1
|
Leestma JK, Smith CR, Sawicki GS, Young AJ. A Data-Driven Approach to Estimate Human Center of Mass State During Perturbed Locomotion Using Simulated Wearable Sensors. Ann Biomed Eng 2024; 52:2013-2023. [PMID: 38558352 PMCID: PMC11350556 DOI: 10.1007/s10439-024-03495-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Center of mass (COM) state, specifically in a local reference frame (i.e., relative to center of pressure), is an important variable for controlling and quantifying bipedal locomotion. However, this metric is not easily attainable in real time during human locomotion experiments. This information could be valuable when controlling wearable robotic exoskeletons, specifically for stability augmentation where knowledge of COM state could enable step placement planners similar to bipedal robots. Here, we explored the ability of simulated wearable sensor-driven models to rapidly estimate COM state during steady state and perturbed walking, spanning delayed estimates (i.e., estimating past state) to anticipated estimates (i.e., estimating future state). We used various simulated inertial measurement unit (IMU) sensor configurations typically found on lower limb exoskeletons and a temporal convolutional network (TCN) model throughout this analysis. We found comparable COM estimation capabilities across hip, knee, and ankle exoskeleton sensor configurations, where device type did not significantly influence error. We also found that anticipating COM state during perturbations induced a significant increase in error proportional to anticipation time. Delaying COM state estimates significantly increased accuracy for velocity estimates but not position estimates. All tested conditions resulted in models with R2 > 0.85, with a majority resulting in R2 > 0.95, emphasizing the viability of this approach. Broadly, this preliminary work using simulated IMUs supports the efficacy of wearable sensor-driven deep learning approaches to provide real-time COM state estimates for lower limb exoskeleton control or other wearable sensor-based applications, such as mobile data collection or use in real-time biofeedback.
Collapse
Affiliation(s)
- Jennifer K Leestma
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Courtney R Smith
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Gregory S Sawicki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Aaron J Young
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
2
|
Hnat S, van den Bogert AJ. Virtual muscles and reflex control generates human-like ankle torques during gait perturbations. Proc Inst Mech Eng H 2024; 238:865-873. [PMID: 39136262 DOI: 10.1177/09544119241272766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
A biologically-inspired actuation system, including muscles, spinal reflexes, and vestibular feedback, may be capable of achieving more natural gait mechanics in powered prostheses or exoskeletons. In this study, we developed a Virtual Muscle Reflex (VMR) system to control ankle torque and tuned it using data from human responses to anteroposterior mechanical perturbations at three walking speeds. The system consists of three Hill-Type muscles, simulated in real time, and uses feedback from ground reaction force and from stretch sensors on the virtual muscle fibers. Controller gains, muscle properties, and reflex/vestibular time delays were optimized using Covariance Matrix Adaptation (CMA) to minimize the difference between the VMR torque output and the torque measured from the experiment. We repeated the procedure using a conventional finite-state impedance controller. For both controllers, the coefficient of determination (R 2 ) and root-mean-square error (RMSE) was calculated as a function of time within the gait cycle. The VMR had lower RMSE than the impedance controller in 70%, and in 60% of the trials, the R 2 of the VMR controller was higher than for the impedance controller. We concluded that the VMR system can better reproduce the human responses to perturbations than the impedance controller.
Collapse
Affiliation(s)
- Sandra Hnat
- Department of Biomedical Engineering, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Antonie J van den Bogert
- Mechanical Engineering Department, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Case School of Engineeering, Cleveland, OH, USA
| |
Collapse
|
3
|
Wan G, Wang P, Han Y, Liang J. Torque modulation mechanism of the knee joint during balance recovery. Comput Biol Med 2024; 175:108492. [PMID: 38678940 DOI: 10.1016/j.compbiomed.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Exploring the torque modulation mechanisms of human joints is critical for analyzing the human balance control system and developing natural human-machine interactions for balance support. However, the knee joint is often overlooked in biomechanical models because of its limited range of motion during balance recovery. This poses a challenge in establishing mathematical models for the knee joint's torque modulation mechanisms using computer simulations based on the inverted pendulum model. This study aims to provide a simplified linear feedback model inspired by sensorimotor transformation theory to reveal the torque modulation mechanism of the knee joint. The model was validated using data from experiments involving support-surface translation perturbations. The goodness-of-fit metrics of the model, including R2 values and root mean square errors (RMSE), demonstrated strong explanatory power (R2 ranged from 0.77 to 0.90) and low error (RMSE ranging from 0.035 to 0.072) across different perturbation magnitudes and directions. Through pooling samples across various perturbation conditions and conducting multiple fits, this model revealed that knee torque is modulated using a direction-specific strategy with adaptable feedback gains. These results suggest that the proposed simplified linear model can be used to develop assistive systems and retrieve insights on balance recovery mechanisms.
