1
|
Benedicenti O, Måsøy Amundsen M, Mohammad SN, Vrålstad T, Strand DA, Weli SC, Patel S, Sindre H. A refinement to eRNA and eDNA-based detection methods for reliable and cost-efficient screening of pathogens in Atlantic salmon aquaculture. PLoS One 2024; 19:e0312337. [PMID: 39432531 PMCID: PMC11493300 DOI: 10.1371/journal.pone.0312337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Finfish aquaculture is one of the fastest-growing food production sectors in the world, and numerous infectious diseases are a constant challenge to the fish farming industry, causing decreased fish health and, consequently, economic losses. Specific and sensitive tools for pathogen detection are crucial for the surveillance of environmental samples to prevent the spread of fish pathogens in farms. Monitoring of waterborne pathogens through filtration of water and subsequent molecular detection of target-specific DNA or RNA sequence motifs is an animal-friendly method. This approach could reduce or even replace the sacrifice of fish for monitoring purposes in aquaculture and allow earlier implementation of disease control measures. Sampling methods might be a bottleneck, and there is a need for simple sampling methods that still ensure the best detection probability. In this study, we tested different filtration methods with spiked freshwater and seawater for a panel of fish pathogens to discern a suitable procedure that can be easily applied on-site by farm personnel without compromising detection probability. Specifically, we tested combinations of different filtration flow rates, lysis buffers, and filters for the detection of some of the pathogens relevant to the aquaculture industry. The results showed that a "sandwich" filtration method using two different filters and a flow rate of up to 4.0 L/min ensured good pathogen detection. The filters, consisting of a hydrophilic glass fibre filter with binder resin on the top and a hydrophilic mixed cellulose esters membrane at the bottom, achieved the best concentration and qPCR detection of both viral and bacterial fish pathogens. This up-and-coming tool allows the detection of very different fish pathogens during a single filtration step, and it can be combined with one single automated total nucleic acid extraction step for all the investigated pathogens, reducing both analysis costs and time.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sonal Patel
- Norwegian Veterinary Institute, Bergen, Norway
| | | |
Collapse
|
2
|
Tartor H, Bernhardt LV, Mohammad SN, Kuiper R, Weli SC. In Situ Detection of Salmonid Alphavirus 3 (SAV3) in Tissues of Atlantic Salmon in a Cohabitation Challenge Model with a Special Focus on the Immune Response to the Virus in the Pseudobranch. Viruses 2023; 15:2450. [PMID: 38140691 PMCID: PMC11080939 DOI: 10.3390/v15122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Salmonid alphavirus strain 3 is responsible for outbreaks of pancreas disease in salmon and rainbow trout in Norway. Although the extensive amount of research on SAV3 focused mainly on the heart and pancreas (of clinical importance), tropism and pathogenesis studies of the virus in other salmon tissues are limited. Here, we used a combination of RT-qPCR (Q_nsp1 gene) and in situ hybridization (RNAscope®) to demonstrate the tropism of SAV3 in situ in tissues of Atlantic salmon, employing a challenge model (by cohabitation). In addition, as previous results suggested that the pseudobranch may harbor the virus, the change in the expression of different immune genes upon SAV3 infection (RT-qPCR) was focused on the pseudobranch in this study. In situ hybridization detected SAV3 in different tissues of Atlantic salmon during the acute phase of the infection, with the heart ventricle showing the most extensive infection. Furthermore, the detection of the virus in different adipose tissues associated with the internal organs of the salmon suggests a specific affinity of SAV3 to adipocyte components. The inconsistent immune response to SAV3 in the pseudobranch after infection did not mitigate the infection in that tissue and is probably responsible for the persistent low infection at 4 weeks post-challenge. The early detection of SAV3 in the pseudobranch after infection, along with the persistent low infection over the experimental infection course, suggests a pivotal role of the pseudobranch in SAV3 pathogenesis in Atlantic salmon.
Collapse
Affiliation(s)
- Haitham Tartor
- Department of Fish Health, Norwegian Veterinary Institute, 1433 Ås, Norway;
| | | | | | - Raoul Kuiper
- Department of Fish Biosecurity, Norwegian Veterinary Institute, 1433 Ås, Norway; (R.K.); (S.C.W.)
| | - Simon C. Weli
- Department of Fish Biosecurity, Norwegian Veterinary Institute, 1433 Ås, Norway; (R.K.); (S.C.W.)
