locomotion in hypogravity derives from the video archives of the Apollo missions on the Moon, the experiments performed with parabolic flight or with body weight support on Earth, and the theoretical models. These are the topics of our review, along with the issue of the application of simulated hypogravity in rehabilitation to help patients with deambulation problems. We consider several issues that are common to the field of space science and clinical rehabilitation: the general principles governing locomotion in hypogravity, the methods used to reduce gravity effects on locomotion, the extent to which the resulting behavior is comparable across different methods, the important non-linearities of several locomotor parameters as a function of the gravity reduction, the need to use multiple methods to obtain reliable results, and the need to tailor the methods individually based on the physiology and medical history of each person.
Collapse
Affiliation(s)
- Francesco Lacquaniti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Center of Space BioMedicine, University of Rome Tor Vergata, Rome, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Yury P. Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesca Sylos-Labini
- Center of Space BioMedicine, University of Rome Tor Vergata, Rome, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Valentina La Scaleia
- Center of Space BioMedicine, University of Rome Tor Vergata, Rome, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Barbara La Scaleia
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Patrick A. Willems
- Laboratory of Biomechanics and Physiology of Locomotion, Institute of NeuroScience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Myrka Zago
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|