Collapse
Affiliation(s)
- Guangfu Wan
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peilin Wang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jiejunyi Liang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
4
|
Yao Y, Shao D, Tarabini M, Moezi SA, Li K, Saccomandi P. Advancements in Sensor Technologies and Control Strategies for Lower-Limb Rehabilitation Exoskeletons: A Comprehensive Review. MICROMACHINES 2024; 15:489. [PMID: 38675301 PMCID: PMC11052168 DOI: 10.3390/mi15040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Lower-limb rehabilitation exoskeletons offer a transformative approach to enhancing recovery in patients with movement disorders affecting the lower extremities. This comprehensive systematic review delves into the literature on sensor technologies and the control strategies integrated into these exoskeletons, evaluating their capacity to address user needs and scrutinizing their structural designs regarding sensor distribution as well as control algorithms. The review examines various sensing modalities, including electromyography (EMG), force, displacement, and other innovative sensor types, employed in these devices to facilitate accurate and responsive motion control. Furthermore, the review explores the strengths and limitations of a diverse array of lower-limb rehabilitation-exoskeleton designs, highlighting areas of improvement and potential avenues for further development. In addition, the review investigates the latest control algorithms and analysis methods that have been utilized in conjunction with these sensor systems to optimize exoskeleton performance and ensure safe and effective user interactions. By building a deeper understanding of the diverse sensor technologies and monitoring systems, this review aims to contribute to the ongoing advancement of lower-limb rehabilitation exoskeletons, ultimately improving the quality of life for patients with mobility impairments.
Collapse
Affiliation(s)
- Yumeng Yao
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Y.)
| | - Dongqing Shao
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Y.)
| | - Marco Tarabini
- Department of Mechanical Engineering, Polytechnic of Milan, 20133 Milano, Italy
| | - Seyed Alireza Moezi
- Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Kun Li
- College of Mechanical and Vehicle Engineering, Chongqing 400044, China
- State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, China
| | - Paola Saccomandi
- Department of Mechanical Engineering, Polytechnic of Milan, 20133 Milano, Italy
| |
Collapse
|
5
|
Zhang J, van Mierlo M, Veltink PH, van Asseldonk EHF. Estimation of sagittal-plane whole-body angular momentum during perturbed and unperturbed gait using simplified body models. Hum Mov Sci 2024; 93:103179. [PMID: 38244350 DOI: 10.1016/j.humov.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Human whole-body angular momentum (WBAM) during walking typically follows a consistent pattern, making it a valuable indicator of the state of balance. However, calculating WBAM is labor-intensive, where the kinematic data for all body segments is needed, that is, based on a full-body model. In this study, we focused on selecting appropriate segments for estimating sagittal-plane WBAM during both unperturbed and perturbed gaits, which were segments with significant angular momentum contributions. Those major segments were constructed as a simplified model, and the sagittal-plane WBAM based on a simplified model was calculated by combining the angular momenta of the selected segments. We found that the WBAM estimated by seven-segment models, incorporating the head & torso (HT) and all lower limb segments, provided an average correlation coefficient of 0.99 and relative angular momentum percentage of 96.8% and exhibited the most similar sensitivity to external perturbations compared to the full-body model-based WBAM. Additionally, our findings revealed that the rotational angular momenta (RAM) of lower limb segments were much smaller than their translational angular momenta (TAM). The pair-wise comparisons between simplified models with and without RAMs of lower body segments were observed with no significant difference, indicating that RAMs of lower body segments are neglectable. This may further simplify the WBAM estimation based on the seven-segment model, eliminating the need to estimate the angular velocities of lower limb segments. These findings have practical implications for future studies of using inertial measurement units (IMUs) for estimating WBAM, as our results can help reduce the number of required sensors and simplify kinematics measurement.