| |
Collapse
|
3
|
Kim KH, Choi KM, Joo MS, Kang G, Woo WS, Sohn MY, Son HJ, Kwon MG, Kim JO, Kim DH, Park CI. Red Sea Bream Iridovirus (RSIV) Kinetics in Rock Bream (Oplegnathus fasciatus) at Various Fish-Rearing Seawater Temperatures. Animals (Basel) 2022; 12:ani12151978. [PMID: 35953967 PMCID: PMC9367270 DOI: 10.3390/ani12151978] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Red sea bream iridoviral disease (RSIVD) generates serious economic losses by causing mass mortality events of rock bream during the season with high water temperature in the Republic of Korea and other Asian countries. However, very few studies have investigated RSIV kinetics in rock bream under various rearing water temperatures. In this paper, we investigated the viral load shedding of RSIV into seawater after artificially infecting rock bream (Oplegnathus fasciatus) with the virus. Overall, our data suggest that the viral load shedding of RSIV into seawater varies depending on water temperature and virus inoculation concentration. Our results reveal the potential of non-invasive virus detection approaches, such as the utilization of environmental DNA in fish farms. In addition, we showed that the quantitative analysis of seawater viruses can indirectly improve our understanding of disease progression in fish, potentially contributing to enhanced disease control. Abstract Red sea bream iridoviral disease (RSIVD) causes serious economic losses in the aquaculture industry. In this paper, we evaluated RSIV kinetics in rock bream under various rearing water temperatures and different RSIV inoculation concentrations. High viral copy numbers (approximately 103.7–106.7 RSIV genome copies/L/g) were observed during the period of active fish mortality after RSIV infection at all concentrations in the tanks (25 °C and 20 °C). In the group injected with 104 RSIV genome copies/fish, RSIV was not detected at 21–30 days post-infection (dpi) in the rearing seawater. In rock bream infected at 15 °C and subjected to increasing water temperature (1 °C/d until 25 °C) 3 days later, the virus replication rate and number of viral copies shed into the rearing seawater increased. With the decrease in temperature (1 °C/d) from 25 to 15 °C after the infection, the virus replicated rapidly and was released at high loads on the initial 3–5 dpi, whereas the number of viral copies in the fish and seawater decreased after 14 dpi. These results indicate that the number of viral copies shed into the rearing seawater varies depending on the RSIV infection level in rock bream.
Collapse
Affiliation(s)
- Kyung-Ho Kim
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Korea
| | - Kwang-Min Choi
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Korea
| | - Min-Soo Joo
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Korea
| | - Gyoungsik Kang
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Korea
| | - Won-Sik Woo
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Korea
| | - Min-Young Sohn
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Korea
| | - Ha-Jeong Son
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Korea
| | - Mun-Gyeong Kwon
- Aquatic Disease Control Division, National Fishery Products Quality Management Service, 216, Gijanghaean-ro, Gijang, Busan 46083, Korea
| | - Jae-Ok Kim
- Aquatic Disease Control Division, National Fishery Products Quality Management Service, 17, Jungnim 2-ro, Tongyeong 53019, Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan 48513, Korea
- Correspondence: (D.-H.K.); (C.-I.P.); Tel.: +82-55-772-9153 (C.-I.P.)
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Korea
- Correspondence: (D.-H.K.); (C.-I.P.); Tel.: +82-55-772-9153 (C.-I.P.)
| |
Collapse
|
4
|
Bakke AF, Rebl A, Frost P, Afanasyev S, Røyset KA, Søfteland T, Lund H, Boysen P, Krasnov A. Effect of two constant light regimens on antibody profiles and immune gene expression in Atlantic salmon following vaccination and experimental challenge with salmonid alphavirus. FISH & SHELLFISH IMMUNOLOGY 2021; 118:188-196. [PMID: 34252544 DOI: 10.1016/j.fsi.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Before seawater transfer, farmed Atlantic salmon are subjected to treatments that may affect the immune system and susceptibility to pathogens. E.g., exposure to constant light (CL) stimulates smoltification, which prepares salmon to life in sea water, but endocrine changes in this period are associated with suppression of immune genes. Salmon are vaccinated towards end of the freshwater period to safeguard that adequate vaccine efficacy is achieved by the time the fish is transferred to sea. In the present study, we investigated how the responses to vaccination and viral infection varied depending on the time of CL onset relative to vaccination. The salmon were either exposed to CL two weeks prior to vaccination (2-PRI) or exposed to CL at the time of vaccination (0-PRI). A cohabitant challenge with salmonid alphavirus, the causative agent of pancreatic disease, was performed 9 weeks post vaccination. The immunological effects of the different light manipulation were examined at 0- and 6-weeks post vaccination, and 6 weeks post challenge. Antibody levels in serum were measured using a serological bead-based multiplex panel as well as ELISA, and 92 immune genes in heart and spleen were measured using an integrated fluidic circuit-based qPCR array for multiple gene expression. The 2-PRI group showed a moderate transcript down-regulation of genes in the heart at the time of vaccination, which were restored 6 weeks after vaccination (WPV). Conversely, at 6WPV a down-regulation was seen for the 0-PRI fish. Moreover, the 2-PRI group had significantly higher levels of antibodies binding to three of the vaccine components at 6WPV, compared to 0-PRI. In response to SAV challenge, transcription of immune genes between 2-PRI and 0-PRI was markedly dissimilar in the heart and spleen of control fish, but no difference was found between vaccinated salmon from the two CL regimens. Thus, by using labor-saving high throughput detection methods, we demonstrated that light regimens affected antibody production and transcription of immune genes in non-vaccinated and virus challenged salmon, but the differences between the light treatment groups appeared eliminated by vaccination.
