1
|
Nizamis K, Ayvaz A, Rijken NHM, Koopman BFJM, Sartori M. Real-time myoelectric control of wrist/hand motion in Duchenne muscular dystrophy: A case study. Front Robot AI 2023; 10:1100411. [PMID: 37090893 PMCID: PMC10116050 DOI: 10.3389/frobt.2023.1100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
Introduction: Duchenne muscular dystrophy (DMD) is a genetic disorder that induces progressive muscular degeneration. Currently, the increase in DMD individuals' life expectancy is not being matched by an increase in quality of life. The functioning of the hand and wrist is central for performing daily activities and for providing a higher degree of independence. Active exoskeletons can assist this functioning but require the accurate decoding of the users' motor intention. These methods have, however, never been systematically analyzed in the context of DMD. Methods: This case study evaluated direct control (DC) and pattern recognition (PR), combined with an admittance model. This enabled customization of myoelectric controllers to one DMD individual and to a control population of ten healthy participants during a target-reaching task in 1- and 2- degrees of freedom (DOF). We quantified real-time myocontrol performance using target reaching times and compared the differences between the healthy individuals and the DMD individual. Results and Discussion: Our findings suggest that despite the muscle tissue degeneration, the myocontrol performance of the DMD individual was comparable to that of the healthy individuals in both DOFs and with both control approaches. It was also evident that PR control performed better for the 2-DOF tasks for both DMD and healthy participants, while DC performed better for the 1-DOF tasks. The insights gained from this study can lead to further developments for the intuitive multi-DOF myoelectric control of active hand exoskeletons for individuals with DMD.
Collapse
Affiliation(s)
- Kostas Nizamis
- Systems Engineering and Multidisciplinary Design Group, Department of Design, Production, and Management, Faculty of Engineering Technology, University of Twente, Enschede, Netherlands
| | - Anıl Ayvaz
- Neuromechanical Modelling and Engineering lab, Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, Netherlands
| | - Noortje H. M. Rijken
- Research Group Smart Health, Saxion University of Applied Sciences, Enschede, Netherlands
| | - Bart F. J. M. Koopman
- Neuromechanical Modelling and Engineering lab, Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, Netherlands
| | - Massimo Sartori
- Neuromechanical Modelling and Engineering lab, Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, Netherlands
| |
Collapse
|
2
|
Gandolla M, Luciani B, Pirovano DE, Pedrocchi A, Braghin F. A force-based human machine interface to drive a motorized upper limb exoskeleton. a pilot study. IEEE Int Conf Rehabil Robot 2022; 2022:1-6. [PMID: 36176155 DOI: 10.1109/icorr55369.2022.9896523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Muscular dystrophy is a strongly invalidating disease that causes the progressive loss of motor skills. The use of assistive devices, especially those in support of the upper limb, can increase the ability to perform daily-life activities and foster a partial recovery of the lost motor functionalities. However, for the use of these devices to be truly effective and accepted by patients, their activation must coincide with the user's intention to move. This work describes a new human-machine interface based on the integration of a six-axis force sensor to drive an upper limb motorized exoskeleton. This novel system can detect the patient's intention to move and produce displacements of the robotic device that are of magnitude and direction consistent with the user's wishes. The integration of the force-sensor interface in the BRIDGE/EMPATIA exoskeletal system was successful, and tests performed on both healthy and dystrophic subjects showed promising results, especially for the execution of planar movements.