Collapse
Affiliation(s)
- J Zhang
- Department of Biomedical Signals and Systems, University of Twente, Enschede, the Netherlands.
| | - M van Mierlo
- Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| | - P H Veltink
- Department of Biomedical Signals and Systems, University of Twente, Enschede, the Netherlands
| | - E H F van Asseldonk
- Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| |
Collapse
|
6
|
Naseri A, Lee IC, Huang H, Liu M. Investigating the Association of Quantitative Gait Stability Metrics With User Perception of Gait Interruption Due to Control Faults During Human-Prosthesis Interaction. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4693-4702. [PMID: 37906490 DOI: 10.1109/tnsre.2023.3328877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
This study aims to compare the association of different gait stability metrics with the prosthesis users' perception of their own gait stability. Lack of perceived confidence on the device functionality can influence the gait pattern, level of daily activities, and overall quality of life for individuals with lower limb motor deficits. However, the perception of gait stability is subjective and difficult to acquire online. The quantitative gait stability metrics can be objectively measured and monitored using wearable sensors; however, objective measurements of gait stability associated with human's perception of their own gait stability has rarely been reported. By identifying quantitative measurements that associate with users' perceptions, we can gain a more accurate and comprehensive understanding of an individual's perceived functional outcomes of assistive devices such as prostheses. To achieve our research goal, experiments were conducted to artificially apply internal disturbances in the powered prosthesis while the prosthetic users performed level ground walking. We monitored and compared multiple gait stability metrics and a local measurement to the users' reported perception of their own gait stability. The results showed that the center of pressure progression in the sagittal plane and knee momentum (i.e., residual thigh and prosthesis shank angular momentum about prosthetic knee joint) can potentially estimate the users' perceptions of gait stability when experiencing disturbances. The findings of this study can help improve the development and evaluation of gait stability control algorithms in robotic prosthetic devices.
Collapse
|
7
|
Fang Y, Lerner ZF. How Adaptive Ankle Exoskeleton Assistance Affects Stability During Perturbed and Unperturbed Walking in the Elderly. Ann Biomed Eng 2023; 51:2606-2616. [PMID: 37452214 DOI: 10.1007/s10439-023-03310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Slowing the decline in walking mobility in the elderly is critical for maintaining the quality of life. Wearable assistive devices may 1 day facilitate mobility in older adults; however, we need to ensure that such devices do not impair stability in this population that is predisposed to fall-related injuries. This study sought to quantify the effects of untethered ankle exoskeleton assistance on measures of stability, whole-body dynamics, and strategies to maintain balance during normal and perturbed walking in older adults. Eight healthy participants (69-84 years) completed a treadmill-based walking protocol that included perturbations from unexpected belt accelerations while participants walked with and without ankle exoskeleton assistance. Exoskeleton assistance increased frontal plane range of angular momentum (8-14%, p ≤ 0.007), step width (18-34%, p ≤ 0.006), and ankle co-contraction (21-29%, p ≤ 0.039), and decreased biological ankle moment (16-27%, p ≤ 0.001) during unperturbed and perturbed walking; it did not affect the anteroposterior margin-of-stability, step length, trunk variability, or soleus activity during unperturbed and perturbed walking. Our finding that ankle exoskeleton assistance did not affect the anteroposterior margin-of-stability supports additional investigation of assistive exoskeletons for walking assistance in the elderly.
Collapse
Affiliation(s)
- Ying Fang
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Physical Therapy, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Zachary F Lerner
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, 86011, USA.
- Department of Orthopedics, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA.