Collapse
Affiliation(s)
- Anne Flore Bakke
- Faculty of Veterinary Medicine, University of Life Sciences (NMBU), Oslo, Norway.
| | - Alexander Rebl
- The Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Petter Frost
- MSD Animal Health, Thormøhlensgate 55, N-5006 Bergen, Norway
| | - Sergey Afanasyev
- Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | | | - Tina Søfteland
- MSD Animal Health, Thormøhlensgate 55, N-5006 Bergen, Norway
| | - Hege Lund
- Faculty of Veterinary Medicine, University of Life Sciences (NMBU), Oslo, Norway
| | - Preben Boysen
- Faculty of Veterinary Medicine, University of Life Sciences (NMBU), Oslo, Norway
| | | |
Collapse
|
5
|
Bernhardt LV, Lillehaug A, Qviller L, Weli SC, Grønneberg E, Nilsen H, Myrmel M. Early detection of salmonid alphavirus in seawater from marine farm sites of Atlantic salmon Salmo salar. DISEASES OF AQUATIC ORGANISMS 2021; 146:41-52. [PMID: 34498609 DOI: 10.3354/dao03618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The traditional strategy for national surveillance of salmonid alphavirus (SAV) infection in Norwegian fish farms relies on a costly, time-consuming, and resource-demanding approach based on the monthly sampling of fish from all marine farms with salmonids. In order to develop an alternative surveillance method, a water filtration method was tested in parallel with the ongoing surveillance program at 7 Norwegian marine farm sites of Atlantic salmon Salmo salar L. with no current suspicion of SAV infection. During the period from May 2019 to January 2020, seawater samples were collected from the top layer water inside all net-pens at these 7 sites. The samples were concentrated for SAV by filtration through an MF-Millipore™ electronegative membrane filter, followed by rinsing with NucliSENS® Lysis Buffer, before RNA extraction and analysis by RT-qPCR. SAV was detected from seawater at an earlier stage compared to traditional sampling methods, at all sites where the fish tested positive for SAV. A significant negative relationship was observed at all sites between the SAV concentration found in seawater samples and the number of days until SAV was detected in the fish. This means that the fewer the SAV particles in the seawater, the more days it took until SAV was detected in the fish samples. Based on this, sampling of seawater every month for the surveillance of SAV has a great potential as an alternative method for early detection of SAV in Atlantic salmon farms.
Collapse
|
6
|
Bernhardt LV, Myrmel M, Lillehaug A, Qviller L, Chioma Weli S. Filtration, concentration and detection of salmonid alphavirus in seawater during a post-smolt salmon (Salmo salar) cohabitant challenge. DISEASES OF AQUATIC ORGANISMS 2021; 144:61-73. [PMID: 33764314 DOI: 10.3354/dao03572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Currently, the prevalence of salmonid alphavirus (SAV) in Norwegian Atlantic salmon farms is largely surveyed via sacrificing fish and sampling of organ tissue on a monthly basis. However, a more cost-efficient, straightforward, rapid, reliable, reproducible and animal welfare friendly method based on the detection of SAV in water could be considered as an alternative method. In the present study, such a method was developed and optimized through a 6 wk cohabitant challenge trial, using post-smolt Atlantic salmon Salmo salar L challenged with high or low doses of SAV subtype 3 (SAV3). Tank water and tissue samples from cohabitant fish were collected at 16 time points. SAV3 was concentrated from the water by filtration, using either electronegative or electropositive membrane filters, which were subsequently rinsed with one of 4 different buffer solutions. SAV3 was detected first in tank water (7 d post-challenge, DPC), and later in cohabitant fish organ tissue samples (12 DPC). The electronegative filter (MF-Millipore™) and rinsing with NucliSENS® easyMAG® Lysis Buffer presented the best SAV3 recovery. A significant positive correlation was found between SAV3 in the tank water concentrates and the mid-kidney samples. Based on these results, detection of SAV3 in filtrated seawater is believed to have the potential to serve as an alternative method for surveillance of SAV in Atlantic salmon farms.
