1
|
Wang L, Zhang W, Shen W, Li M, Fu Y, Li Z, Li J, Liu H, Su X, Zhang B, Zhao J. Integrated transcriptome and microRNA sequencing analyses reveal gene responses in poplar leaves infected by the novel pathogen bean common mosaic virus (BCMV). FRONTIERS IN PLANT SCIENCE 2023; 14:1163232. [PMID: 37396641 PMCID: PMC10308444 DOI: 10.3389/fpls.2023.1163232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Recently, a novel poplar mosaic disease caused by bean common mosaic virus (BCMV) was investigated in Populus alba var. pyramidalis in China. Symptom characteristics, physiological performance of the host, histopathology, genome sequences and vectors, and gene regulation at the transcriptional and posttranscriptional levels were analyzed and RT-qPCR (quantitative reverse transcription PCR) validation of expression was performed in our experiments. In this work, the mechanisms by which the BCMV pathogen impacts physiological performance and the molecular mechanisms of the poplar response to viral infection were reported. The results showed that BCMV infection decreased the chlorophyll content, inhibited the net photosynthesis rate (Pn) and stomatal conductance (Gs), and significantly changed chlorophyll fluorescence parameters in diseased leaves. Transcriptome analysis revealed that the expression of the majority of DEGs (differentially expressed genes) involved in the flavonoid biosynthesis pathway was promoted, but the expression of all or almost all DEGs associated with photosynthesis-antenna proteins and the photosynthesis pathway was inhibited in poplar leaves, suggesting that BCMV infection increased the accumulation of flavonoids but decreased photosynthesis in hosts. Gene set enrichment analysis (GSEA) illustrated that viral infection promoted the expression of genes involved in the defense response or plant-pathogen interaction. MicroRNA-seq analysis illustrated that 10 miRNA families were upregulated while 6 families were downregulated in diseased poplar leaves; moreover, miR156, the largest family with the most miRNA members and target genes, was only differentially upregulated in long-period disease (LD) poplar leaves. Integrated transcriptome and miRNA-seq analyses revealed 29 and 145 candidate miRNA-target gene pairs; however, only 17 and 76 pairs, accounting for 2.2% and 3.2% of all DEGs, were authentically negatively regulated in short-period disease (SD) and LD leaves, respectively. Interestingly, 4 miR156/SPL (squamosa promoter-binding-like protein) miRNA-target gene pairs were identified in LD leaves: the miR156 molecules were upregulated, but SPL genes were downregulated. In conclusion, BCMV infection significantly changed transcriptional and posttranscriptional gene expression in poplar leaves, inhibited photosynthesis, increased the accumulation of flavonoids, induced systematic mosaic symptoms, and decreased physiological performance in diseased poplar leaves. This study elucidated the fine-tuned regulation of poplar gene expression by BCMV; moreover, the results also suggested that miR156/SPL modules played important roles in the virus response and development of viral systematic symptoms in plant virus disease.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wanna Shen
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Min Li
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Yuchen Fu
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Zheng Li
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Jinxin Li
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Huixiang Liu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Bingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jiaping Zhao
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
2
|
Kumari M, Kapoor R, Devanna BN, Varshney S, Kamboj R, Rai AK, Sharma TR. iTRAQ based proteomic analysis of rice lines having single or stacked blast resistance genes: Pi54/ Pi54rh during incompatible interaction with Magnaporthe oryzae. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:871-887. [PMID: 37520805 PMCID: PMC10382468 DOI: 10.1007/s12298-023-01327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 08/01/2023]
Abstract
Deployment of single or multiple blast resistance (R) genes in rice plant is considered to be the most promising approach to enhance resistance against blast disease caused by fungus Magnaporthe oryzae. At the proteome level, relatively little information about R gene mediated defence mechanisms for single and stacking resistance characteristics is available. The overall objective of this study is to look at the proteomics of rice plants that have R genes; Pi54, Pi54rh and stacked Pi54 + Pi54rh in response to rice blast infection. In this study 'isobaric tag for relative and absolute quantification' (iTRAQ)-based proteomics analysis was performed in rice plants at 72-h post inoculation with Magnaporthe oryzae and various differentially expressed proteins were identified in these three transgenic lines in comparison to wild type during resistance response to blast pathogen. Through STRING analysis, the observed proteins were further examined to anticipate their linked partners, and it was shown that several defense-related proteins were co-expressed. These proteins can be employed as targets in future rice resistance breeding against Magnaporthe oryzae. The current study is the first to report a proteomics investigation of rice lines that express single blast R gene Pi54, Pi54rh and stacked (Pi54 + Pi54rh) during incompatible interaction with Magnaporthe oryzae. The differentially expressed proteins indicated that secondary metabolites, reactive oxygen species-related proteins, phenylpropanoid, phytohormones and pathogenesis-related proteins have a substantial relationship with the defense response against Magnaporthe oryzae. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01327-3.
Collapse
Affiliation(s)
- Mandeep Kumari
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan India
| | - Ritu Kapoor
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab India
| | - B. N. Devanna
- ICAR-National Rice Research Institute, Cuttack, Odisha India
| | - Swati Varshney
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi India
| | - Richa Kamboj
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan India
| | - Amit Kumar Rai
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - T. R. Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, India
| |
Collapse
|
3
|
Wei L, Wang D, Gupta R, Kim ST, Wang Y. A Proteomics Insight into Advancements in the Rice-Microbe Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12051079. [PMID: 36903938 PMCID: PMC10005616 DOI: 10.3390/plants12051079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 05/23/2023]
Abstract
Rice is one of the most-consumed foods worldwide. However, the productivity and quality of rice grains are severely constrained by pathogenic microbes. Over the last few decades, proteomics tools have been applied to investigate the protein level changes during rice-microbe interactions, leading to the identification of several proteins involved in disease resistance. Plants have developed a multi-layered immune system to suppress the invasion and infection of pathogens. Therefore, targeting the proteins and pathways associated with the host's innate immune response is an efficient strategy for developing stress-resistant crops. In this review, we discuss the progress made thus far with respect to rice-microbe interactions from side views of the proteome. Genetic evidence associated with pathogen-resistance-related proteins is also presented, and challenges and future perspectives are highlighted in order to understand the complexity of rice-microbe interactions and to develop disease-resistant crops in the future.
Collapse
Affiliation(s)
- Lirong Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dacheng Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Republic of Korea
| | - Yiming Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Yang Z, Zhang H, Tan X, Wei Z, Wen C, Sun Z, Sun B, Chen J. Insights Into the Effect of Rice Stripe Virus P2 on Rice Defense by Comparative Proteomic Analysis. Front Microbiol 2022; 13:897589. [PMID: 35747367 PMCID: PMC9209781 DOI: 10.3389/fmicb.2022.897589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Rice stripe virus (RSV) has a serious effect on rice production. Our previous research had shown that RSV P2 plays important roles in RSV infection, so in order to further understand the effect of P2 on rice, we used Tandem Mass Tag (TMT) quantitative proteomics experimental system to analyze the changes of protein in transgenic rice expressing P2 for the first time. The results of proteomics showed that a total of 4,767 proteins were identified, including 198 up-regulated proteins and 120 down-regulated proteins. Functional classification results showed that differentially expressed proteins (DEPs) were mainly localized in chloroplasts and mainly involved in the metabolic pathways. Functional enrichment results showed that DEPs are mainly involved in RNA processing and splicing. We also verified the expression of several DEPs at the mRNA level and the interaction of a transcription factor (B7EPB8) with RSV P2. This research is the first time to use proteomics technology to explore the mechanism of RSV infection in rice with the RSV P2 as breakthrough point. Our findings provide valuable information for the study of RSV P2 and RSV infection mechanism.