Collapse
|
3
|
Mashayekhi M, Moghaddam MM. Emg-driven Fatigue-based Self-adapting Admittance Control of a Hand Rehabilitation Robot. J Biomech 2022; 138:111104. [DOI: 10.1016/j.jbiomech.2022.111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 01/31/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022]
|
4
|
Longatelli V, Antonietti A, Biffi E, Diella E, D'Angelo MG, Rossini M, Molteni F, Bocciolone M, Pedrocchi A, Gandolla M. User-centred assistive SystEm for arm Functions in neUromuscuLar subjects (USEFUL): a randomized controlled study. J Neuroeng Rehabil 2021; 18:4. [PMID: 33407580 PMCID: PMC7789525 DOI: 10.1186/s12984-020-00794-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
Background Upper limb assistive devices can compensate for muscular weakness and empower the user in the execution of daily activities. Multiple devices have been recently proposed but there is still a lack in the scientific comparison of their efficacy. Methods We conducted a cross-over multi-centric randomized controlled trial to assess the functional improvement at the upper limb level of two arms supports on 36 patients with muscular dystrophy. Participants tested a passive device (i.e., Wrex by Jaeco) and a semi-active solution for gravity compensation (i.e., Armon Ayura). We evaluated devices’ effectiveness with an externally-assessed scale (i.e., Performance of the Upper Limb-PUL-module), a self-perceived scale (i.e., Abilhand questionnaire), and a usability scale (i.e., System Usability Scale). Friedman’s test was used to assess significant functional gain for PUL module and Abilhand questionnaire. Moreover, PUL changes were compared by means of the Friedman’s test. Results Most of the patients improved upper limb function with the use of arm supports (median PUL scores increase of 1–3 points). However, the effectiveness of each device was related to the level of residual ability of the end-user. Slightly impaired patients maintained the same independence without and with assistive devices, even if they reported reduced muscular fatigue for both devices. Moderately impaired patients enhanced their arm functionality with both devices, and they obtained higher improvements with the semi-active one (median PUL scores increase of 9 points). Finally, severely impaired subjects benefited only from the semi-active device (median PUL scores increase of 12 points). Inadequate strength was recognized as a barrier to passive devices. The usability, measured by the System Usability Scale, was evaluated by end-users “good” (70/100 points) for the passive, and “excellent” (80/100 points) for the semi-active device. Conclusions This study demonstrated that assistive devices can improve the quality of life of people suffering from muscular dystrophy. The use of passive devices, despite being low cost and easy to use, shows limitations in the efficacy of the assistance to daily tasks, limiting the assistance to a predefined horizontal plane. The addition of one active degree of freedom improves efficacy and usability especially for medium to severe patients. Further investigations are needed to increase the evidence on the effect of arm supports on quality of life and diseases’ progression in subjects with degenerative disorders. Trial registration clinicaltrials.gov, NCT03127241, Registered 25th April 2017. The clinical trial was also registered as a post-market study at the Italian Ministry of Health.
Collapse
Affiliation(s)
- Valeria Longatelli
- NeuroEngineering And medical Robotics Laboratory, NearLab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Via Giuseppe Colombo 40, 20133, Milan, Italy
| | - Alberto Antonietti
- NeuroEngineering And medical Robotics Laboratory, NearLab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Via Giuseppe Colombo 40, 20133, Milan, Italy
| | - Emilia Biffi
- Scientific Institute IRCCS E. Medea, Via Don Luigi Monza 20, 23842, Bosisio Parini, Italy
| | - Eleonora Diella
- Scientific Institute IRCCS E. Medea, Via Don Luigi Monza 20, 23842, Bosisio Parini, Italy
| | - Maria Grazia D'Angelo
- Scientific Institute IRCCS E. Medea, Via Don Luigi Monza 20, 23842, Bosisio Parini, Italy
| | - Mauro Rossini
- Valduce Hospital, Villa Beretta Rehabilitation Center, Via Nazario Sauro 17, 23845, Costa Masnaga, Italy
| | - Franco Molteni
- Valduce Hospital, Villa Beretta Rehabilitation Center, Via Nazario Sauro 17, 23845, Costa Masnaga, Italy
| | - Marco Bocciolone
- Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156, Milan, Italy
| | - Alessandra Pedrocchi
- NeuroEngineering And medical Robotics Laboratory, NearLab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Via Giuseppe Colombo 40, 20133, Milan, Italy
| | - Marta Gandolla
- NeuroEngineering And medical Robotics Laboratory, NearLab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Via Giuseppe Colombo 40, 20133, Milan, Italy. .,Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156, Milan, Italy.
| |
Collapse
|
5
|
da Silva TD, Ribeiro-Papa DC, Coe S, Malheiros SRP, Massetti T, Meira Junior CDM, Nicolai Ré AH, Collett J, Monteiro CBDM, Dawes H. Evaluation of speed-accuracy trade-off in a computer task to identify motor difficulties in individuals with Duchenne Muscular Dystrophy - A cross-sectional study. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 96:103541. [PMID: 31830680 DOI: 10.1016/j.ridd.2019.103541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Individuals with Duchenne Muscular Dystrophy (DMD) present with progressive loss of motor function which can impair both control of speed and accuracy of movement. AIM to evaluate movement time during a task at various levels of difficulty and to verify whether the level of difficulty affects the speed and/ or accuracy during the task. METHODS the DMD group comprised of 17 individuals age matched with 17 individuals with typical development (TD group). The task evaluates the relationship between speed and accuracy, consisting of the execution of manual movements (using the mouse of the computer) aimed at a target at three different levels of difficulty (ID). RESULTS A MANOVA demonstrated statistically significant differences in dispersion data and intercept values between the groups with greater movement time in the DMD group. An ANOVA indicated differences between groups for ID, except for when there was a higher accuracy demand (higher ID). In the other IDs that required lower accuracy demand, individuals in the DMD group had significantly longer movement time when compared to the TD group. CONCLUSION These results show that the TD and DMD did not differ in the higher ID, therefore it can be concluded that for those with DMD, motor performance is more affected by speed than accuracy of movement.