Collapse
|
7
|
Effects of ploidy and salmonid alphavirus infection on the skin and gill microbiome of Atlantic salmon (Salmo salar). PLoS One 2021; 16:e0243684. [PMID: 33606747 PMCID: PMC7894865 DOI: 10.1371/journal.pone.0243684] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/01/2021] [Indexed: 01/04/2023] Open
Abstract
The microbial communities that live in symbiosis with the mucosal surfaces of animals provide the host with defense strategies against pathogens. These microbial communities are largely shaped by the environment and the host genetics. Triploid Atlantic salmon (Salmo salar) are being considered for aquaculture as they are reproductively sterile and thus cannot contaminate the natural gene pool. It has not been previously investigated how the microbiome of triploid salmon compares to that of their diploid counterparts. In this study, we compare the steady-state skin and gill microbiome of both diploid and triploid salmon, and determine the effects of salmonid alphavirus 3 experimental infection on their microbial composition. Our results show limited differences in the skin-associated microbiome between triploid and diploid salmon, irrespective of infection. In the gills, we observed a high incidence of the bacterial pathogen Candidatus Branchiomonas, with higher abundance in diploid compared to triploid control fish. Diploid salmon infected with SAV3 showed greater histopathological signs of epitheliocystis compared to controls, a phenomenon not observed in triploid fish. Our results indicate that ploidy can affect the alpha diversity of the gills but not the skin-associated microbial community. Importantly, during a natural outbreak of Branchiomonas sp. the gill microbiome of diploid Atlantic salmon became significantly more dominated by this pathogen than in triploid animals. Thus, our results suggest that ploidy may play a role on Atlantic salmon gill health and provide insights into co-infection with SAV3 and C. Branchiomonas in Atlantic salmon.
Collapse
|
8
|
Non-Lethal Sequential Individual Monitoring of Viremia in Relation to DNA Vaccination in Fish-Example Using a Salmon Alphavirus DNA Vaccine in Atlantic Salmon Salmo salar. Vaccines (Basel) 2021; 9:vaccines9020163. [PMID: 33671162 PMCID: PMC7922653 DOI: 10.3390/vaccines9020163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 11/26/2022] Open
Abstract
Traditionally, commercial testing for vaccine efficacy has relied on the mass infection of vaccinated and unvaccinated animals and the comparison of mortality prevalence and incidence. For some infection models where disease does not cause mortality this approach to testing vaccine efficacy is not useful. Additionally, in fish experimental studies on vaccine efficacy and immune response the norm is that several individuals are lethally sampled at sequential timepoints, and results are extrapolated to represent the kinetics of immune and disease parameters of an individual fish over the entire experimental infection period. In the present study we developed a new approach to vaccine testing for viremic viruses in fish by following the same individuals over the course of a DNA vaccination and experimental infection through repeated blood collection and analyses. Injectable DNA vaccines are particularly efficient against viral disease in fish. To date, two DNA vaccines have been authorised for use in fish farming, one in Canada against Infectious Haemorrhagic Necrotic virus and more recently one in Europe against Salmon Pancreatic Disease virus (SPDv) subtype 3. In the current study we engineered and used an experimental DNA vaccine against SPDv subtype 1. We measured viremia using a reporter cell line system and demonstrated that the viremia phase was completely extinguished following DNA vaccination. Differences in viremia infection kinetics between fish in the placebo group could be related to subsequent antibody levels in the individual fish, with higher antibody levels at terminal sampling in fish showing earlier viremia peaks. The results indicate that sequential non-lethal sampling can highlight associations between infection traits and immune responses measured at asynchronous timepoints and, can provide biological explanations for variation in data. Similar to results observed for the SPDv subtype 3 DNA vaccine, the SPDv subtype 1 DNA vaccine also induced an interferon type 1 response after vaccination and provided high protection against SPDv under laboratory conditions when fish were challenged at 7 weeks post-vaccination.
Collapse
|
9
|
Cantrell DL, Groner ML, Ben-Horin T, Grant J, Revie CW. Modeling Pathogen Dispersal in Marine Fish and Shellfish. Trends Parasitol 2020; 36:239-249. [PMID: 32037136 DOI: 10.1016/j.pt.2019.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/19/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
In marine ecosystems, oceanographic processes often govern host contacts with infectious agents. Consequently, many approaches developed to quantify pathogen dispersal in terrestrial ecosystems have limited use in the marine context. Recent applications in marine disease modeling demonstrate that physical oceanographic models coupled with biological models of infectious agents can characterize dispersal networks of pathogens in marine ecosystems. Biophysical modeling has been used over the past two decades to model larval dispersion but has only recently been utilized in marine epidemiology. In this review, we describe how biophysical models function and how they can be used to measure connectivity of infectious agents between sites, test hypotheses regarding pathogen dispersal, and quantify patterns of pathogen spread, focusing on fish and shellfish pathogens.
Collapse
Affiliation(s)
- Danielle L Cantrell
- Health Management Department, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada.