| |
Collapse
|
8
|
Eveld ME, King ST, Zelik KE, Goldfarb M. Efficacy of stumble recovery assistance in a knee exoskeleton for individuals with simulated mobility impairment: A pilot study. WEARABLE TECHNOLOGIES 2023; 4:e22. [PMID: 38510587 PMCID: PMC10952054 DOI: 10.1017/wtc.2023.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/05/2023] [Accepted: 06/06/2023] [Indexed: 03/22/2024]
Abstract
Falls due to stumbles are a major cause of injury for many populations, and as such interventions to reduce fall risk have been a key focus of rehabilitation research. However, dedicated stumble recovery assistance in a powered lower-limb exoskeleton has yet to be explored as a fall mitigation intervention. Thus young, healthy adults () were recruited for a stumble recovery experiment to test the efficacy of knee exoskeleton stumble recovery assistance in improving an impaired stumble recovery response (i.e., the elevating strategy response). Leg weights were attached unilaterally to each participant's shank to simulate walking and stumble recovery impairment, and a unilateral powered knee exoskeleton was worn on the same leg for walking and stumble recovery assistance. Ultimately, knee exoskeleton stumble recovery assistance served to improve participants' elevating limb kinematics (i.e., increase thigh and knee motion) and reduce overall fall risk (i.e., reduce trunk motion and improve foot placement) during responses relative to their impaired response (i.e., with the leg weights and no assistance), and relative to their response while receiving only walking assistance. This initial exploration provides a first indication that knee exoskeleton stumble recovery assistance is a viable approach to improving an impaired stumble recovery response, which could serve two important use cases: (1) a safety mechanism for existing exoskeleton wearers, who may be less capable of recovering from stumbles due to the added weight or joint impedance of the device; (2) an external stumble recovery aid for fall-prone populations, such as the elderly or stroke survivors.
Collapse
Affiliation(s)
- Maura E. Eveld
- Department of Mechanical Engineering, Vanderbilt University, TN, USA
| | - Shane T. King
- Department of Mechanical Engineering, Vanderbilt University, TN, USA
| | - Karl E. Zelik
- Department of Mechanical Engineering, Vanderbilt University, TN, USA
- Department of Physical Medicine & Rehabilitation, Vanderbilt University, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, TN, USA
| | - Michael Goldfarb
- Department of Mechanical Engineering, Vanderbilt University, TN, USA
- Department of Physical Medicine & Rehabilitation, Vanderbilt University, TN, USA
- Department of Electrical Engineering, Vanderbilt University, TN, USA
| |
Collapse
|
9
|
Lora-Millan JS, Nabipour M, van Asseldonk E, Bayón C. Advances on mechanical designs for assistive ankle-foot orthoses. Front Bioeng Biotechnol 2023; 11:1188685. [PMID: 37485319 PMCID: PMC10361304 DOI: 10.3389/fbioe.2023.1188685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Assistive ankle-foot orthoses (AAFOs) are powerful solutions to assist or rehabilitate gait on humans. Existing AAFO technologies include passive, quasi-passive, and active principles to provide assistance to the users, and their mechanical configuration and control depend on the eventual support they aim for within the gait pattern. In this research we analyze the state-of-the-art of AAFO and classify the different approaches into clusters, describing their basis and working principles. Additionally, we reviewed the purpose and experimental validation of the devices, providing the reader with a better view of the technology readiness level. Finally, the reviewed designs, limitations, and future steps in the field are summarized and discussed.
Collapse
Affiliation(s)
| | - Mahdi Nabipour
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Edwin van Asseldonk
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Cristina Bayón
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| |
Collapse
|
10
|
Afschrift M, van Asseldonk E, van Mierlo M, Bayon C, Keemink A, D'Hondt L, van der Kooij H, De Groote F. Assisting walking balance using a bio-inspired exoskeleton controller. J Neuroeng Rehabil 2023; 20:82. [PMID: 37370175 DOI: 10.1186/s12984-023-01205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Balance control is important for mobility, yet exoskeleton research has mainly focused on improving metabolic energy efficiency. Here we present a biomimetic exoskeleton controller that supports walking balance and reduces muscle activity. METHODS Humans restore balance after a perturbation by adjusting activity of the muscles actuating the ankle in proportion to deviations from steady-state center of mass kinematics. We designed a controller that mimics the neural control of steady-state walking and the balance recovery responses to perturbations. This controller uses both feedback from ankle kinematics in accordance with an existing model and feedback from the center of mass velocity. Control parameters were estimated by fitting the experimental relation between kinematics and ankle moments observed in humans that were walking while being perturbed by push and pull perturbations. This identified model was implemented on a bilateral ankle exoskeleton. RESULTS Across twelve subjects, exoskeleton support reduced calf muscle activity in steady-state walking by 19% with respect to a minimal impedance controller (p < 0.001). Proportional feedback of the center of mass velocity improved balance support after perturbation. Muscle activity is reduced in response to push and pull perturbations by 10% (p = 0.006) and 16% (p < 0.001) and center of mass deviations by 9% (p = 0.026) and 18% (p = 0.002) with respect to the same controller without center of mass feedback. CONCLUSION Our control approach implemented on bilateral ankle exoskeletons can thus effectively support steady-state walking and balance control and therefore has the potential to improve mobility in balance-impaired individuals.
