1
|
Ohta M, Tanabe S, Tamari M, Katsuhira J. Patterns of change in propulsion force and late braking force in patients with stroke walking at comfortable and fast speeds. Sci Rep 2024; 14:22316. [PMID: 39333754 PMCID: PMC11436743 DOI: 10.1038/s41598-024-74093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024] Open
Abstract
Increased propulsion force (PF) in the paretic limb is associated with improved walking speed in patients with stroke. However, late braking force (LBF), an additional braking force occurring between PF onset and toe-off, is present in a subset of stroke patients. Few studies have investigated the changes in LBF and walking speed in these patients. This study aimed to elucidate the patterns of change in PF and LBF during fast gait in hemiplegics and identify potential compensatory strategies based on the LBF patterns. Data from 100 patients with stroke walking at both comfortable (mean, 0.79 ± 024 m/s) and fast speeds (mean, 1.06 ± 0.35 m/s) were analyzed retrospectively stroke using a 3D motion analyzer. PF was higher during fast-speed walking than that during comfortable-speed walking in all patients, while LBF showed both decreasing and increasing trends during fast-speed walking. In the LBF increasing pattern, a reduction in in-phase coordination of the shank and foot during the pre-swing phase was observed, along with an increase in pelvic hike during fast-speed walking compared to those in the decreasing LBF pattern. Our findings demonstrate that alterations in LBF patterns are associated with gait deviations in patients with stroke at fast speeds.
Collapse
Affiliation(s)
- Mizuho Ohta
- Department of Physical Therapy, Faculty of Rehabilitation, Reiwa Health Sciences University, Fukuoka, Japan.
- Graduate Department of Human Environment Design, Faculty of Human Life Design, Toyo University, Tokyo, Japan.
| | - Saori Tanabe
- Department of Rehabilitation, Seiai Rehabilitation Hospital, Fukuoka, Japan
| | - Makoto Tamari
- Department of Physical Therapy, Faculty of Rehabilitation, Reiwa Health Sciences University, Fukuoka, Japan
| | - Junji Katsuhira
- Graduate Department of Human Environment Design, Faculty of Human Life Design, Toyo University, Tokyo, Japan
| |
Collapse
|
2
|
Pawlaczyk NA, Milner R, Szmytke M, Kiljanek B, Bałaj B, Wypych A, Lewandowska M. Medial Temporal Lobe Atrophy in Older Adults With Subjective Cognitive Impairments Affects Gait Parameters in the Spatial Navigation Task. J Aging Phys Act 2024; 32:185-197. [PMID: 37989135 DOI: 10.1123/japa.2022-0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 07/05/2023] [Accepted: 08/21/2023] [Indexed: 11/23/2023]
Abstract
Both navigation abilities and gait can be affected by the atrophy in the medial temporal cortex. This study aimed to determine whether navigation abilities could differentiate seniors with and without medial temporal lobe atrophy who complained about their cognitive status. The participants, classified to either the medial temporal atrophy group (n = 23) or the control group (n = 22) underwent neuropsychological assessment and performed a spatial navigation task while their gait parameters were recorded. The study showed no significant differences between the two groups in memory, fluency, and semantic knowledge or typical measures of navigating abilities. However, gait parameters, particularly the propulsion index during certain phases of the navigation task, distinguished between seniors with and without medial temporal lobe lesions. These findings suggest that the gait parameters in the navigation task may be a valuable tool for identifying seniors with cognitive complaints and subtle medial temporal atrophy.