| | - Maya L Groner
- Prince William Sound Science Center, Cordova, AK, USA; Affiliate, US Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - Tal Ben-Horin
- Department of Fisheries, Animal and Veterinary Science, College of the Environment and Life Science, University of Rhode Island, Kingston, RI, USA; Center for Marine Science and Technology, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Morehead City, NC, USA
| | - Jon Grant
- Oceanography Department, Dalhousie University, Halifax, NS, Canada
| | - Crawford W Revie
- Health Management Department, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada; Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
10
|
Ignatz EH, Braden LM, Benfey TJ, Caballero-Solares A, Hori TS, Runighan CD, Fast MD, Westcott JD, Rise ML. Impact of rearing temperature on the innate antiviral immune response of growth hormone transgenic female triploid Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2020; 97:656-668. [PMID: 31891812 DOI: 10.1016/j.fsi.2019.12.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
AquAdvantage Salmon (growth hormone transgenic female triploid Atlantic salmon) are a faster-growing alternative to conventional farmed diploid Atlantic salmon. To investigate optimal rearing conditions for their commercial production, a laboratory study was conducted in a freshwater recirculating aquaculture system (RAS) to examine the effect of rearing temperature (10.5 °C, 13.5 °C, 16.5 °C) on their antiviral immune and stress responses. When each temperature treatment group reached an average weight of 800 g, a subset of fish were intraperitoneally injected with either polyriboinosinic polyribocytidylic acid (pIC, a viral mimic) or an equal volume of sterile phosphate-buffered saline (PBS). Blood and head kidney samples were collected before injection and 6, 24 and 48 h post-injection (hpi). Transcript abundance of 7 antiviral biomarker genes (tlr3, lgp2, stat1b, isg15a, rsad2, mxb, ifng) was measured by real-time quantitative polymerase chain reaction (qPCR) on head kidney RNA samples. Plasma cortisol levels from blood samples collected pre-injection and from pIC and PBS groups at 24 hpi were quantified by ELISA. While rearing temperature and treatment did not significantly affect circulating cortisol, all genes tested were significantly upregulated by pIC at all three temperatures (except for tlr3, which was only upregulated in the 10.5 °C treatment). Target gene activation was generally observed at 24 hpi, with most transcript levels decreasing by 48 hpi in pIC-injected fish. Although a high amount of biological variability in response to pIC was evident across all treatments, rearing temperature significantly influenced transcript abundance and/or fold-changes comparing time- and temperature-matched pIC- and PBS-injected fish for several genes (tlr3, lgp2, stat1b, isg15a, rsad2 and ifng) at 24 hpi. As an example, significantly higher fold-changes of rsad2, isg15a and ifng were found in fish reared at 10.5 °C when compared to 16.5 °C. Multivariate analysis confirmed that rearing temperature modulated antiviral immune response. The present experiment provides novel insight into the relationship between rearing temperature and innate antiviral immune response in AquAdvantage Salmon.
Collapse
Affiliation(s)
- Eric H Ignatz
- AquaBounty Canada, 718 Route 310, Fortune, PE, C0A 2B0, Canada; Memorial University, Fisheries and Marine Institute, 155 Ridge Road, St. John's, NL, A1C 5R3, Canada; Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Laura M Braden
- AquaBounty Canada, 718 Route 310, Fortune, PE, C0A 2B0, Canada; Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PE, C1A 4P3, Canada.
| | - Tillmann J Benfey
- University of New Brunswick, Department of Biology, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada.
| | - Albert Caballero-Solares
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Tiago S Hori
- Center for Aquaculture Technologies Canada, 20 Hope Street, Souris, PE, C0A 2B0, Canada.
| | - C Dawn Runighan
- AquaBounty Canada, 718 Route 310, Fortune, PE, C0A 2B0, Canada.
| | - Mark D Fast
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PE, C1A 4P3, Canada.
| | - Jillian D Westcott
- Memorial University, Fisheries and Marine Institute, 155 Ridge Road, St. John's, NL, A1C 5R3, Canada.
| | - Matthew L Rise
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
11
|
Robinson NA, Krasnov A, Burgerhout E, Johnsen H, Moghadam HK, Hillestad B, Aslam ML, Baranski M, Boison SA. Response of the Salmon Heart Transcriptome to Pancreas Disease: Differences Between High- and Low-Ranking Families for Resistance. Sci Rep 2020; 10:868. [PMID: 31964968 PMCID: PMC6972705 DOI: 10.1038/s41598-020-57786-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
Pancreas disease caused by salmonid alphaviruses leads to severe losses in Atlantic salmon aquaculture. The aim of our study was to gain a better understanding of the biological differences between salmon with high and low genomic breeding values (H-gEBV and L-gEBV respectively) for pancreas disease resistance. Fish from H- and L-gEBV families were challenged by intraperitoneal injection of salmonid alphavirus or co-habitation with infected fish. Mortality was higher with co-habitation than injection, and for L- than H-gEBV. Heart for RNA-seq and histopathology was collected before challenge and at four- and ten-weeks post-challenge. Heart damage was less severe in injection-challenged H- than L-gEBV fish at week 4. Viral load was lower in H- than L-gEBV salmon after co-habitant challenge. Gene expression differences between H- and L-gEBV manifested before challenge, peaked at week 4, and moderated by week 10. At week 4, H-gEBV salmon showed lower expression of innate antiviral defence genes, stimulation of B- and T-cell immune function, and weaker stress responses. Retarded resolution of the disease explains the higher expression of immune genes in L-gEBV at week 10. Results suggest earlier mobilization of acquired immunity better protects H-gEBV salmon by accelerating clearance of the virus and resolution of the disease.