Collapse
Affiliation(s)
- Zihang Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiaoxiang Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Caiyi Wen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bingjian Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Bingjian Sun,
| | - Jianping Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- Jianping Chen,
| |
Collapse
|
5
|
Xian L, Long Y, Yang M, Chen Z, Wu J, Liu X, Wang L. iTRAQ-based quantitative glutelin proteomic analysis reveals differentially expressed proteins in the physiological metabolism process during endosperm development and their impacts on yield and quality in autotetraploid rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110859. [PMID: 33775365 DOI: 10.1016/j.plantsci.2021.110859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Autotetraploid rice, which is developed through chromosome set doubling using diploid rice, produces high-quality kernels that are rich in storage proteins. However, little information is available about the content of different proteins in autotetraploid rice and their proteomic analysis. The dynamic changes in four storage proteins, namely, albumin, globulin, prolamin, and glutelin, were analyzed in the endosperm of autotetraploid rice (AJNT-4x) and in that of its diploid counterpart (AJNT-2x) for comparison. The contents of the four proteins were all higher during endosperm development in AJNT-4x than in AJNT-2x, but their change and composition were almost the same in the two materials. Then, iTRAQ was employed to analyze the glutelin profiles of AJNT-4x and AJNT-2x at 10 DAF, 15 DAF, and 20 DAF. A total of 1326 proteins were identified in AJNT-4x and AJNT-2x using high-throughput LC-MS/MS. Among the 1326 identified proteins, there were 362 DEPs in AJNT-4x compared with AJNT-2x and 372 DEPs between different developmental stages in AJNT-4x. Eight important upregulated proteins were identified by qRT-PCR, including B8AM24, B8ARJ0, B8AQM6, A2ZCE6, and P37833. Among them, B8AM24 and B8ARJ0 were related to the lysine biosynthesis process. GO enrichment analysis revealed that the critical functions of DEPs exhibited little overlap between the 10, 15, and 20 DAF groups. Endosperm glutelin accumulation was regulated mainly by different DEPs during the early stage, and 15 DAF was a critical regulating point for glutelin accumulation. KEGG pathway analysis showed that ribosomal proteins were significantly higher in AJNT-4x than in AJNT-2x at 10 DAF, and protein processing, biosynthesis, and metabolism of amino acids were higher and more active in AJNT-4x at 15 DAF, while the peroxisome was richer in AJNT-4x at 20 DAF. The PPI network showed that ribosomal proteins gradually decreased with increasing endosperm development. These results provide new insights into dynamic glutelin expression differences during endosperm development in autotetraploid rice, which will aid in the development of rice cultivars with increased yield and improved grain nutritional quality.
Collapse
Affiliation(s)
- Lin Xian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanxi Long
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Meng Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Lan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Vo KTX, Rahman MM, Rahman MM, Trinh KTT, Kim ST, Jeon JS. Proteomics and Metabolomics Studies on the Biotic Stress Responses of Rice: an Update. RICE (NEW YORK, N.Y.) 2021; 14:30. [PMID: 33721115 PMCID: PMC7960847 DOI: 10.1186/s12284-021-00461-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/28/2021] [Indexed: 05/19/2023]
Abstract
Biotic stresses represent a serious threat to rice production to meet global food demand and thus pose a major challenge for scientists, who need to understand the intricate defense mechanisms. Proteomics and metabolomics studies have found global changes in proteins and metabolites during defense responses of rice exposed to biotic stressors, and also reported the production of specific secondary metabolites (SMs) in some cultivars that may vary depending on the type of biotic stress and the time at which the stress is imposed. The most common changes were seen in photosynthesis which is modified differently by rice plants to conserve energy, disrupt food supply for biotic stress agent, and initiate defense mechanisms or by biotic stressors to facilitate invasion and acquire nutrients, depending on their feeding style. Studies also provide evidence for the correlation between reactive oxygen species (ROS) and photorespiration and photosynthesis which can broaden our understanding on the balance of ROS production and scavenging in rice-pathogen interaction. Variation in the generation of phytohormones is also a key response exploited by rice and pathogens for their own benefit. Proteomics and metabolomics studies in resistant and susceptible rice cultivars upon pathogen attack have helped to identify the proteins and metabolites related to specific defense mechanisms, where choosing of an appropriate method to identify characterized or novel proteins and metabolites is essential, considering the outcomes of host-pathogen interactions. Despites the limitation in identifying the whole repertoire of responsive metabolites, some studies have shed light on functions of resistant-specific SMs. Lastly, we illustrate the potent metabolites responsible for resistance to different biotic stressors to provide valuable targets for further investigation and application.
Collapse
Affiliation(s)
- Kieu Thi Xuan Vo
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Md Mizanor Rahman
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Md Mustafizur Rahman
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Kieu Thi Thuy Trinh
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 50463 South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| |
Collapse
|
7
|
Wang Q, Zhao Q, Zhu S, Huang B, Yu S, Liang S, Wang H, Zhao H, Han H, Dong H. Further investigation of the characteristics and biological function of Eimeria tenella apical membrane antigen 1. ACTA ACUST UNITED AC 2020; 27:70. [PMID: 33306022 PMCID: PMC7731912 DOI: 10.1051/parasite/2020068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022]
Abstract
Apical membrane antigen 1 (AMA1) is a type I integral membrane protein that is highly conserved in apicomplexan parasites. Previous studies have shown that Eimeria tenella AMA1 (EtAMA1) is critical for sporozoite invasion of host cells. Here, we show that EtAMA1 is a microneme protein secreted by sporozoites, confirming previous results. Individual and combined treatment with antibodies of EtAMA1 and its interacting proteins, E. tenella rhoptry neck protein 2 (EtRON2) and Eimeria-specific protein (EtESP), elicited significant anti-invasion effects on the parasite in a concentration-dependent manner. The overexpression of EtAMA1 in DF-1 cells showed a significant increase of sporozoite invasion. Isobaric tags for relative and absolute quantitation (iTRAQ) coupled with LC-MS/MS were used to screen differentially expressed proteins (DEPs) in DF-1 cells transiently transfected with EtAMA1. In total, 3953 distinct nonredundant proteins were identified and 163 of these were found to be differentially expressed, including 91 upregulated proteins and 72 downregulated proteins. The DEPs were mainly localized within the cytoplasm and were involved in protein binding and poly(A)-RNA binding. KEEG analyses suggested that the key pathways that the DEPs belonged to included melanogenesis, spliceosomes, tight junctions, and the FoxO and MAPK signaling pathways. The data in this study not only provide a comprehensive dataset for the overall protein changes caused by EtAMA1 expression, but also shed light on EtAMA1’s potential molecular mechanisms during Eimeria infections.
Collapse
Affiliation(s)
- Qingjie Wang
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Shuilan Yu
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Shanshan Liang
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Haixia Wang
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Huanzhi Zhao
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| |
Collapse
|
8
|
Shen C, Wei C, Li J, Zhang X, Zhong Q, Li Y, Bai B, Wu Y. Barley yellow dwarf virus-GAV-derived vsiRNAs are involved in the production of wheat leaf yellowing symptoms by targeting chlorophyll synthase. Virol J 2020; 17:158. [PMID: 33087133 PMCID: PMC7576850 DOI: 10.1186/s12985-020-01434-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/12/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wheat yellow dwarf virus disease is infected by barley yellow dwarf virus (BYDV), which causes leaf yellowing and dwarfing symptoms in wheat, thereby posing a serious threat to China's food production. The infection of plant viruses can produce large numbers of vsiRNAs, which can target host transcripts and cause symptom development. However, few studies have been conducted to explore the role played by vsiRNAs in the interaction between BYDV-GAV and host wheat plants. METHODS In this study, small RNA sequencing was conducted to profile vsiRNAs in BYDV-GAV-infected wheat plants. The putative targets of vsiRNAs were predicted by the bioinformatics software psRNATarget. RT-qPCR and VIGS were employed to identify the function of selected target transcripts. To confirm the interaction between vsiRNA and the target, 5' RACE was performed to analyze the specific cleavage sites. RESULTS From the sequencing data, we obtained a total of 11,384 detected vsiRNAs. The length distribution of these vsiRNAs was mostly 21 and 22 nt, and an A/U bias was observed at the 5' terminus. We also observed that the production region of vsiRNAs had no strand polarity. The vsiRNAs were predicted to target 23,719 wheat transcripts. GO and KEGG enrichment analysis demonstrated that these targets were mostly involved in cell components, catalytic activity and plant-pathogen interactions. The results of RT-qPCR analysis showed that most chloroplast-related genes were downregulated in BYDV-GAV-infected wheat plants. Silencing of a chlorophyll synthase gene caused leaf yellowing that was similar to the symptoms exhibited by BYDV-GAV-inoculated wheat plants. A vsiRNA from an overlapping region of BYDV-GAV MP and CP was observed to target chlorophyll synthase for gene silencing. Next, 5' RACE validated that vsiRNA8856 could cleave the chlorophyll synthase transcript in a sequence-specific manner. CONCLUSIONS This report is the first to demonstrate that BYDV-GAV-derived vsiRNAs can target wheat transcripts for symptom development, and the results of this study help to elucidate the molecular mechanisms underlying leaf yellowing after viral infection.
Collapse
Affiliation(s)
- Chuan Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Caiyan Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Jingyuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Xudong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Qinrong Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Yue Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Bixin Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
9
|
Jain A, Singh HB, Das S. Deciphering plant-microbe crosstalk through proteomics studies. Microbiol Res 2020; 242:126590. [PMID: 33022544 DOI: 10.1016/j.micres.2020.126590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022]
Abstract
Proteomic approaches are being used to elucidate a better discretion of interactions occurring between host, pathogen, and/or beneficial microorganisms at the molecular level. Application of proteomic techniques, unravel pathogenicity, stress-related, and antioxidant proteins expressed amid plant-microbe interactions and good information have been generated. It is being perceived that a fine regulation of protein expression takes place for effective pathogen recognition, induction of resistance, and maintenance of host integrity. However, our knowledge of molecular plant-microbe interactions is still incomplete and inconsequential. This review aims to provide insight into numerous ways used for proteomic investigation including peptide/protein identification, separation, and quantification during host defense response. Here, we highlight the current progress in proteomics of defense responses elicited by bacterial, fungal, and viral pathogens in plants along with which the proteome level changes induced by beneficial microorganisms are also discussed.