Collapse
Affiliation(s)
- Natalia Anna Pawlaczyk
- Faculty of Philosophy and Social Sciences, Institute of Psychology, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Rafał Milner
- Faculty of Philosophy and Social Sciences, Institute of Psychology, Nicolaus Copernicus University in Torun, Torun, Poland
| | | | - Bartłomiej Kiljanek
- Faculty of Philosophy and Social Sciences, Institute of Psychology, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Bibianna Bałaj
- Faculty of Philosophy and Social Sciences, Institute of Psychology, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Aleksandra Wypych
- Center for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Monika Lewandowska
- Faculty of Philosophy and Social Sciences, Institute of Psychology, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
3
|
Cotinat M, Celerier M, Arquillière C, Flipo M, Prieur-Blanc N, Viton JM, Bensoussan L. Robotic gait training and botulinum toxin injection improve gait in the chronic post-stroke phase: A randomized controlled trial. Ann Phys Rehabil Med 2024; 67:101785. [PMID: 38118342 DOI: 10.1016/j.rehab.2023.101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 12/22/2023]
Abstract
BACKGROUND Improving walking ability is one of the main goals of rehabilitation after stroke. When lower limb spasticity increases walking difficulty, botulinum toxin type A (BTx-A) injections can be combined with non-pharmacologic interventions such as intensive rehabilitation using a robotic approach. To the best of our knowledge, no comparisons have been made between the efficacy of robotic gait training and conventional physical therapy in combination with BTx-A injections. OBJECTIVE To conduct a randomized controlled trial to compare the efficacy on gait of robotic gait training versus conventional physiotherapy after BTx-A injection into the spastic triceps surae in people after stroke. METHOD Thirty-three participants in the chronic stroke phase with triceps surae spasticity inducing gait impairment were included. After BTx-A injection, participants were randomized into 2 groups. Group A underwent robotic gait training (Lokomat®) for 2 weeks, followed by conventional physiotherapy for 2 weeks (n = 15) and Group B underwent the same treatment in reverse order (n = 18). The efficacy of these methods was tested using the 6-minute walk test (6MWT), comparing post-test 1 and post-test 2 with the pre-test. RESULTS After the first period, the 6MWT increased significantly more in Group A than in Group B: the mean difference between the interventions was 33 m (95%CI 9; 58 p = 0.007; g = 0.95), in favor of Group A; after the second period, the 6MWT increased in both groups, but the 30 m difference between the groups still remained (95%CI 5; 55 p = 0.019; g = 0.73). CONCLUSION Two weeks of robotic gait training performed 2 weeks after BTx-A injections improved walking performance more than conventional physiotherapy. Large-scale studies are now required on the timing of robotic rehabilitation after BTx-A injection.
Collapse
Affiliation(s)
- Maëva Cotinat
- Aix Marseille Université, CNRS, INT UMR 7289, Marseille, France; Department of Physical and Rehabilitation Medicine, Marseille University Hospital, France.
| | - Mathilde Celerier
- Department of Physical and Rehabilitation Medicine, Marseille University Hospital, France
| | - Clelia Arquillière
- Department of Physical and Rehabilitation Medicine, Marseille University Hospital, France
| | - Margot Flipo
- Department of Physical and Rehabilitation Medicine, Marseille University Hospital, France
| | - Nicolas Prieur-Blanc
- Department of Physical and Rehabilitation Medicine, Marseille University Hospital, France
| | - Jean-Michel Viton
- Aix Marseille Université, CNRS, INT UMR 7289, Marseille, France; Department of Physical and Rehabilitation Medicine, Marseille University Hospital, France
| | - Laurent Bensoussan
- Aix Marseille Université, CNRS, INT UMR 7289, Marseille, France; Department of Physical and Rehabilitation Medicine, Marseille University Hospital, France; UGECAM Institut Universitaire de Réadaptation de Valmante Sud
| |
Collapse
|
4
|
Browne MG, Stenum J, Padmanabhan P, Roemmich RT. Simple within-stride changes in treadmill speed can drive selective changes in human gait symmetry. PLoS One 2023; 18:e0287568. [PMID: 37883477 PMCID: PMC10602355 DOI: 10.1371/journal.pone.0287568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 06/08/2023] [Indexed: 10/28/2023] Open
Abstract