Collapse
Affiliation(s)
- N A Robinson
- Breeding and Genetics, Nofima, Ås, 1430, Norway. .,Sustainable Aquaculture Laboratory- Temperate and Tropical (SALTT), School of BioSciences, The University of Melbourne, Parkville, 3010, Australia.
| | - A Krasnov
- Breeding and Genetics, Nofima, Ås, 1430, Norway
| | | | - H Johnsen
- Breeding and Genetics, Nofima, Ås, 1430, Norway
| | | | | | - M L Aslam
- Breeding and Genetics, Nofima, Ås, 1430, Norway
| | | | | |
Collapse
|
12
|
Collins C, Lorenzen N, Collet B. DNA vaccination for finfish aquaculture. FISH & SHELLFISH IMMUNOLOGY 2019; 85:106-125. [PMID: 30017931 DOI: 10.1016/j.fsi.2018.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
In fish, DNA vaccines have been shown to give very high protection in experimental facilities against a number of viral diseases, particularly diseases caused by rhabdoviruses. However, their efficacy in generating protection against other families of fish viral pathogens is less clear. One DNA vaccine is currently in use commercially in fish farms in Canada and the commercialisation of another was authorised in Europe in 2017. The mechanism of action of DNA vaccines, including the role of the innate immune responses induced shortly after DNA vaccination in the activation of the adaptive immunity providing longer term specific protection, is still not fully understood. In Europe the procedure for the commercialisation of a veterinary DNA vaccine requires the resolution of certain concerns particularly about safety for the host vaccinated fish, the consumer and the environment. Relating to consumer acceptance and particularly environmental safety, a key question is whether a DNA vaccinated fish is considered a Genetically Modified Organism (GMO). In the present opinion paper these key aspects relating to the mechanisms of action, and to the development and the use of DNA vaccines in farmed fish are reviewed and discussed.
Collapse
Affiliation(s)
| | | | - Bertrand Collet
- Marine Scotland, Aberdeen, United Kingdom; Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
13
|
Nuñez-Ortiz N, Moore LJ, Jarungsriapisit J, Nilsen TO, Stefansson S, Morton HC, Taranger GL, Secombes CJ, Patel S. Atlantic salmon post-smolts adapted for a longer time to seawater develop an effective humoral and cellular immune response against Salmonid alphavirus. FISH & SHELLFISH IMMUNOLOGY 2018; 82:579-590. [PMID: 30176338 DOI: 10.1016/j.fsi.2018.08.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Salmonid alphavirus (SAV) causes pancreas disease (PD) in Atlantic salmon (Salmo salar L.) and disease outbreaks are mainly detected after seawater transfer. The influence of the smoltification process on the immune responses, specifically the adaptive response of Atlantic salmon after SAV infection, is not fully understood. In this study, Atlantic salmon post-smolts were infected by either bath immersion (BI) or intramuscular injection (IM) with SAV subtype 3, 2 weeks (Phase A) or 9 weeks (Phase B) after seawater transfer. The transcript levels of genes related to cellular, humoral and inflammatory responses were evaluated on head kidney samples collected at 3, 7, 14, 21, and 28 days post-infection (dpi). Corresponding negative control groups (CT) were established accordingly. Significant differences were found between both phases and between the IM and BI groups. The anti-inflammatory cytokine IL-10 was up-regulated in Phase A at a higher level than in Phase B. High mRNA levels of the genes RIG-1, SOCS1 and STAT1 were observed in all groups except the BI-B group (BI-Phase B). Moreover, the IM-B group showed a higher regulation of genes related to cellular responses, such as CD40, MHCII, and IL-15, that indicated the activation of a strong cell-mediated immune response. CD40 mRNA levels were elevated one week earlier in the BI-B group than in the BI-A group (BI-Phase A). A significant up-regulation of IgM and IgT genes was seen in both IM groups, but the presence of neutralizing antibodies to SAV was detected only in Phase B fish at 21 and 28 dpi. In addition, we found differences in the basal levels of some of the analysed genes between non-infected control groups of both phases. Findings suggest that Atlantic salmon post-smolts adapted for a longer time to seawater before they come into contact with SAV, developed a stronger humoral and cell-mediated immune response during a SAV infection.
Collapse
Affiliation(s)
- N Nuñez-Ortiz
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817, Bergen, Norway
| | - L J Moore
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817, Bergen, Norway
| | - J Jarungsriapisit
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817, Bergen, Norway
| | - T O Nilsen
- Uni Research Environment, Uni Research, NORCE, Nygårdsgaten 112, 5006, Bergen, Norway
| | - S Stefansson
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway
| | - H C Morton
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817, Bergen, Norway
| | - G L Taranger
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817, Bergen, Norway
| | - C J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland, UK
| | - S Patel
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817, Bergen, Norway.