Collapse
Affiliation(s)
- Akansha Jain
- Division of Plant Biology, Bose Institute Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054, West Bengal, India.
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Sampa Das
- Division of Plant Biology, Bose Institute Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
10
|
Fu HL, Wang XS, Huang YY, Gong FY, Guo JJ, He CT, Yang ZY. Screening of the proteins related to the cultivar-dependent cadmium accumulation of Brassica parachinensis L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109858. [PMID: 31706236 DOI: 10.1016/j.ecoenv.2019.109858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/20/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Cultivar-dependent cadmium (Cd) accumulation was principal in developing Cd-pollution safe cultivars (PSCs). Proteins related to different Cd accumulations of the low-Cd-accumulating (SJ19) and high-Cd-accumulating (CX4) cultivars were investigated by iTRAQ analysis. Higher Cd bioaccumulation factors and translocation factor in CX4 than in SJ19 were consistent with the cultivar-dependent Cd accumulations. The Cd uptake was promoted in CX4 due to its higher expression of Cd-binding proteins and the lower expression of Cd-efflux proteins in roots. What's more, significantly elevated thiol groups (PC2 and PC3) in CX4 under Cd stress might contribute to the high Cd accumulation in roots and the root-to-shoot translocation of Cd-PC complex. Up-regulated proteins involved in cellulose biosynthesis and pectin de-esterification in SJ19 enhanced the Cd sequestration of root cell walls, which was considered as the predominant strategy for reducing Cd accumulation in shoots. The present study provided novel insights in the cultivar-dependent Cd accumulation in shoots of B. parachinensis.
Collapse
Affiliation(s)
- Hui-Ling Fu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Xue-Song Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Ying-Ying Huang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China; School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Fei-Yue Gong
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Jing-Jie Guo
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Chun-Tao He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China.
| | - Zhong-Yi Yang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China.
| |
Collapse
|
11
|
The data of Isobaric tags for relative and absolute quantification-based proteomic analysis of defense responses triggered by the fungal pathogen Fusarium graminearum in wheat. Data Brief 2019; 27:104747. [PMID: 31763403 PMCID: PMC6864187 DOI: 10.1016/j.dib.2019.104747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 12/02/2022] Open
Abstract
Fusarium head blight (FHB) is one of the most prevalent diseases of wheat and other small grain cereals that is predominantly caused by the fungal pathogen Fusarium graminearum. Extraction of total proteins were from tissues of A061-3 and A061-4 plants. Three biological replicates were carried out for each line at four time points. Samples were performed using iTRAQ (Isobaric tags for relative and absolute quantification). This data is being made available to increase the understanding of FHB resistance proteomics. The data from this study are related to the research article “Isobaric tags for relative and absolute quantification-based proteomic analysis of defense responses triggered by the fungal pathogen Fusarium graminearum in wheat” [1].
Collapse
|
12
|
Kumar S, Dhembla C, P H, Sundd M, Patel AK. Differential expression of structural and functional proteins during bean common mosaic virus-host plant interaction. Microb Pathog 2019; 138:103812. [PMID: 31669830 DOI: 10.1016/j.micpath.2019.103812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022]
Abstract
Bean common mosaic virus (BCMV), the most common seed-borne pathogen in Phaseolus vulgaris L. is known to cause severe loss in productivity across the globe. In the present study, proteomic analyses were performed for leaf samples from control (healthy) and susceptible BCMV infected plants. The differential expression of proteins was evaluated using two-dimensional gel electrophoresis (2-DE). Approximately, 1098 proteins were spotted, amongst which 107 proteins were observed to be statistically significant with differential expression. The functional categorization of the differential proteins illustrated that they were involved in biotic/abiotic stress (18%), energy and carbon metabolism (11%), photosynthesis (46%), protein biosynthesis (10%), chaperoning (5%), chlorophyll (5%) and polyunsaturated fatty acid biosynthesis (5%). This is the first report on the comparative proteome study of compatible plant-BCMV interactions in P. vulgaris which contributes largely to the understanding of protein-mediated disease resistance/susceptible mechanisms.
Collapse
Affiliation(s)
- Sunil Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Chetna Dhembla
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Hariprasad P
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
13
|
Xu Y, Bi L, Yu Z, Lin C, Gan L, Zhu L, Li H, Song Y, Zhu C. Comprehensive transcriptomics and proteomics analyses of rice stripe virus-resistant transgenic rice. J Biosci 2019. [DOI: 10.1007/s12038-019-9914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Xu Y, Bi L, Yu Z, Lin C, Gan L, Zhu L, Li H, Song Y, Zhu C. Comprehensive transcriptomics and proteomics analyses of rice stripe virus-resistant transgenic rice. J Biosci 2019; 44:81. [PMID: 31502559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stable transgenic rice line (named KRSV-1) with strong resistance against rice stripe virus was generated using the gene sequence of disease-specific protein by RNA interference. Comprehensive safety assessment of transgenic plants has turned into a significant field of genetic modification food safety. In this study, a safety assessment of KRSV-1 was carried out in a stepwise approach. The molecular analysis exhibited that KRSV-1 harbored one copy number of transgene, which was integrated into the intergenic non-coding region of chromosome 2 associated with inter-chromosomal translocations of 1.6-kb segments of chromosome 8. Then, transcriptomics and proteomics analyses were carried out to detect the unintended effects as a result of the integration of the transgene. Although 650 dramatically differentially expressed genes (DDEGs) and 357 differentially expressed proteins were detected between KRSV-1 and wild-type (WT) by transcriptomics and proteomics analyses, no harmful members in the form of toxic proteins and allergens were observed. Encouragingly, the nutritional compositions of seeds from KRSV-1 were comparable with WT seeds. The results of this entire study of molecular analysis, transcriptome and proteome profile of KRSV-1 revealed that no detrimental changes in the form of toxic proteins and allergens were detected in the transgenic rice line due to the integration of the transgene.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang B, Li X, Chen W, Kong L. Isobaric tags for relative and absolute quantification-based proteomic analysis of defense responses triggered by the fungal pathogen Fusarium graminearum in wheat. J Proteomics 2019; 207:103442. [PMID: 31326557 DOI: 10.1016/j.jprot.2019.103442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/22/2019] [Accepted: 07/07/2019] [Indexed: 01/07/2023]
Abstract
Fusarium head blight (FHB) is a devastating disease worldwide that is predominantly caused by the fungal pathogen Fusarium graminearum. The aim of this work was to study differentially abundant protein species of near-isogenic lines A061-3 and A061-4 with the final goal of elucidating the molecular mechanisms of their differential resistance to F. graminearum. The objectives were accomplished using isobaric tags for relative and absolute quantification (iTRAQ) with mass spectrometry (MS). Lines A061-3 and A061-4 were resistant and susceptible to F. graminearum, respectively. At four post-inoculation points, 11,070 protein species were identified, of which 762 were differentially abundant. Gene Ontology enrichment analysis showed that most differentially abundant protein species participated in 18 biological processes after inoculation. Further analysis demonstrated that crucial metabolic pathways like plant-pathogen interaction had increased abundance. Real-time quantitative PCR (qRT-PCR) analysis revealed increased gene products of eight selected genes in plant-pathogen interaction. This investigation provides a basic bioinformatics-based characterization of differentially abundant protein species during early stages against F. graminearum. SIGNIFICANCE: FHB leads to severe yield loss and reduction in grain quality in wheat and other small grain cereals. Although extensive studies have focused on wheat resistance against F. graminearum, the molecular mechanism of FHB resistance in wheat remains to be further elucidated. In the present study, Kyoto Encyclopedia of Genes and Genomes analysis indicated that ten pathways were putatively associated with FHB resistance. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) showed that a valuable set of differentially abundant protein species including pathogenesis-related protein species were identified for further discovery of candidate genes for FHB resistance. This investigation provides new insights into the molecular mechanisms associated with FHB resistance and as well as a foundation for future studies.
Collapse
Affiliation(s)
- Biao Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Xuefeng Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Wuying Chen
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
16
|
Liu Z, Zou L, Chen C, Zhao H, Yan Y, Wang C, Liu X. iTRAQ-based quantitative proteomic analysis of salt stress in Spica Prunellae. Sci Rep 2019; 9:9590. [PMID: 31270436 PMCID: PMC6610069 DOI: 10.1038/s41598-019-46043-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 06/20/2019] [Indexed: 01/03/2023] Open
Abstract
Spica Prunellae is an important Chinese herbal medicine. Because of its good curative effect on various diseases, this herb is consumed in large quantities in clinical applications. The metabolites of Spica Prunellae are known to change under salt stress; however, the difference in protein levels of Spica Prunellae between saline and normal conditions is unclear. In this study, we used proteomics techniques to identify differentially expressed proteins in Spica Prunellae under different saline conditions. (iTRAQ) MS/MS was used to detect statistically significant changes in protein between salt stress and normal conditions. Ultimately, we detected 1,937 proteins, 89 of which were detected in two different comparison. Based on GO, STRING and KEGG analyses, 35 significantly differentially expressed proteins were selected for further analysis. The results of functional and signal pathway analyses indicated that the cellular protein and carbohydrate metabolism of Spica Prunellae was weaker, calcium ion transport was higher, photosynthesis was higher, and protein production was faster under saline conditions than under normal conditions. This study provides useful information for studying the causes of differences in secondary metabolites in Spica Prunellae under salt stress and the protein mechanisms related to their quality.