Collapse
Affiliation(s)
- M Afschrift
- Department of Mechanical Engineering, Robotics Core Lab of Flanders Make, KU Leuven, Leuven, Belgium.
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - E van Asseldonk
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - M van Mierlo
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - C Bayon
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - A Keemink
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - L D'Hondt
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - H van der Kooij
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - F De Groote
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Beck ON, Shepherd MK, Rastogi R, Martino G, Ting LH, Sawicki GS. Exoskeletons need to react faster than physiological responses to improve standing balance. Sci Robot 2023; 8:eadf1080. [PMID: 36791215 PMCID: PMC10169237 DOI: 10.1126/scirobotics.adf1080] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Maintaining balance throughout daily activities is challenging because of the unstable nature of the human body. For instance, a person's delayed reaction times limit their ability to restore balance after disturbances. Wearable exoskeletons have the potential to enhance user balance after a disturbance by reacting faster than physiologically possible. However, "artificially fast" balance-correcting exoskeleton torque may interfere with the user's ensuing physiological responses, consequently hindering the overall reactive balance response. Here, we show that exoskeletons need to react faster than physiological responses to improve standing balance after postural perturbations. Delivering ankle exoskeleton torque before the onset of physiological reactive joint moments improved standing balance by 9%, whereas delaying torque onset to coincide with that of physiological reactive ankle moments did not. In addition, artificially fast exoskeleton torque disrupted the ankle mechanics that generate initial local sensory feedback, but the initial reactive soleus muscle activity was only reduced by 18% versus baseline. More variance of the initial reactive soleus muscle activity was accounted for using delayed and scaled whole-body mechanics [specifically center of mass (CoM) velocity] versus local ankle-or soleus fascicle-mechanics, supporting the notion that reactive muscle activity is commanded to achieve task-level goals, such as maintaining balance. Together, to elicit symbiotic human-exoskeleton balance control, device torque may need to be informed by mechanical estimates of global sensory feedback, such as CoM kinematics, that precede physiological responses.
Collapse
Affiliation(s)
- Owen N Beck
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA.,Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Max K Shepherd
- Department of Physical Therapy and Rehabilitation Science, Northeastern University, Boston, MA, USA.,Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Rish Rastogi
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Giovanni Martino
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Lena H Ting
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.,Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA, USA
| | - Gregory S Sawicki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
12
|
Zhou Y. Recent advances in wearable actuated ankle-foot orthoses: Medical effects, design, and control. Proc Inst Mech Eng H 2023; 237:163-178. [PMID: 36515408 DOI: 10.1177/09544119221142335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper presents a survey on recent advances of wearable actuated ankle-foot orthoses (AAFOs). First of all, their medical functions are investigated. From the short-term aspect, they lead to rectification of pathological gaits, reduction of metabolic cost, and improvement of gait performance. After AAFO-based walking training with sufficient time, free walking performance can be enhanced. Then, key design factors are studied. First, primary design parameters are investigated. Second, common actuators are analysed. Third, human-robot interaction (HRI), ergonomics, safety, and application places, are considered. In the following section, control technologies are reviewed from the aspects of rehabilitation stages, gait feature quantities, and controller characteristics. Finally, existing problems are discussed; development trends are prospected.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Otálora S, Ballen-Moreno F, Arciniegas-Mayag L, Cifuentes CA, Múnera M. Biomechanical Effects of Adding an Ankle Soft Actuation in a Unilateral Exoskeleton. BIOSENSORS 2022; 12:873. [PMID: 36291010 PMCID: PMC9599070 DOI: 10.3390/bios12100873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 06/01/2023]
Abstract
Stroke disease leads to a partial or complete disability affecting muscle strength and functional mobility. Early rehabilitation sessions might induce neuroplasticity and restore the affected function or structure of the patients. Robotic rehabilitation minimizes the burden on therapists by providing repetitive and regularly monitored therapies. Commercial exoskeletons have been found to assist hip and knee motion. For instance, unilateral exoskeletons have the potential to become an effective training system for patients with hemiparesis. However, these robotic devices leave the ankle joint unassisted, essential in gait for body propulsion and weight-bearing. This article evaluates the effects of the robotic ankle orthosis T-FLEX during cooperative assistance with the AGoRA unilateral lower-limb exoskeleton (hip and knee actuation). This study involves nine subjects, measuring muscle activity and gait parameters such as stance and swing times. The results showed a reduction in muscle activity in the Biceps Femoris of 50%, Lateral Gastrocnemius of 59% and Tibialis Anterior of 35% when adding T-FLEX to the AGoRA unilateral lower-limb exoskeleton. No differences were found in gait parameters. Nevertheless, stability is preserved when comparing the two legs. Future works should focus on evaluating the devices in ground tests in healthy subjects and pathological patients.