| |
Collapse
|
14
|
Jarungsriapisit J, Moore LJ, Fiksdal IU, Bjørgen H, Tangerås A, Köllner B, Koppang EO, Patel S. Time after seawater transfer influences immune cell abundance and responses to SAV3 infection in Atlantic salmon. JOURNAL OF FISH DISEASES 2018; 41:1269-1282. [PMID: 29790161 DOI: 10.1111/jfd.12820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/07/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
Pancreas disease (PD) caused by salmonid alphavirus (SAV) severely affects salmonid aquaculture during the seawater phase. To characterize immune cells in target tissues for SAV infection, heart, pancreas and pyloric caeca were analysed from two groups of fish adapted to seawater for 2 and 9 weeks. The sections were scored for the relative abundance of cells expressing MHC class II, IgM, CD3, CD8 or neutrophil/granulocyte markers using immuno-histochemical techniques. In general, necrosis of tissue was more severe in fish infected at 2 weeks post-seawater transfer (wpt) compared with those infected at 9 wpt. At 9 wpt, there were higher numbers of MHC II+ cells in heart, pancreas and pyloric caeca, IgM+ cells in heart and pancreas, and CD3+ cells in pancreas compared to those infected at 2 wpt. The majority of the immune cells infiltrating PD-affected tissues were MHC II+ and CD3+ cells suggesting that antigen-presenting cells and T lymphocytes are the main types of immune cells responding to SAV infection. All the investigated cell types were also observed in pyloric caeca of infected fish, suggesting that this tissue may play a role in the immune response to SAV.
Collapse
Affiliation(s)
| | - L J Moore
- Institute of Marine Research, Bergen, Norway
| | - I U Fiksdal
- Institute of Marine Research, Bergen, Norway
| | - H Bjørgen
- Section of Anatomy and Pathology, Veterinary Faculty, Institute of Basal Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | - B Köllner
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Greifswald, Germany
| | - E O Koppang
- Section of Anatomy and Pathology, Veterinary Faculty, Institute of Basal Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - S Patel
- Institute of Marine Research, Bergen, Norway
| |
Collapse
|
15
|
Moore LJ, Jarungsriapisit J, Nilsen TO, Stefansson S, Taranger GL, Secombes CJ, Morton HC, Patel S. Atlantic salmon adapted to seawater for 9 weeks develop a robust immune response to salmonid alphavirus upon bath challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 74:573-583. [PMID: 29353080 DOI: 10.1016/j.fsi.2017.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Pancreas disease (PD) caused by salmonid alphavirus (SAV) is the most serious viral disease in Norwegian aquaculture. Study of the immune response to SAV will aid preventative measures including vaccine development. The innate immune response was studied in Atlantic salmon infected by either bath immersion (BI) or by intra-muscular (i.m.) injection (IM) with SAV subtype 3, two and nine weeks after seawater transfer (Phases A and B respectively). Phase A results have been previously published (Moore et al., 2017) and Phase B results are presented here together with a comparison of results achieved in Phase A. There was a rapid accumulation of infected fish in the IM-B (IM Phase B) group and all fish sampled were SAV RNA positive by 7 dpi (days post infection). In contrast, only a few SAV RNA positive (infected) fish were identified at 14, 21 and 28 dpi in the BI-B (BI Phase B) group. Differences in the transcription of several immune genes were apparent when compared between the infected fish in the IM-B and BI-B groups. Transcription of the analysed genes peaked at 7 dpi in the IM-B group and at 14 dpi in the BI-B group. However, this latter finding was difficult to interpret due to the low prevalence of SAV positive fish in this group. Additionally, fish positive for SAV RNA in the BI-B group showed higher transcription of IL-1β, IFNγ and CXCL11_L1, all genes associated with the inflammatory response, compared to the IM-B group. Histopathological changes in the heart were restricted to the IM-B group, while (immune) cell filtration into the pancreas was observed in both groups. Compared to the Phase A fish that were exposed to SAV3 two weeks after seawater transfer, the Phase B fish in the current paper, showed a higher and more sustained innate immune gene transcription in response to the SAV3 infection. In addition, the basal transcription of several innate immune genes in non-infected control fish in Phase B (CT-B) was also significantly different when compared to Phase A control fish (CT-A).
Collapse
Affiliation(s)
- L J Moore
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway
| | - J Jarungsriapisit
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway; Department of Biology, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
| | - T O Nilsen
- Uni Research Environment, Uni Research, Thormøhlensgt. 49B, 5006 Bergen, Norway
| | - S Stefansson
- Department of Biology, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
| | - G L Taranger
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway
| | - C J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, UK
| | - H C Morton
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway
| | - S Patel
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway.