Collapse
Affiliation(s)
- Zixiu Liu
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China.,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China.,Department of Pharmacy, No. 454 Hospital of PLA, Nanjing, China
| | - Lisi Zou
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China.,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Cuihua Chen
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China.,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Hui Zhao
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China.,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Ying Yan
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China.,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Chengcheng Wang
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China.,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Xunhong Liu
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China. .,Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China. .,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China.
| |
Collapse
|
17
|
Okuda M, Shiba T, Hirae M, Masunaka A, Takeshita M. Analysis of Symptom Development in Relation to Quantity of Rice stripe virus in Rice (Oryza sativa) to Simplify Evaluation of Resistance. PHYTOPATHOLOGY 2019; 109:701-707. [PMID: 30328779 DOI: 10.1094/phyto-07-18-0277-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rice stripe virus (RSV) is one of the most devastating pathogens of rice (Oryza sativa) in rice-growing regions of East Asia. We analyzed the increase in RSV accumulation in infected rice plants over time and evaluated the association between disease severity and RSV accumulation with the aim of establishing an experimental system for accurate and efficient evaluation of RSV resistance in rice. As an index of RSV accumulation in plants, relative concentration of RNA corresponding to the coat protein gene region was measured using reverse-transcription quantitative polymerase chain reaction. Actin and elongation factor 1a were used as the host reference genes. RSV concentrations tended to increase with time from 7 to 28 days after inoculation, and a strong positive correlation was observed between the log RSV concentrations in the midsections of the uppermost leaves and in the stems at the first leaf sheath position. We analyzed RSV concentrations at these two locations 21 days after inoculation with RSV and assessed severity of disease symptoms based on a commonly used scale (Washio's six-grade scale) rated as A (most severe), B, Bt, C, Cr, or D (mild symptoms). RSV concentrations at both locations were high in plants graded A, B, or Bt, with no significant difference in concentration of RSV among the three grades, but concentrations were significantly higher in the three grades compared with that in the plants in grade D. RSV concentrations were highly variable among plants in grades C and Cr. On the basis of these data, we propose a new formula to estimate the range of disease severities with greater ease and practical value. The values calculated by the new formula corresponded well to those based on Washio's six-grade scale.
Collapse
Affiliation(s)
- Mitsuru Okuda
- 1 Central Region Agricultural Research Center, NARO, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Takuya Shiba
- 1 Central Region Agricultural Research Center, NARO, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Masahiro Hirae
- 1 Central Region Agricultural Research Center, NARO, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Akira Masunaka
- 2 Western Region Agricultural Research Center, NARO, 6-12-1 Nishifukatsu-cho, Fukuyama-shi, Hiroshima 721-8514, Japan; and
| | - Minoru Takeshita
- 3 Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan
| |
Collapse
|
18
|
Proteomics Analysis to Identify Proteins and Pathways Associated with the Novel Lesion Mimic Mutant E40 in Rice Using iTRAQ-Based Strategy. Int J Mol Sci 2019; 20:ijms20061294. [PMID: 30875808 PMCID: PMC6471476 DOI: 10.3390/ijms20061294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
A novel rice lesion mimic mutant (LMM) was isolated from the mutant population of Japonica rice cultivar Hitomebore generated by ethyl methane sulfonate (EMS) treatment. Compared with the wild-type (WT), the mutant, tentatively designated E40, developed necrotic lesions over the whole growth period along with detectable changes in several important agronomic traits including lower height, fewer tillers, lower yield, and premature death. To understand the molecular mechanism of mutation-induced phenotypic differences in E40, a proteomics-based approach was used to identify differentially accumulated proteins between E40 and WT. Proteomic data from isobaric tags for relative and absolute quantitation (iTRAQ) showed that 233 proteins were significantly up- or down-regulated in E40 compared with WT. These proteins are involved in diverse biological processes, but phenylpropanoid biosynthesis was the only up-regulated pathway. Differential expression of the genes encoding some candidate proteins with significant up- or down-regulation in E40 were further verified by qPCR. Consistent with the proteomic results, substance and energy flow in E40 shifted from basic metabolism to secondary metabolism, mainly phenylpropanoid biosynthesis, which is likely involved in the formation of leaf spots.
Collapse
|
19
|
Souza PFN, Garcia-Ruiz H, Carvalho FEL. What proteomics can reveal about plant-virus interactions? Photosynthesis-related proteins on the spotlight. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2019; 31:227-248. [PMID: 31355128 PMCID: PMC6660014 DOI: 10.1007/s40626-019-00142-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plant viruses are responsible for losses in worldwide production of numerous economically important food and fuel crops. As obligate cellular parasites with very small genomes, viruses rely on their hosts for replication, assembly, intra- and intercellular movement, and attraction of vectors for dispersal. Chloroplasts are photosynthesis and are the site of replication for several viruses. When viruses replicate in chloroplasts, photosynthesis, an essential process in plant physiology, is inhibited. The mechanisms underlying molecular and biochemical changes during compatible and incompatible plants-virus interactions, are only beginning to be elucidated, including changes in proteomic profiles induced by virus infections. In this review, we highlight the importance of proteomic studies to understand plant-virus interactions, especially emphasizing the changes in photosynthesis-related protein accumulation. We focus on: (a) chloroplast proteins that differentially accumulate during viral infection; (b) the significance with respect to chloroplast-virus interaction; and (c) alterations in plant's energetic metabolism and the subsequently the plant defense mechanisms to overcome viral infection.
Collapse
Affiliation(s)
- Pedro F N Souza
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Hernan Garcia-Ruiz
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Fabricio E L Carvalho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
20
|
Zhao J, Xu J, Chen B, Cui W, Zhou Z, Song X, Chen Z, Zheng H, Lin L, Peng J, Lu Y, Deng Z, Chen J, Yan F. Characterization of Proteins Involved in Chloroplast Targeting Disturbed by Rice Stripe Virus by Novel Protoplast⁻Chloroplast Proteomics. Int J Mol Sci 2019; 20:E253. [PMID: 30634635 PMCID: PMC6358847 DOI: 10.3390/ijms20020253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/19/2018] [Accepted: 01/06/2019] [Indexed: 12/21/2022] Open
Abstract
Rice stripe virus (RSV) is one of the most devastating viral pathogens in rice and can also cause the general chlorosis symptom in Nicotiana benthamiana plants. The chloroplast changes associated with chlorosis symptom suggest that RSV interrupts normal chloroplast functions. Although the change of proteins of the whole cell or inside the chloroplast in response to RSV infection have been revealed by proteomics, the mechanisms resulted in chloroplast-related symptoms and the crucial factors remain to be elucidated. RSV infection caused the malformation of chloroplast structure and a global reduction of chloroplast membrane protein complexes in N. benthamiana plants. Here, both the protoplast proteome and the chloroplast proteome were acquired simultaneously upon RSV infection, and the proteins in each fraction were analyzed. In the protoplasts, 1128 proteins were identified, among which 494 proteins presented significant changes during RSV; meanwhile, 659 proteins were identified from the chloroplasts, and 279 of these chloroplast proteins presented significant change. According to the label-free LC⁻MS/MS data, 66 nucleus-encoded chloroplast-related proteins (ChRPs), which only reduced in chloroplast but not in the whole protoplast, were identified, indicating that these nuclear-encoded ChRPswere not transported to chloroplasts during RSV infection. Gene ontology (GO) enrichment analysis confirmed that RSV infection changed the biological process of protein targeting to chloroplast, where 3 crucial ChRPs (K4CSN4, K4CR23, and K4BXN9) were involved in the regulation of protein targeting into chloroplast. In addition to these 3 proteins, 41 among the 63 candidate proteins were characterized to have chloroplast transit peptides. These results indicated that RSV infection changed the biological process of protein targeting into chloroplast and the location of ChRPs through crucial protein factors, which illuminated a new layer of RSV⁻host interaction that might contribute to the symptom development.