Millions of people walk with asymmetric gait patterns, highlighting a need for customizable rehabilitation approaches that can flexibly target different aspects of gait asymmetry. Here, we studied how simple within-stride changes in treadmill speed could drive selective changes in gait symmetry. In Experiment 1, healthy adults (n = 10) walked on an instrumented treadmill with and without a closed-loop controller engaged. This controller changed the treadmill speed to 1.50 or 0.75 m/s depending on whether the right or left leg generated propulsive ground reaction forces, respectively. Participants walked asymmetrically when the controller was engaged: the leg that accelerated during propulsion (right) showed smaller leading limb angles, larger trailing limb angles, and smaller propulsive forces than the leg that decelerated (left). In Experiment 2, healthy adults (n = 10) walked on the treadmill with and without an open-loop controller engaged. This controller changed the treadmill speed to 1.50 or 0.75 m/s at a prescribed time interval while a metronome guided participants to step at different time points relative to the speed change. Different patterns of gait asymmetry emerged depending on the timing of the speed change: step times, leading limb angles, and peak propulsion were asymmetric when the speed changed early in stance while step lengths, step times, and propulsion impulses were asymmetric when the speed changed later in stance. In sum, we show that simple manipulations of treadmill speed can drive selective changes in gait symmetry. Future work will explore the potential for this technique to restore gait symmetry in clinical populations.
Collapse
Affiliation(s)
- Michael G. Browne
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, United States of America
- Dept of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Dept of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Jan Stenum
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, United States of America
- Dept of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Purnima Padmanabhan
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, United States of America
- Dept of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Ryan T. Roemmich
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, United States of America
- Dept of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
5
|
Stramel DM, Winterbottom L, Stein J, Agrawal SK. Overground Robotic Gait Trainer mTPAD Improves Gait Symmetry and Weight Bearing in Stroke Survivors. Bioengineering (Basel) 2023; 10:698. [PMID: 37370629 DOI: 10.3390/bioengineering10060698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Stroke is a leading cause of disability, impairing the ability to generate propulsive forces and causing significant lateral gait asymmetry. We aim to improve stroke survivors' gaits by promoting weight-bearing during affected limb stance. External forces can encourage this; e.g., vertical forces can augment the gravitational force requiring higher ground reaction forces, or lateral forces can shift the center of mass over the stance foot, altering the lateral placement of the center of pressure. With our novel design of a mobile Tethered Pelvic Assist Device (mTPAD) paired with the DeepSole system to predict the user's gait cycle percentage, we demonstrate how to apply three-dimensional forces on the pelvis without lower limb constraints. This work is the first result in the literature that shows that with an applied lateral force during affected limb stance, the center of pressure trajectory's lateral symmetry is significantly closer to a 0% symmetry (5.5%) than without external force applied (-9.8%,p<0.05). Furthermore, the affected limb's maximum relative pressure (p) significantly increases from 233.7p to 234.1p (p<0.05) with an applied downward force, increasing affected limb loading. This work highlights how the mTPAD increases weight-bearing and propulsive forces during gait, which is a crucial goal for stroke survivors.
Collapse
Affiliation(s)
| | - Lauren Winterbottom
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joel Stein
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sunil K Agrawal
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
6
|
Ohta M, Tanabe S, Katsuhira J, Tamari M. Kinetic and kinematic parameters associated with late braking force and effects on gait performance of stroke patients. Sci Rep 2023; 13:7729. [PMID: 37173403 PMCID: PMC10182027 DOI: 10.1038/s41598-023-34904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
Late braking force (LBF) is often observed in the late stance phase of the paretic lower limb of stroke patients. Nevertheless, the effects and association of LBF remain unclear. We examined the kinetic and kinematic parameters associated with LBF and its effect on walking. Herein, 157 stroke patients were enrolled. Participants walked at a comfortable speed selected by them, and their movements were measured using a 3D motion analysis system. The effect of LBF was analyzed as a linear relationship with spatiotemporal parameters. Multiple linear regression analyses were performed with LBF as the dependent variable and kinetic and kinematic parameters as independent variables. LBF was observed in 110 patients. LBF was associated with decreased knee joint flexion angles during the pre-swing and swing phases. In the multivariate analysis, trailing limb angle, cooperativity between the paretic shank and foot, and cooperativity between the paretic and non-paretic thighs were related to LBF (p < 0.01; adjusted R2 = 0.64). LBF in the late stance phase of the paretic lower limb reduced gait performance in the pre-swing and swing phases. LBF was associated with trailing limb angle in the late stance, coordination between the paretic shank and foot in the pre-swing phase, and coordination between both thighs.