Collapse
Affiliation(s)
- Talita Dias da Silva
- Programa de Pós-Graduação em Ciências da Reabilitação, Faculdade de Medicina da Universidade de São Paulo, Rua Cipotânea, 51 Cidade Universitária CEP, 05360-000, São Paulo, SP, Brazil; Departamento de Cardiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Sena Madureira, 1500, Vila Clementino, CEP: 04021-001, São Paulo, SP, Brazil; Centre for Movement, Occupational and Rehabilitation Sciences, Oxford Brookes University, OX3 0BP, United Kingdom.
| | - Denise Cardoso Ribeiro-Papa
- Programa de Pós-Graduação em Ciências da Reabilitação, Faculdade de Medicina da Universidade de São Paulo, Rua Cipotânea, 51 Cidade Universitária CEP, 05360-000, São Paulo, SP, Brazil; Departamento de Cardiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Sena Madureira, 1500, Vila Clementino, CEP: 04021-001, São Paulo, SP, Brazil
| | - Shelly Coe
- Centre for Movement, Occupational and Rehabilitation Sciences, Oxford Brookes University, OX3 0BP, United Kingdom
| | - Silvia Regina Pinheiro Malheiros
- Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, Av. Arlindo Béttio, 1000 - Ermelino Matarazzo CEP, 03828-000 São Paulo, SP, Brazil
| | - Thais Massetti
- Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, Av. Arlindo Béttio, 1000 - Ermelino Matarazzo CEP, 03828-000 São Paulo, SP, Brazil
| | - Cassio de Miranda Meira Junior
- Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, Av. Arlindo Béttio, 1000 - Ermelino Matarazzo CEP, 03828-000 São Paulo, SP, Brazil
| | - Alessandro Hervaldo Nicolai Ré
- Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, Av. Arlindo Béttio, 1000 - Ermelino Matarazzo CEP, 03828-000 São Paulo, SP, Brazil
| | - Johnny Collett
- Centre for Movement, Occupational and Rehabilitation Sciences, Oxford Brookes University, OX3 0BP, United Kingdom
| | - Carlos Bandeira de Mello Monteiro
- Programa de Pós-Graduação em Ciências da Reabilitação, Faculdade de Medicina da Universidade de São Paulo, Rua Cipotânea, 51 Cidade Universitária CEP, 05360-000, São Paulo, SP, Brazil; Centre for Movement, Occupational and Rehabilitation Sciences, Oxford Brookes University, OX3 0BP, United Kingdom; Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, Av. Arlindo Béttio, 1000 - Ermelino Matarazzo CEP, 03828-000 São Paulo, SP, Brazil
| | - Helen Dawes
- Centre for Movement, Occupational and Rehabilitation Sciences, Oxford Brookes University, OX3 0BP, United Kingdom; Department of Clinical Neurology, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Bos RA, Nizamis K, Koopman BFJM, Herder JL, Sartori M, Plettenburg DH. A Case Study With Symbihand: An sEMG-Controlled Electrohydraulic Hand Orthosis for Individuals With Duchenne Muscular Dystrophy. IEEE Trans Neural Syst Rehabil Eng 2019; 28:258-266. [PMID: 31825868 DOI: 10.1109/tnsre.2019.2952470] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
With recent improvements in healthcare, individuals with Duchenne muscular dystrophy (DMD) have prolonged life expectancy, and it is therefore vital to preserve their independence. Hand function plays a central role in maintaining independence in daily living. This requires sufficient grip force and the ability to modulate it with no substantially added effort. Individuals with DMD have low residual grip force and its modulation is challenging and fatiguing. To assist their hand function, we developed a novel dynamic hand orthosis called SymbiHand, where the user's hand motor intention is decoded by means of surface electromyography, enabling the control of an electrohydraulic pump for actuation. Mechanical work is transported using hydraulic transmission and flexible structures to redirect interaction forces, enhancing comfort by minimizing shear forces. This paper outlines SymbiHand's design and control, and a case study with an individual with DMD. Results show that SymbiHand increased the participant's maximum grasping force from 2.4 to 8 N. During a grasping force-tracking task, muscular activation was decreased by more than 40% without compromising task performance. These results suggest that SymbiHand has the potential to decrease muscular activation and increase grasping force for individuals with DMD, adding to the hand a total mass of no more than 241 g. Changes in mass distributions and an active thumb support are necessary for improved usability, in addition to larger-scale studies for generalizing its assistive potential.