Collapse
Affiliation(s)
- Jinping Zhao
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Texas A&M University AgriLife Research Center at Dallas, Dallas, TX 75252, USA.
| | - Jingjing Xu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Binghua Chen
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
- Center of Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Weijun Cui
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Zhongjing Zhou
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Xijiao Song
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhuo Chen
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Center of Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Hongying Zheng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Lin Lin
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Jiejun Peng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Yuwen Lu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Zhiping Deng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Jianping Chen
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
21
|
Varela ALN, Oliveira JTA, Komatsu S, Silva RGG, Martins TF, Souza PFN, Lobo AKM, Vasconcelos IM, Carvalho FEL, Silveira JAG. A resistant cowpea (Vigna unguiculata [L.] Walp.) genotype became susceptible to cowpea severe mosaic virus (CPSMV) after exposure to salt stress. J Proteomics 2018; 194:200-217. [PMID: 30471437 DOI: 10.1016/j.jprot.2018.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
In nature, plants are simultaneously challenged by biotic and abiotic stresses. However, little is known about the effects of these combined stresses for most crops. This work aimed to evaluate the responsed of the virus-resistant cowpea genotype BRS-Marataoã to the exposure of salt stress combined with CPSMV infection. Cowpea plants were exposed to 200 mM NaCl either simultaneously (SV plant group) or 24 h prior to the CPSMV infection [S(24 h)V plant group]. Physiological, biochemical, and proteomic analyses at 2 and 6 days post salt stress (DPS) revealed that cowpea significantly reprogrammed its cellular metabolism. Indeed, plant size, photosynthetic parameters (net photosynthesis, transpiration rate, stomatal conductance, and internal CO2 partial pressure) and chlorophyll and carotenoid contents were reduced in S(24 h)V compared to SV. Moreover, accumulation of viral particles at 6 DPS in S(24 h)V was observed indicating that the salt stress imposed prior to virus infection favors viral particle proliferation. Proteomic analysis showed differential contents of 403 and 330 proteins at 2 DPS and 6 DPS, respectively, out of 733 differentially abundant proteins between the two plant groups. The altered leaf proteins are involved in energy and metabolism, photosynthesis, stress response, and oxidative burst. BIOLOGICAL SIGNIFICANCE: This is an original study in which a virus-resistant cowpea genotype (BRS-Marataoã) was (i) exposed simultaneously to 200 mM NaCl and inoculation with CPSMV (SV plant group) or (ii) exposed to 200 mM NaCl stress 24 h prior to inoculation with CPSMV [S(24 h)V plant group]. The purpose was to shed light on how this CPSMV resistant cowpea responded to the combined stresses. Numerous key proteins and associated pathways were altered in the cowpea plants challenged with both stresses, but unexpectedly, the salt stress imposed 24 h prior to CPSMV inoculation allowed viral proliferation, turning the cowpea genotype from resistant to susceptible.
Collapse
Affiliation(s)
- Anna Lídia Nunes Varela
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, CE 60440-900, Brazil
| | - Jose Tadeu Abreu Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, CE 60440-900, Brazil.
| | - Setsuko Komatsu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | - Thiago Fernandes Martins
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, CE 60440-900, Brazil
| | | | - Ana Karla Moreira Lobo
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, CE 60440-900, Brazil
| | - Ilka Maria Vasconcelos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, CE 60440-900, Brazil
| | | | | |
Collapse
|
22
|
Nováková S, Danchenko M, Skultety L, Fialová I, Lešková A, Beke G, Flores-Ramírez G, Glasa M. Photosynthetic and Stress Responsive Proteins Are Altered More Effectively in Nicotiana benthamiana Infected with Plum pox virus Aggressive PPV-CR versus Mild PPV-C Cherry-Adapted Isolates. J Proteome Res 2018; 17:3114-3127. [PMID: 30084641 DOI: 10.1021/acs.jproteome.8b00230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plum pox virus (PPV, family Potyviridae) is one of the most important viral pathogens of Prunus spp. causing considerable damage to stone-fruit industry worldwide. Among the PPV strains identified so far, only PPV-C, PPV-CR, and PPV-CV are able to infect cherries under natural conditions. Herein, we evaluated the pathogenic potential of two viral isolates in herbaceous host Nicotiana benthamiana. Significantly higher accumulation of PPV capsid protein in tobacco leaves infected with PPV-CR (RU-30sc isolate) was detected in contrast to PPV-C (BY-101 isolate). This result correlated well with the symptoms observed in the infected plants. To further explore the host response upon viral infection at the molecular level, a comprehensive proteomic profiling was performed. Using reverse-phase ultra-high-performance liquid chromatography followed by label-free mass spectrometry quantification, we identified 38 unique plant proteins as significantly altered due to the infection. Notably, the abundances of photosynthesis-related proteins, mainly from the Calvin-Benson cycle, were found more aggressively affected in plants infected with PPV-CR isolate than those of PPV-C. This observation was accompanied by a significant reduction in the amount of photosynthetic pigments extracted from the leaves of PPV-CR infected plants. Shifts in the abundance of proteins that are involved in stimulation of photosynthetic capacity, modification of amino acid, and carbohydrate metabolism may affect plant growth and initiate energy formation via gluconeogenesis in PPV infected N. benthamiana. Furthermore, we suggest that the higher accumulation of H2O2 in PPV-CR infected leaves plays a crucial role in plant defense and development by activating the glutathione synthesis.
Collapse
Affiliation(s)
- Slavomíra Nováková
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| | - Maksym Danchenko
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| | - Ludovit Skultety
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
- Institute of Microbiology , The Czech Academy of Sciences , Videnska 1083 , 142 20 Prague , Czech Republic
| | - Ivana Fialová
- Plant Science and Biodiversity Center, Institute of Botany , Slovak Academy of Sciences , Dubravska cesta 9 , 845 23 Bratislava , Slovak Republic
| | - Alexandra Lešková
- Plant Science and Biodiversity Center, Institute of Botany , Slovak Academy of Sciences , Dubravska cesta 9 , 845 23 Bratislava , Slovak Republic
| | - Gábor Beke
- Institute of Molecular Biology , Slovak Academy of Sciences , Dúbravská cesta 21 , 845 51 Bratislava , Slovak Republic
| | - Gabriela Flores-Ramírez
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| | - Miroslav Glasa
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| |
Collapse
|
23
|
Na AY, Jo JJ, Kwon OK, Shrestha R, Cho PJ, Kim KM, Ki SH, Lee TH, Jeon TW, Jeong TC, Lee S. Investigation of nonalcoholic fatty liver disease-induced drug metabolism by comparative global toxicoproteomics. Toxicol Appl Pharmacol 2018; 352:28-37. [DOI: 10.1016/j.taap.2018.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 02/06/2023]
|
24
|
Rong W, Wang X, Wang X, Massart S, Zhang Z. Molecular and Ultrastructural Mechanisms Underlying Yellow Dwarf Symptom Formation in Wheat after Infection of Barley Yellow Dwarf Virus. Int J Mol Sci 2018; 19:ijms19041187. [PMID: 29652829 PMCID: PMC5979330 DOI: 10.3390/ijms19041187] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 02/03/2023] Open
Abstract
Wheat (Tritium aestivum L.) production is essential for global food security. Infection of barley yellow dwarf virus-GAV (BYDV-GAV) results in wheat showing leaf yellowing and plant dwarfism symptom. To explore the molecular and ultrastructural mechanisms underlying yellow dwarf symptom formation in BYDV-GAV-infected wheat, we investigated the chloroplast ultrastructure via transmission electron microscopy (TEM), examined the contents of the virus, H2O2, and chlorophyll in Zhong8601, and studied the comparative transcriptome through microarray analyses in the susceptible wheat line Zhong8601 after virus infection. TEM images indicated that chloroplasts in BYDV-GAV-infected Zhong8601 leaf cells were fragmentized. Where thylakoids were not well developed, starch granules and plastoglobules were rare. Compared with mock-inoculated Zhong8601, chlorophyll content was markedly reduced, but the virus and H2O2 contents were significantly higher in BYDV-GAV-infected Zhong8601. The transcriptomic analyses revealed that chlorophyll biosynthesis and chloroplast related transcripts, encoding chlorophyll a/b binding protein, glucose-6-phosphate/phosphate translocator 2, and glutamyl-tRNA reductase 1, were down-regulated in BYDV-GAV-infected Zhong8601. Some phytohormone signaling-related transcripts, including abscisic acid (ABA) signaling factors (phospholipase D alpha 1 and calcineurin B-like protein 9) and nine ethylene response factors, were up-regulated. Additionally, reactive oxygen species (ROS)-related genes were transcriptionally regulated in BYDV-GAV infected Zhong8601, including three up-regulated transcripts encoding germin-like proteins (promoting ROS accumulation) and four down-regulated transcripts encoding peroxides (scavenging ROS). These results clearly suggest that the yellow dwarf symptom formation is mainly attributed to reduced chlorophyll content and fragmentized chloroplasts caused by down-regulation of the chlorophyll and chloroplast biosynthesis related genes, ROS excessive accumulation, and precisely transcriptional regulation of the above-mentioned ABA and ethylene signaling- and ROS-related genes in susceptible wheat infected by BYDV-GAV.