Collapse
Affiliation(s)
- Mizuho Ohta
- Department of Physical Therapy, Faculty of Rehabilitation, Reiwa Health Science University, Fukuoka, Japan.
- Graduate Department of Human Environment Design, Faculty of Human Life Design, Toyo University, Tokyo, Japan.
| | - Saori Tanabe
- Department of Rehabilitation, Seiai Rehabilitation Hospital, Fukuoka, Japan
| | - Junji Katsuhira
- Graduate Department of Human Environment Design, Faculty of Human Life Design, Toyo University, Tokyo, Japan
| | - Makoto Tamari
- Department of Physical Therapy, Faculty of Rehabilitation, Reiwa Health Science University, Fukuoka, Japan
| |
Collapse
|
7
|
Mathunny JJ, Karthik V, Devaraj A, Jacob J. A scoping review on recent trends in wearable sensors to analyze gait in people with stroke: From sensor placement to validation against gold-standard equipment. Proc Inst Mech Eng H 2023; 237:309-326. [PMID: 36704959 DOI: 10.1177/09544119221142327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The purpose of the review is to evaluate wearable sensor placement, their impact and validation of wearable sensors on analyzing gait, primarily the postural instability in people with stroke. Databases, namely PubMed, Cochrane, SpringerLink, and IEEE Xplore were searched to identify related articles published since January 2005. The authors have selected the articles by considering patient characteristics, intervention details, and outcome measurements by following the priorly set inclusion and exclusion criteria. From a total of 1077 articles, 142 were included in this study and classified into functional fields, namely postural stability (PS) assessments, physical activity monitoring (PA), gait pattern classification (GPC), and foot drop correction (FDC). The review covers the types of wearable sensors, their placement, and their performance in terms of reliability and validity. When employing a single wearable sensor, the pelvis and foot were the most used locations for detecting gait asymmetry and kinetic parameters, respectively. Multiple Inertial Measurement Units placed at different body parts were effectively used to estimate postural stability and gait pattern. This review article has compared results of placement of sensors at different locations helping researchers and clinicians to identify the best possible placement for sensors to measure specific kinematic and kinetic parameters in persons with stroke.
Collapse
Affiliation(s)
- Jaison Jacob Mathunny
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Varshini Karthik
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Ashokkumar Devaraj
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Chennai, India
| | - James Jacob
- Department of Physical Therapy, Kindred Healthcare, Munster, IN, USA
| |
Collapse
|
8
|
Andersen MS, Güler DB, Larsen J, Rich KK, Svenningsen ÅF, Zhang M. The Development of Hindlimb Postural Asymmetry Induced by Focal Traumatic Brain Injury Is Not Related to Serotonin 2A/C Receptor Expression in the Spinal Cord. Int J Mol Sci 2022; 23:ijms23105358. [PMID: 35628167 PMCID: PMC9140651 DOI: 10.3390/ijms23105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Brain injury and stroke are leading causes of adult disability. Motor deficits are common problems, and their underlying pathological mechanisms remain poorly understood. The serotoninergic system is implicated in both functional recovery from and the occurrence of spasticity after injuries to the central nervous system. This study, which was conducted on rats, investigated the development of limb postural changes and their relationship to the expression of serotonin (5-HT) 2A and 2C receptors in the spinal cord in the 4 weeks after focal traumatic brain injury (TBI) to the right hindlimb sensorimotor cortex. The limb motor deficits were assessed by measuring gait pattern changes during walking and hindlimb postural asymmetry at different time intervals (3−28 days) after surgery. The expressions of the 5-HT2A and 2C receptors in the lumbar spinal cord were investigated using immunohistochemistry. The results showed that all the rats with TBI, independently of the duration of the interval, displayed postural asymmetry with flexion on the contralateral (left) side (>2 mm), while the sham-operated rats showed no apparent postural asymmetry. The TBI rats also had longer stride lengths during walking in both their hindlimbs and their forelimbs compared with the sham rats. For both the TBI and the sham rats, the hind-paw placement angles were larger on the contralateral side in some of the groups. Compared to the sham-operated rats, the 5-HT2A and 2C receptor expression did not significantly change on either side of the lumbar spinal cords of the TBI rats in any of the groups. These results suggest that focal TBI can induce motor deficits lasting a relatively long time, and that these deficits are not related to the expression of the 5-HT2A and 2C receptors in the spinal cord.