Collapse
Affiliation(s)
- Sophia Otálora
- Graduate Program of Electrical Engineering, Federal University of Espirito Santo, Vitoria 29075-910, Brazil
| | - Felipe Ballen-Moreno
- Robotics & Multibody Mechanics (R&MM) Research Group, Department of Mechanical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Flanders Make, 1050 Brussels, Belgium
| | - Luis Arciniegas-Mayag
- Graduate Program of Electrical Engineering, Federal University of Espirito Santo, Vitoria 29075-910, Brazil
| | - Carlos A. Cifuentes
- Bristol Robotics Laboratory, University of the West of England, Bristol BS16 1QY, UK
- School of Engineering, Science and Technology, Universidad del Rosario, Bogota 111711, Colombia
| | - Marcela Múnera
- Department of Biomedical Engineering, Colombian School of Engineering Julio Garavito, Bogota 111166, Colombia
| |
Collapse
|
14
|
Abstract
The exoskeleton is often regarded as a tool for rehabilitation and assistance of human movement. The control schemes were conventionally implemented by developing accurate physical and kinematic models, which often lack robustness to external variational disturbing forces. This paper presents a virtual neuromuscular control for robotic ankle exoskeleton standing balance. The robustness of the proposed method was improved by applying a specific virtual neuromuscular model to estimate the desired ankle torques for ankle exoskeleton standing balance control. In specialty, the proposed control method has two key components, including musculoskeletal mechanics and neural control. A simple version of the ankle exoskeleton was designed, and three sets of comparative experiments were carried out. The experimentation results demonstrated that the proposed virtual neuromuscular control could effectively reduce the wearer’s lower limb muscle activation, and improve the robustness of the different external disturbances.
Collapse
|
15
|
Layne CS, Malaya CA, Ravindran AS, John I, Francisco GE, Contreras-Vidal JL. Distinct Kinematic and Neuromuscular Activation Strategies During Quiet Stance and in Response to Postural Perturbations in Healthy Individuals Fitted With and Without a Lower-Limb Exoskeleton. Front Hum Neurosci 2022; 16:942551. [PMID: 35911598 PMCID: PMC9334701 DOI: 10.3389/fnhum.2022.942551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
Many individuals with disabling conditions have difficulty with gait and balance control that may result in a fall. Exoskeletons are becoming an increasingly popular technology to aid in walking. Despite being a significant aid in increasing mobility, little attention has been paid to exoskeleton features to mitigate falls. To develop improved exoskeleton stability, quantitative information regarding how a user reacts to postural challenges while wearing the exoskeleton is needed. Assessing the unique responses of individuals to postural perturbations while wearing an exoskeleton provides critical information necessary to effectively accommodate a variety of individual response patterns. This report provides kinematic and neuromuscular data obtained from seven healthy, college-aged individuals during posterior support surface translations with and without wearing a lower limb exoskeleton. A 2-min, static baseline standing trial was also obtained. Outcome measures included a variety of 0 dimensional (OD) measures such as center of pressure (COP) RMS, peak amplitude, velocities, pathlength, and electromyographic (EMG) RMS, and peak amplitudes. These measures were obtained during epochs associated with the response to the perturbations: baseline, response, and recovery. T-tests were used to explore potential statistical differences between the exoskeleton and no exoskeleton conditions. Time series waveforms (1D) of the COP and EMG data were also analyzed. Statistical parametric mapping (SPM) was used to evaluate the 1D COP and EMG waveforms obtained during the epochs with and without wearing the exoskeleton. The results indicated that during quiet stance, COP velocity was increased while wearing the exoskeleton, but the magnitude of sway was unchanged. The OD COP measures revealed that wearing the exoskeleton significantly reduced the sway magnitude and velocity in response to the perturbations. There were no systematic effects of wearing the exoskeleton on EMG. SPM analysis revealed that there was a range of individual responses; both behaviorally (COP) and among neuromuscular activation patterns (EMG). Using both the OD and 1D measures provided a more comprehensive representation of how wearing the exoskeleton impacts the responses to posterior perturbations. This study supports a growing body of evidence that exoskeletons must be personalized to meet the specific capabilities and needs of each individual end-user.