Collapse
Affiliation(s)
- Wei Rong
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Laboratory of Integrated and Urban Phytopathology, Gembloux Agro-Bio Tech-University of Liège, Passage des déportés, 2, 5030 Gembloux, Belgium.
| | - Xindong Wang
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xifeng Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Sebastien Massart
- Laboratory of Integrated and Urban Phytopathology, Gembloux Agro-Bio Tech-University of Liège, Passage des déportés, 2, 5030 Gembloux, Belgium.
| | - Zengyan Zhang
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
25
|
Fu S, Xu Y, Li C, Li Y, Wu J, Zhou X. Rice Stripe Virus Interferes with S-acylation of Remorin and Induces Its Autophagic Degradation to Facilitate Virus Infection. MOLECULAR PLANT 2018; 11:269-287. [PMID: 29229567 DOI: 10.1016/j.molp.2017.11.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/02/2017] [Accepted: 11/23/2017] [Indexed: 05/23/2023]
Abstract
Remorins are plant-specific membrane-associated proteins and were proposed to play crucial roles in plant-pathogen interactions. However, little is known about how pathogens counter remorin-mediated host responses. In this study, by quantitative whole-proteome analysis we found that the remorin protein (NbREM1) is downregulated early in Rice stripe virus (RSV) infection. We further discovered that the turnover of NbREM1 is regulated by S-acylation modification and its degradation is mediated mainly through the autophagy pathway. Interestingly, RSV can interfere with the S-acylation of NbREM1, which is required to negatively regulate RSV infection by restricting virus cell-to-cell trafficking. The disruption of NbREM1 S-acylation affects its targeting to the plasma membrane microdomain, and the resulting accumulation of non-targeted NbREM1 is subjected to autophagic degradation, causing downregulation of NbREM1. Moreover, we found that RSV-encoded movement protein, NSvc4, alone can interfere with NbREM1 S-acylation through binding with the C-terminal domain of NbREM1 the S-acylation of OsREM1.4, the homologous remorin of NbREM1, and thus remorin-mediated defense against RSV in rice, the original host of RSV, indicating that downregulation of the remorin protein level by interfering with its S-acylation is a common strategy adopted by RSV to overcome remorin-mediated inhibition of virus movement.
Collapse
Affiliation(s)
- Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yi Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenyang Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
26
|
Lei R, Du Z, Kong J, Li G, He Y, Qiu Y, Yan J, Zhu S. Blue Native/SDS-PAGE and iTRAQ-Based Chloroplasts Proteomics Analysis of Nicotiana tabacum Leaves Infected with M Strain of Cucumber Mosaic Virus Reveals Several Proteins Involved in Chlorosis Symptoms. Proteomics 2018; 18. [PMID: 29193783 DOI: 10.1002/pmic.201700359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/16/2017] [Indexed: 01/05/2023]
Abstract
Virus infection in plants involves necrosis, chlorosis, and mosaic. The M strain of cucumber mosaic virus (M-CMV) has six distinct symptoms: vein clearing, mosaic, chlorosis, partial green recovery, complete green recovery, and secondary mosaic. Chlorosis indicates the loss of chlorophyll which is highly abundant in plant leaves and plays essential roles in photosynthesis. Blue native/SDS-PAGE combined with mass spectrum was performed to detect the location of virus, and proteomic analysis of chloroplast isolated from virus-infected plants was performed to quantify the changes of individual proteins in order to gain a global view of the total chloroplast protein dynamics during the virus infection. Among the 438 proteins quantified, 33 showed a more than twofold change in abundance, of which 22 are involved in the light-dependent reactions and five in the Calvin cycle. The dynamic change of these proteins indicates that light-dependent reactions are down-accumulated, and the Calvin cycle was up-accumulated during virus infection. In addition to the proteins involved in photosynthesis, tubulin was up-accumulated in virus-infected plant, which might contribute to the autophagic process during plant infection. In conclusion, this extensive proteomic investigation on intact chloroplasts of virus-infected tobacco leaves provided some important novel information on chlorosis mechanisms induced by virus infection.
Collapse
Affiliation(s)
- Rong Lei
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Zhixin Du
- Guangxi Entry-Exit Inspection and Quarantine Bureau, Nanning, Guangxi, P. R. China
| | - Jun Kong
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Guifen Li
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Yan He
- Animal and Plant and Food Testing Center, Tianjin Entry Exit Inspection and Quarantine Bureau, Tianjin, P. R. China
| | - Yanhong Qiu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Jin Yan
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Shuifang Zhu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| |
Collapse
|
27
|
Blasi ÉAR, Buffon G, Rativa AGS, Lopes MCB, Berger M, Santi L, Lavallée-Adam M, Yates JR, Schwambach J, Beys-da-Silva WO, Sperotto RA. High infestation levels of Schizotetranychus oryzae severely affects rice metabolism. JOURNAL OF PLANT PHYSIOLOGY 2017; 219:100-111. [PMID: 29096082 DOI: 10.1016/j.jplph.2017.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 05/03/2023]
Abstract
High levels of Schizotetranychus oryzae phytophagous mite infestation on rice leaves can severely affect productivity. Physiological characterization showed that S. oryzae promotes a decrease in chlorophyll concentration and the establishment of a senescence process in rice leaves. Late-infested leaves also present high levels of superoxide radical and hydrogen peroxide accumulation, along with high levels of membrane integrity loss, which is indicative of cell death. To better understand the rice molecular responses to high levels of mite infestation, we employed the Multidimensional Protein Identification Technology (MudPIT) approach to identify differentially expressed proteins. We identified 83 and 88 proteins uniquely present in control and late-infested leaves, respectively, along with 11 and one proteins more abundant in control and late-infested leaves, respectively. S. oryzae infestation induces a decreased abundance of proteins related to translation, protease inhibition, and photosynthesis. On the other hand, infestation caused increased abundance of proteins involved in protein modification and degradation. Our results also suggest that S. oryzae infestation interferes with intracellular transport, DNA structure maintenance, and amino acid and lipid metabolism in rice leaves. Proteomic data were positively correlated with enzymatic assays and RT-qPCR analysis. Our findings describe the protein expression patterns of late-infested rice leaves and suggest several targets which could be tested in future biotechnological approaches aiming to avoid the population increase of phytophagous mite in rice plants.
Collapse
Affiliation(s)
- Édina A R Blasi
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), University of Taquari Valley - UNIVATES, Lajeado, RS, Brazil
| | - Giseli Buffon
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), University of Taquari Valley - UNIVATES, Lajeado, RS, Brazil
| | - Angie G S Rativa
- Centro de Ciências Biológicas e da Saúde (CCBS), University of Taquari Valley - UNIVATES, Lajeado, RS, Brazil
| | - Mara C B Lopes
- Setor de Melhoramento Genético, Instituto Rio Grandense do Arroz (IRGA), Cachoeirinha, RS, Brazil
| | - Markus Berger
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (CPE - HCPA/UFRGS), Porto Alegre, RS, Brazil
| | - Lucélia Santi
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (CPE - HCPA/UFRGS), Porto Alegre, RS, Brazil
| | - Mathieu Lavallée-Adam
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Joséli Schwambach
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | - Walter O Beys-da-Silva
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (CPE - HCPA/UFRGS), Porto Alegre, RS, Brazil
| | - Raul A Sperotto
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), University of Taquari Valley - UNIVATES, Lajeado, RS, Brazil; Centro de Ciências Biológicas e da Saúde (CCBS), University of Taquari Valley - UNIVATES, Lajeado, RS, Brazil.
| |
Collapse
|
28
|
Zeng W, Sun Z, Cai Z, Chen H, Lai Z, Yang S, Tang X. Comparative transcriptome analysis of soybean response to bean pyralid larvae. BMC Genomics 2017; 18:871. [PMID: 29132375 PMCID: PMC5683215 DOI: 10.1186/s12864-017-4256-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Soybean is one of most important oilseed crop worldwide, however, its production is often limited by many insect pests. Bean pyralid is one of the major soybean leaf-feeding insects in China. To explore the defense mechanisms of soybean resistance to bean pyralid, the comparative transcriptome sequencing was completed between the leaves infested with bean pyralid larvae and no worm of soybean (Gantai-2-2 and Wan82-178) on the Illumina HiSeq™ 2000 platform. RESULTS In total, we identified 1744 differentially expressed genes (DEGs) in the leaves of Gantai-2-2 (1064) and Wan82-178 (680) fed by bean pyralid for 48 h, compared to 0 h. Interestingly, 315 DEGs were shared by Gantai-2-2 and Wan82-178, while 749 and 365 DEGs specifically identified in Gantai-2-2 and Wan82-178, respectively. When comparing Gantai-2-2 with Wan82-178, 605 DEGs were identified at 0 h feeding, and 468 DEGs were identified at 48 h feeding. Gene Ontology (GO) annotation analysis revealed that the DEGs were mainly involved in the metabolic process, single-organism process, cellular process, responses to stimulus, catalytic activities and binding. Pathway analysis showed that most of the DEGs were associated with the plant-pathogen interaction, phenylpropanoid biosynthesis, phenylalanine metabolism, flavonoid biosynthesis, peroxisome, plant hormone signal transduction, terpenoid backbone biosynthesis, and so on. Finally, we used qRT-PCR to validate the expression patterns of several genes and the results showed an excellent agreement with deep sequencing. CONCLUSIONS According to the comparative transcriptome analysis results and related literature reports, we concluded that the response to bean pyralid feeding might be related to the disturbed functions and metabolism pathways of some key DEGs, such as DEGs involved in the ROS removal system, plant hormone metabolism, intracellular signal transduction pathways, secondary metabolism, transcription factors, biotic and abiotic stresses. We speculated that these genes may have played an important role in synthesizing substances to resist insect attacks in soybean. Our results provide a valuable resource of soybean defense genes that will benefit other studies in this field.