Collapse
Affiliation(s)
- Marlene Storm Andersen
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (M.S.A.); (D.B.G.); (J.L.); (K.K.R.); (Å.F.S.)
| | - Dilârâ Bedriye Güler
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (M.S.A.); (D.B.G.); (J.L.); (K.K.R.); (Å.F.S.)
| | - Jonas Larsen
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (M.S.A.); (D.B.G.); (J.L.); (K.K.R.); (Å.F.S.)
| | - Karen Kalhøj Rich
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (M.S.A.); (D.B.G.); (J.L.); (K.K.R.); (Å.F.S.)
| | - Åsa Fex Svenningsen
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (M.S.A.); (D.B.G.); (J.L.); (K.K.R.); (Å.F.S.)
- BRIDGE, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Mengliang Zhang
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark; (M.S.A.); (D.B.G.); (J.L.); (K.K.R.); (Å.F.S.)
- BRIDGE, University of Southern Denmark, DK-5000 Odense, Denmark
- Correspondence:
| |
Collapse
|
9
|
Backward vs. Forward Gait Symmetry Analysis Based on Plantar Pressure Mapping. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Symmetry is one of the factors analysed in normal and pathological gaits. Backward gait is an area of interest to scientists, in terms of its physiology and therapeutic possibilities. This study aimed to analyse the symmetry of the pressure parameters of backward gait in comparison to forward gait using different symmetry indices. Eighty-one healthy people aged between 19 and 84 years took part in the study. Foot pressure distribution was analysed during forward and backward gaits at self-selected speeds. Mean and maximum pressure values were calculated after dividing the foot into four or ten areas. Delta, Ratio Index, Robinson Index, Gait Asymmetry, and Symmetry Angle were calculated for each area, separately for both forward and backward gaits. Higher ratios of asymmetry were found during backward than during forward gait. Larger ratios of asymmetry were found within toes II–V, forefoot, metatarsals I, II, and III, medial and lateral heel areas. No significant correlation between symmetry indices and age or BMI was found. Results suggested that the lower symmetry of backward gait is caused by a higher number of corrective movements that allow for the maintenance of body balance and global symmetry of gait. This can be realised by increased cortical control of the backward gait, which was a new movement task for all participants.