Collapse
Affiliation(s)
- Charles S. Layne
- University of Houston, Houston, TX, United States
- Center for Neuromotor and Biomechanics Research, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, United States
- *Correspondence: Charles S. Layne
| | - Christopher A. Malaya
- Center for Neuromotor and Biomechanics Research, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, United States
| | - Akshay S. Ravindran
- Noninvasive Brain-Machine Interface System Laboratory, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, United States
| | - Isaac John
- Center for Neuromotor and Biomechanics Research, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, United States
| | - Gerard E. Francisco
- TIRR Memorial Hermann and Department of PMR, University of Texas Health Sciences Center, Houston, TX, United States
| | - Jose Luis Contreras-Vidal
- Noninvasive Brain-Machine Interface System Laboratory, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
16
|
Sujatha Ravindran A, Malaya C, John I, Francisco GE, Layne C, Contreras-Vidal JL. Decoding Neural Activity Preceding Balance Loss During Standing with a Lower-limb Exoskeleton using an Interpretable Deep Learning Model. J Neural Eng 2022; 19. [PMID: 35508113 DOI: 10.1088/1741-2552/ac6ca9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Abstract
Falls are a leading cause of death in adults 65 and older. Recent efforts to restore lower-limb function in these populations have seen an increase in the use of wearable robotic systems; however, fall prevention measures in these systems require early detection of balance loss to be effective. Prior studies have investigated whether kinematic variables contain information about an impending fall, but few have examined the potential of using electroencephalography (EEG) as a fall-predicting signal and how the brain responds to avoid a fall. To address this, we decoded neural activity in a balance perturbation task while wearing an exoskeleton. We acquired EEG, electromyography (EMG), and center of pressure (COP) data from 7 healthy participants during mechanical perturbations while standing. The timing of the perturbations was randomized in all trials. We found perturbation evoked potentials (PEP) components as early as 75-134 ms after the onset of the external perturbation, which preceded both the peak in EMG (∼ 180 ms) and the COP (∼ 350 ms). A convolutional neural network trained to predict balance perturbations from single-trial EEG had a mean F-score of 75.0 ± 4.3 %. Clustering GradCAM-based model explanations demonstrated that the model utilized components in the PEP and was not driven by artifacts. Additionally, dynamic functional connectivity results agreed with model explanations; the nodal connectivity measured using phase difference derivative was higher in the occipital-parietal region in the early stage of perturbations, before shifting to the parietal, motor, and back to the frontal-parietal channels. Continuous-time decoding of COP trajectories from EEG, using a gated recurrent unit model, achieved a mean Pearson's correlation coefficient of 0.7 ± 0.06. Overall, our findings suggest that EEG signals contain short-latency neural information related to an impending fall, which may be useful for developing brain-machine interface systems for fall prevention in robotic exoskeletons.
Collapse
Affiliation(s)
- Akshay Sujatha Ravindran
- Department of Electrical and Computer Engineering, University of Houston, 4800 calhoun road, E413, Cullen Engineering Building 1, University of Houston, Houston, Texas, 77204, UNITED STATES
| | - Christopher Malaya
- Health and Human Performance, University of Houston, 4800 calhoun road, Houston, Houston, Texas, 77204, UNITED STATES
| | - Isaac John
- Health and Human Performance, University of Houston, 4800 calhoun road, Houston, Houston, Texas, 77204, UNITED STATES
| | - Gerard E Francisco
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, Texas, 77030, UNITED STATES
| | - Charles Layne
- Health and Human Performance, University of Houston, 4800 calhoun road, Houston, Houston, Texas, 77204, UNITED STATES
| | - Jose Luis Contreras-Vidal
- Electrical and Computer Engineering, University of Houston, N308 Engineering Building I, Houston, Texas, 77204-4005, UNITED STATES
| |
Collapse
|