Collapse
|
7
|
Janssen MMHP, Lobo-Prat J, Bergsma A, Vroom E. 2nd Workshop on upper-extremity assistive technology for people with Duchenne: Effectiveness and usability of arm supports Irvine, USA, 22nd-23rd January 2018. Neuromuscul Disord 2019; 29:651-656. [PMID: 31443952 DOI: 10.1016/j.nmd.2019.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/18/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Mariska M H P Janssen
- Department of Rehabilitation, Radboud University Medical Center, Donders Centre for Neuroscience, Reinier Postlaan 4, Postbox 9101, 6500 HB Nijmegen, the Netherlands; Flextension Foundation, the Netherlands.
| | - Joan Lobo-Prat
- Department of Mechanical and Aerospace Engineering, University of California Irvine, USA; Flextension Foundation, the Netherlands
| | - Arjen Bergsma
- Department of Biomechanical Engineering, University of Twente, the Netherlands; Flextension Foundation, the Netherlands
| | - Elizabeth Vroom
- Duchenne Parent Project, the Netherlands; World Duchenne Organization, the Netherlands
| | | |
Collapse
|
8
|
Nizamis K, Stienen AHA, Kamper DG, Keller T, Plettenburg DH, Rouse EJ, Farina D, Koopman BFJM, Sartori M. Transferrable Expertise From Bionic Arms to Robotic Exoskeletons: Perspectives for Stroke and Duchenne Muscular Dystrophy. ACTA ACUST UNITED AC 2019. [DOI: 10.1109/tmrb.2019.2912453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Buongiorno D, Barsotti M, Barone F, Bevilacqua V, Frisoli A. A Linear Approach to Optimize an EMG-Driven Neuromusculoskeletal Model for Movement Intention Detection in Myo-Control: A Case Study on Shoulder and Elbow Joints. Front Neurorobot 2018; 12:74. [PMID: 30483090 PMCID: PMC6243090 DOI: 10.3389/fnbot.2018.00074] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/23/2018] [Indexed: 01/13/2023] Open
Abstract
The growing interest of the industry production in wearable robots for assistance and rehabilitation purposes opens the challenge for developing intuitive and natural control strategies. Myoelectric control, or myo-control, which consists in decoding the human motor intent from muscular activity and its mapping into control outputs, represents a natural way to establish an intimate human-machine connection. In this field, model based myo-control schemes (e.g., EMG-driven neuromusculoskeletal models, NMS) represent a valid solution for estimating the moments of the human joints. However, a model optimization is needed to adjust the model's parameters to a specific subject and most of the optimization approaches presented in literature consider complex NMS models that are unsuitable for being used in a control paradigm since they suffer from long-lasting setup and optimization phases. In this work we present a minimal NMS model for predicting the elbow and shoulder torques and we compare two optimization approaches: a linear optimization method (LO) and a non-linear method based on a genetic algorithm (GA). The LO optimizes only one parameter per muscle, whereas the GA-based approach performs a deep customization of the muscle model, adjusting 12 parameters per muscle. EMG and force data have been collected from 7 healthy subjects performing a set of exercises with an arm exoskeleton. Although both optimization methods substantially improved the performance of the raw model, the findings of the study suggest that the LO might be beneficial with respect to GA as the latter is much more computationally heavy and leads to minimal improvements with respect to the former. From the comparison between the two considered joints, it emerged also that the more accurate the NMS model is, the more effective a complex optimization procedure could be. Overall, the two optimized NMS models were able to predict the shoulder and elbow moments with a low error, thus demonstrating the potentiality for being used in an admittance-based myo-control scheme. Thanks to the low computational cost and to the short setup phase required for wearing and calibrating the system, obtained results are promising for being introduced in industrial or rehabilitation real time scenarios.
Collapse
Affiliation(s)
- Domenico Buongiorno
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Bari, Italy
| | - Michele Barsotti
- Percro Laboratory, Tecip Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Francesco Barone
- Percro Laboratory, Tecip Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vitoantonio Bevilacqua
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Bari, Italy
| | - Antonio Frisoli
- Percro Laboratory, Tecip Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|