Collapse
|
10
|
Sanjeevi N, Singh Y, Vashista V. Recent advances in lower-extremity exoskeletons in promoting performance restoration. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Changes to foot pressure pattern in post-stroke individuals who have started to walk independently during the convalescent phase. Gait Posture 2021; 90:307-312. [PMID: 34564003 DOI: 10.1016/j.gaitpost.2021.09.181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Abnormal foot contact patterns following stroke affect functional gait; however, objective analysis targeting independent walking is lacking. RESEARCH QUESTION How do walking abilities and foot pressure patterns differ between post-stroke individuals who achieved independent walking and healthy controls? Secondarily, how do the abilities and patterns in post-stroke individuals change before and after achieving independent walking? Can these changes become criteria for permitting independent walking? METHODS Twenty-eight individuals with hemiplegia and 32 controls were enrolled. Motor dysfunction score (MDScore), walking speed (WSpeed), and foot pressure patterns were measured when they were first able to walk without orthosis or physical assistance (1st assessment) and when they achieved independent walking around discharge (2nd assessment). Foot pressure patterns were measured using insole-type foot pressure-measuring system. Ratios of partial foot pressure to body weight (%PFP), ratios of anteroposterior length of center of pressure (COP; %Long), and backward moving distance of COP to the foot length (%Backward) were calculated. Parameters during the 2nd assessment were compared with those of controls and those during the 1st assessment. During the 2nd assessment, relationships among the parameters, MDScore, and WSpeed were analyzed. RESULTS During the 2nd assessment, no difference was observed in both %Long and %Backward between the non-paretic limbs and the controls. While the %Backward was higher, the %PFP of toes and %Long were lower in the paretic limb than in the controls. Although the %Backward was lower, both %PFP of toes and %Long of the paretic limb were higher in the 2nd assessment than in the 1st assessment. During the 2nd assessment, both %Long and % Backward values of the paretic limb moderately correlated with MDScore and WSpeed. SIGNIFICANCE After improvement of foot pressure in toes, both an increase in anteroposterior length and a decrease in backward moving of COP path were objective signs permitting independent walking.
Collapse
|
12
|
Porciuncula F, Baker TC, Arumukhom Revi D, Bae J, Sloutsky R, Ellis TD, Walsh CJ, Awad LN. Targeting Paretic Propulsion and Walking Speed With a Soft Robotic Exosuit: A Consideration-of-Concept Trial. Front Neurorobot 2021; 15:689577. [PMID: 34393750 PMCID: PMC8356079 DOI: 10.3389/fnbot.2021.689577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Soft robotic exosuits can facilitate immediate increases in short- and long-distance walking speeds in people with post-stroke hemiparesis. We sought to assess the feasibility and rehabilitative potential of applying propulsion-augmenting exosuits as part of an individualized and progressive training program to retrain faster walking and the underlying propulsive strategy. Methods: A 54-yr old male with chronic hemiparesis completed five daily sessions of Robotic Exosuit Augmented Locomotion (REAL) gait training. REAL training consists of high-intensity, task-specific, and progressively challenging walking practice augmented by a soft robotic exosuit and is designed to facilitate faster walking by way of increased paretic propulsion. Repeated baseline assessments of comfortable walking speed over a 2-year period provided a stable baseline from which the effects of REAL training could be elucidated. Additional outcomes included paretic propulsion, maximum walking speed, and 6-minute walk test distance. Results: Comfortable walking speed was stable at 0.96 m/s prior to training and increased by 0.30 m/s after training. Clinically meaningful increases in maximum walking speed (Δ: 0.30 m/s) and 6-minute walk test distance (Δ: 59 m) were similarly observed. Improvements in paretic peak propulsion (Δ: 2.80 %BW), propulsive power (Δ: 0.41 W/kg), and trailing limb angle (Δ: 6.2 degrees) were observed at comfortable walking speed (p's < 0.05). Likewise, improvements in paretic peak propulsion (Δ: 4.63 %BW) and trailing limb angle (Δ: 4.30 degrees) were observed at maximum walking speed (p's < 0.05). Conclusions: The REAL training program is feasible to implement after stroke and capable of facilitating rapid and meaningful improvements in paretic propulsion, walking speed, and walking distance.
Collapse
Affiliation(s)
- Franchino Porciuncula
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA, United States
| | - Teresa C. Baker
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA, United States
| | - Dheepak Arumukhom Revi
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA, United States
| | - Jaehyun Bae
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States
- Apple Inc., Cupertino, CA, United States
| | - Regina Sloutsky
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA, United States
| | - Terry D. Ellis
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA, United States
| | - Conor J. Walsh
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States
| | - Louis N. Awad
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA, United States
| |
Collapse
|