Collapse
Affiliation(s)
- Weiying Zeng
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zudong Sun
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zhaoyan Cai
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Huaizhu Chen
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zhenguang Lai
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Shouzhen Yang
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Xiangmin Tang
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| |
Collapse
|
29
|
Guo Y, Wang Z, Guan X, Hu Z, Zhang Z, Zheng J, Lu Y. Proteomic analysis of Potentilla fruticosa L. leaves by iTRAQ reveals responses to heat stress. PLoS One 2017; 12:e0182917. [PMID: 28829780 PMCID: PMC5568749 DOI: 10.1371/journal.pone.0182917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 07/26/2017] [Indexed: 11/19/2022] Open
Abstract
High temperature is an important environmental factor that affects plant growth and crop yield. Potentilla fruticosa L. has a developed root system and characteristics of resistance to several stresses (e.g., high temperature, cold, drought) that are shared by native shrubs in the north and west of China. To investigate thermotolerance mechanisms in P. fruticosa, 3-year-old plants were subjected to a high temperature of 42°C for 1, 2, and 3 days respectively before analysis. Then, we studied changes in cell ultrastructure using electron microscopy and investigated physiological changes in the leaves of P. fruticosa. Additionally, we used isobaric tags for relative and absolute quantification (iTRAQ) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to study proteomic changes in P. fruticosa leaves after 3 d of 42°C heat stress. we found that the cell membrane and structure of chloroplasts, especially the thylakoids in P. fruticosa leaves, was destroyed by a high temperature stress, which might affect the photosynthesis in this species. We identified 35 up-regulated and 23 down-regulated proteins after the heat treatment. Gene Ontology (GO) analysis indicated that these 58 differentially abundant proteins were involved mainly in protein synthesis, protein folding and degradation, abiotic stress defense, photosynthesis, RNA process, signal transduction, and other functions. The 58 proteins fell into different categories based on their subcellular localization mainly in the chloroplast envelope, cytoplasm, nucleus, cytosol, chloroplast, mitochondrion and cell membrane. Five proteins were selected for analysis at the mRNA level; this analysis showed that gene transcription levels were not completely consistent with protein abundance. These results provide valuable information for Potentilla thermotolerance breeding.
Collapse
Affiliation(s)
- Yingtian Guo
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Zhi Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xuelian Guan
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Zenghui Hu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Ze Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Jian Zheng
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Yizeng Lu
- Shandong Forest Germplasm Resources Center, Jinan City, Shandong Province, China
| |
Collapse
|
30
|
Chen H, Cao Y, Li Y, Xia Z, Xie J, Carr JP, Wu B, Fan Z, Zhou T. Identification of differentially regulated maize proteins conditioning Sugarcane mosaic virus systemic infection. THE NEW PHYTOLOGIST 2017; 215:1156-1172. [PMID: 28627019 DOI: 10.1111/nph.14645] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/30/2017] [Indexed: 05/25/2023]
Abstract
Sugarcane mosaic virus (SCMV) is the most important cause of maize dwarf mosaic disease. To identify maize genes responsive to SCMV infection and that may be involved in pathogenesis, a comparative proteomic analysis was performed using the first and second systemically infected leaves (termed 1 SL and 2 SL, respectively). Seventy-one differentially expressed proteins were identified in 1 SL and 2 SL upon SCMV infection. Among them, eight proteins showed the same changing patterns in both 1 SL and 2 SL. Functional annotations of regulated proteins and measurement of photosynthetic activity revealed that photosynthesis was more inhibited and defensive gene expression more pronounced in 1 SL than in 2 SL. Knockdown of regulated proteins in both 1 SL and 2 SL by a brome mosaic virus-based gene silencing vector in maize indicated that protein disulfide isomerase-like and phosphoglycerate kinase were required for optimal SCMV replication. By contrast, knockdown of polyamine oxidase (ZmPAO) significantly increased SCMV accumulation, implying that ZmPAO activity might contribute to resistance or tolerance. The results suggest that combining comparative proteomic analyses of different tissues and virus-induced gene silencing is an efficient way to identify host proteins supporting virus replication or enhancing resistance to virus infection.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Yanyong Cao
- Cereal Crops Institute, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Yiqing Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zihao Xia
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Jipeng Xie
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Boming Wu
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Zaifeng Fan
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
31
|
Zeng W, Sun Z, Cai Z, Chen H, Lai Z, Yang S, Tang X. Proteomic analysis by iTRAQ-MRM of soybean resistance to Lamprosema Indicate. BMC Genomics 2017; 18:444. [PMID: 28587595 PMCID: PMC5461738 DOI: 10.1186/s12864-017-3825-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 05/28/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Lamprosema indicate is a major leaf feeding insect pest to soybean, which has caused serious yield losses in central and southern China. To explore the defense mechanisms of soybean resistance to Lamprosema indicate, a highly resistant line (Gantai-2-2) and a highly susceptible line (Wan 82-178) were exposed to Lamprosema indicate larval feedings for 0 h and 48 h, and the differential proteomic analyses of these two lines were carried out. RESULTS The results showed that 31 differentially expressed proteins (DEPs) were identified in the Gantai-2-2 when comparing 48 h feeding with 0 h feeding, and 53 DEPs were identified in the Wan 82-178. 28 DEPs were identified when comparing Gantai-2-2 with Wan 82-178 at 0 h feeding. The bioinformatic analysis results showed that most of the DEPs were associated with ribosome, linoleic acid metabolism, flavonoid biosynthesis, phenylpropanoid biosynthesis, peroxisome, stilbenoid, diarylheptanoid and gingerol biosynthesis, glutathione metabolism, pant hormone signal transduction, and flavone and flavonol biosynthesis, as well as other resistance related metabolic pathways. The MRM analysis showed that the iTRAQ results were reliable. CONCLUSIONS According to the analysis of the DEPs results, the soybean defended or resisted the Lamprosema indicate damage by the induction of a synthesis of anti-digestive proteins which inhibit the growth and development of insects, reactive oxygen species scavenging, signaling pathways, secondary metabolites synthesis, and so on.
Collapse
Affiliation(s)
- Weiying Zeng
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zudong Sun
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zhaoyan Cai
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Huaizhu Chen
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zhenguang Lai
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Shouzhen Yang
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Xiangmin Tang
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| |
Collapse
|
32
|
Identifying the Genes Regulated by AtWRKY6 Using Comparative Transcript and Proteomic Analysis under Phosphorus Deficiency. Int J Mol Sci 2017; 18:ijms18051046. [PMID: 28498313 PMCID: PMC5454958 DOI: 10.3390/ijms18051046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 01/06/2023] Open
Abstract
Phosphorus (P) is an important mineral nutrient for plant growth and development. Overexpressing AtWRKY6 (35S:WRKY6-9) was more sensitive and wrky6 (wrky6-1) was more resistant under low Pi conditions. To better understand the function of AtWRKY6 under low phosphate stress conditions, we applied two-dimensional gel electrophoresis (2-DE) to analyse differentially expressed proteins in the shoots and roots between wild type, 35S:WRKY6-9 and wrky6-1 after phosphorus deficiency treatment for three days. The results showed 88 differentially abundant protein spots, which were identified between the shoots and roots of 35S:WRKY6-9 and wrky6-1 plants. In addition, 59 differentially expressed proteins were identified in the leaves and roots of 35S:WRKY6-9 plants. After analysis, 9 genes with W-box elements in their promoter sequences were identified in the leaves, while 6 genes with W-box elements in their promoter sequences were identified in the roots. A total of 8 genes were identified as potential target genes according to the quantitative PCR (QPCR) and two dimension difference gel electrophoresis, (2D-DIGE) results, including ATP synthase, gln synthetase, nitrilase, 14-3-3 protein, carbonic anhydrases 2, and tryptophan synthase. These results provide important information concerning the AtWRKY6 regulation network and reveal potential vital target genes of AtWRKY6 under low phosphorus stress. two dimension difference gel electrophoresis, 2D-DIGE.
Collapse
|
33
|
Cao X, Fan G, Dong Y, Zhao Z, Deng M, Wang Z, Liu W. Proteome Profiling of Paulownia Seedlings Infected with Phytoplasma. FRONTIERS IN PLANT SCIENCE 2017; 8:342. [PMID: 28344590 PMCID: PMC5344924 DOI: 10.3389/fpls.2017.00342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/27/2017] [Indexed: 05/29/2023]
Abstract
Phytoplasma is an insect-transmitted pathogen that causes witches' broom disease in many plants. Paulownia witches' broom is one of the most destructive diseases threatening Paulownia production. The molecular mechanisms associated with this disease have been investigated by transcriptome sequencing, but changes in protein abundance have not been investigated with isobaric tags for relative and absolute quantitation. Previous results have shown that methyl methane sulfonate (MMS) can help Paulownia seedlings recover from the symptoms of witches' broom and reinstate a healthy morphology. In this study, a transcriptomic-assisted proteomic technique was used to analyze the protein changes in phytoplasma-infected Paulownia tomentosa seedlings, phytoplasma-infected seedlings treated with 20 and 60 mg·L-1 MMS, and healthy seedlings. A total of 2,051 proteins were obtained, 879 of which were found to be differentially abundant in pairwise comparisons between the sample groups. Among the differentially abundant proteins, 43 were related to Paulownia witches' broom disease and many of them were annotated to be involved in photosynthesis, expression of dwarf symptom, energy production, and cell signal pathways.
Collapse
Affiliation(s)
- Xibing Cao
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Yanpeng Dong
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| | - Zhe Wang
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
| | - Wenshan Liu
- Institute of Paulownia, Henan Agricultural UniversityZhengzhou, China
- College of Forestry, Henan Agricultural UniversityZhengzhou, China
| |
Collapse
|
34
|
Paiva ALS, Oliveira JTA, de Souza GA, Vasconcelos IM. Label-free Proteomic Reveals that Cowpea Severe Mosaic Virus Transiently Suppresses the Host Leaf Protein Accumulation During the Compatible Interaction with Cowpea (Vigna unguiculata [L.] Walp.). J Proteome Res 2016; 15:4208-4220. [PMID: 27934294 DOI: 10.1021/acs.jproteome.6b00211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Viruses are important plant pathogens that threaten diverse crops worldwide. Diseases caused by Cowpea severe mosaic virus (CPSMV) have drawn attention because of the serious damages they cause to economically important crops including cowpea. This work was undertaken to quantify and identify the responsive proteins of a susceptible cowpea genotype infected with CPSMV, in comparison with mock-inoculated controls, using label-free quantitative proteomics and databanks, aiming at providing insights on the molecular basis of this compatible interaction. Cowpea leaves were mock- or CPSMV-inoculated and 2 and 6 days later proteins were extracted and analyzed. More than 3000 proteins were identified (data available via ProteomeXchange, identifier PXD005025) and 75 and 55 of them differentially accumulated in response to CPSMV, at 2 and 6 DAI, respectively. At 2 DAI, 76% of the proteins decreased in amount and 24% increased. However, at 6 DAI, 100% of the identified proteins increased. Thus, CPSMV transiently suppresses the synthesis of proteins involved particularly in the redox homeostasis, protein synthesis, defense, stress, RNA/DNA metabolism, signaling, and other functions, allowing viral invasion and spread in cowpea tissues.
Collapse
Affiliation(s)
| | | | - Gustavo A de Souza
- Proteomics Core Facility, Institute of Immunology (IMM), Rikshospitalet , Oslo, Norway
| | | |
Collapse
|
35
|
Zhao J, Zhang X, Hong Y, Liu Y. Chloroplast in Plant-Virus Interaction. Front Microbiol 2016; 7:1565. [PMID: 27757106 PMCID: PMC5047884 DOI: 10.3389/fmicb.2016.01565] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/20/2016] [Indexed: 11/16/2022] Open
Abstract
In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction.
Collapse
Affiliation(s)
- Jinping Zhao
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijing, China
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Xian Zhang
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijing, China
| |
Collapse
|
36
|
Quantitative Proteomics Reveals the Defense Response of Wheat against Puccinia striiformis f. sp. tritici. Sci Rep 2016; 6:34261. [PMID: 27678307 PMCID: PMC5039691 DOI: 10.1038/srep34261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 09/12/2016] [Indexed: 01/09/2023] Open
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is considered one of the most aggressive diseases to wheat production. In this study, we used an iTRAQ-based approach for the quantitative proteomic comparison of the incompatible Pst race CYR23 in infected and non-infected leaves of the wheat cultivar Suwon11. A total of 3,475 unique proteins were identified from three key stages of interaction (12, 24, and 48 h post-inoculation) and control groups. Quantitative analysis showed that 530 proteins were differentially accumulated by Pst infection (fold changes >1.5, p < 0.05). Among these proteins, 10.54% was classified as involved in the immune system process and stimulus response. Intriguingly, bioinformatics analysis revealed that a set of reactive oxygen species metabolism-related proteins, peptidyl–prolyl cis–trans isomerases (PPIases), RNA-binding proteins (RBPs), and chaperonins was involved in the response to Pst infection. Our results were the first to show that PPIases, RBPs, and chaperonins participated in the regulation of the immune response in wheat and even in plants. This study aimed to provide novel routes to reveal wheat gene functionality and better understand the early events in wheat–Pst incompatible interactions.
Collapse
|
37
|
Liu B, Qin F, Liu W, Wang X. Differential proteomics profiling of the ova between healthy and Rice stripe virus-infected female insects of Laodelphax striatellus. Sci Rep 2016; 6:27216. [PMID: 27277140 PMCID: PMC4899684 DOI: 10.1038/srep27216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
Rice stripe virus-infected females of the small brown planthopper (SBPH, Laodelphax striatellus) usually lay fewer eggs with a longer hatch period, low hatchability, malformation and retarded or defective development compared with healthy females. To explore the molecular mechanism of those phenomena, we analyzed the differential proteomics profiling of the ova between viruliferous and healthy female insects using an isobaric tag for relative and absolute quantitation (iTRAQ) approach. We obtained 147 differentially accumulated proteins: 98 (66.7%) proteins increased, but 49 (33.3%) decreased in the ova of the viruliferous females. RT-qPCR was used to verify the 12 differential expressed proteins from iTRAQ, finding that trends in the transcriptional change for the 12 genes were consistent with those at the proteomic level. Differentially expressed proteins that were associated with meiosis (serine/threonine-protein phosphatase 2B and cyclin B3) and mitosis (cyclin B3 and dynein heavy chain) in viruliferous ova may contribute to low hatchability and defective or retarded development. Alterations in the abundance of proteins involved in the respiratory chain and nutrition metabolism may affect embryonic development. Our study begins to explain macroscopical developmental phenomena and explore the mechanisms by which Rice stripe virus impacts the development of SBPH.
Collapse
Affiliation(s)
- Beibei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Faliang Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
38
|
Yang J, Zhang F, Li J, Chen JP, Zhang HM. Integrative Analysis of the microRNAome and Transcriptome Illuminates the Response of Susceptible Rice Plants to Rice Stripe Virus. PLoS One 2016; 11:e0146946. [PMID: 26799317 PMCID: PMC4723043 DOI: 10.1371/journal.pone.0146946] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/22/2015] [Indexed: 11/19/2022] Open
Abstract
Rice stripe virus (RSV) is one of the most serious rice viruses in East Asia. To investigate how rice responds to RSV infection, we integrated miRNA expression with parallel mRNA transcription profiling by deep sequencing. A total of 570 miRNAs were identified of which 69 miRNAs (56 up-regulated and 13 down-regulated) were significantly modified by RSV infection. Digital gene expression (DGE) analysis showed that 1274 mRNAs (431 up-regulated and 843 down-regulated genes) were differentially expressed as a result of RSV infection. The differential expression of selected miRNAs and mRNAs was confirmed by qRT-PCR. Gene ontology (GO) and pathway enrichment analysis showed that a complex set of miRNA and mRNA networks were selectively regulated by RSV infection. In particular, 63 differentially expressed miRNAs were found to be significantly and negatively correlated with 160 target mRNAs. Interestingly, 22 up-regulated miRNAs were negatively correlated with 24 down-regulated mRNAs encoding disease resistance-related proteins, indicating that the host defense responses were selectively suppressed by RSV infection. The suppression of both osa-miR1423-5p- and osa-miR1870-5p-mediated resistance pathways was further confirmed by qRT-PCR. Chloroplast functions were also targeted by RSV, especially the zeaxanthin cycle, which would affect the stability of thylakoid membranes and the biosynthesis of ABA. All these modifications may contribute to viral symptom development and provide new insights into the pathogenicity mechanisms of RSV.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fen Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Jing Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jian-Ping Chen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- * E-mail: (HZ); (JC)
| | - Heng-Mu Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- * E-mail: (HZ); (JC)
| |
Collapse
|
39
|
Abstract
In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction.
Collapse
Affiliation(s)
- Jinping Zhao
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijing, China; State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Xian Zhang
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University Beijing, China
| |
Collapse
|