| |
Collapse
|
16
|
Pham PH, Tong WWL, Misk E, Jones G, Lumsden JS, Bols NC. Atlantic salmon endothelial cells from the heart were more susceptible than fibroblasts from the bulbus arteriosus to four RNA viruses but protected from two viruses by dsRNA pretreatment. FISH & SHELLFISH IMMUNOLOGY 2017; 70:214-227. [PMID: 28882807 DOI: 10.1016/j.fsi.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/23/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Heart diseases caused by viruses are major causes of Atlantic salmon aquaculture loss. Two Atlantic salmon cardiovascular cell lines, an endothelial cell line (ASHe) from the heart and a fibroblast cell line (BAASf) from the bulbus arteriosus, were evaluated for their response to four fish viruses, CSV, IPNV, VHSV IVa and VHSV IVb, and the innate immune agonist, double-stranded RNA mimic poly IC. All four viruses caused cytopathic effects in ASHe and BAASf. However, ASHe was more susceptible to all four viruses than BAASf. When comparing between the viruses, ASHe cells were found to be moderately susceptible to CSV and VHSV IVb, but highly susceptible to IPNV and VHSV IVa induced cell death. All four viruses were capable of propagating in the ASHe cell line, leading to increases in virus titre over time. In BAASf, CSV and IPNV produced more than one log increase in titre from initial infection, but VHSV IVb and IVa did not. When looking at the antiviral response of both cell lines, Mx proteins were induced in ASHe and BAASf by poly IC. All four viruses induced Mx proteins in BAASf, while only CSV and VHSV IVb induced Mx proteins in ASHe. IPNV and VHSV IVa suppressed Mx proteins expression in ASHe. Pretreatment of ASHe with poly IC to allow for Mx proteins accumulation protected the culture from subsequent infections with IPNV and VHSV IVa, resulting in delayed cell death, reduced virus titres and reduced viral proteins expression. These data suggest that endothelial cells potentially can serve as points of infections for viruses in the heart and that two of the four viruses, IPNV and VHSV IVa, have mechanisms to avoid or downregulate antiviral responses in ASHe cells. Furthermore, the high susceptibility of the ASHe cell line to IPNV and VHSV IVa can make it a useful tool for studying antiviral compounds against these viruses and for general detection of fish viruses.
Collapse
Affiliation(s)
- Phuc H Pham
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Winnie W L Tong
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Ehab Misk
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Ginny Jones
- Elanco Canada Limited, Aqua Business R&D, Victoria, PEI, Canada
| | - John S Lumsden
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada; St. George's University, True Blue, Grenada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
17
|
Gjessing MC, Thoen E, Tengs T, Skotheim SA, Dale OB. Salmon gill poxvirus, a recently characterized infectious agent of multifactorial gill disease in freshwater- and seawater-reared Atlantic salmon. JOURNAL OF FISH DISEASES 2017; 40:1253-1265. [PMID: 28105681 DOI: 10.1111/jfd.12608] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/08/2016] [Accepted: 12/10/2016] [Indexed: 06/06/2023]
Abstract
Gill diseases cause considerable losses in Norwegian salmon farming. In 2015, we characterized salmon gill poxvirus (SGPV) and associated gill disease. Using newly developed diagnostic tools, we show here that SGPV infection is more widely distributed than previously assumed. We present seven cases of complex gill disease in Atlantic salmon farmed in seawater and freshwater from different parts of Norway. Apoptosis, the hallmark of acute SGPV infection, was not easily observed in these cases, and qPCR analysis was critical for identification of the presence of SGPV. Several other agents including Costia-like parasites, gill amoebas, Saprolegnia spp. and bacteria were observed. The studied populations experienced significant mortalities, which increased to extreme levels when severe SGPV infections coincided with smoltification. SGPV infection appears to affect the smoltification process directly by affecting the gills and chloride cells in particular. SGPV may be considered a primary pathogen as it was often found prior to identification of complex gill disease. It is hypothesized that SGPV-induced gill damage may impair innate immunity and allow invasion of secondary invaders. The distinct possibility that SGPV has been widely overlooked as a primary pathogen calls for extended use of SGPV qPCR in Atlantic salmon gill health management.
Collapse
Affiliation(s)
| | - E Thoen
- Norwegian Veterinary Institute, Oslo, Norway
| | - T Tengs
- Norwegian Veterinary Institute, Oslo, Norway
| | | | - O B Dale
- Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
18
|
Triploid atlantic salmon (Salmo salar L.) post-smolts accumulate prevalence more slowly than diploid salmon following bath challenge with salmonid alphavirus subtype 3. PLoS One 2017; 12:e0175468. [PMID: 28403165 PMCID: PMC5389816 DOI: 10.1371/journal.pone.0175468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/27/2017] [Indexed: 01/15/2023] Open
Abstract
Triploid Atlantic salmon (Salmo salar L.) may play an important role in the sustainable expansion of the Norwegian aquaculture industry. Therefore, the susceptibility of triploid salmon to common infections such as salmonid alphavirus (SAV), the causative agent of pancreas disease (PD), requires investigation. In this study, shortly after seawater transfer, diploid and triploid post-smolts were exposed to SAV type 3 (SAV3) using a bath challenge model where the infectious dose was 48 TCID50 ml-1 of tank water. Copy number analysis of SAV3 RNA in heart tissue showed that there was no difference in viral loads between the diploids and triploids. Prevalence reached 100% by the end of the 35-day experimental period in both infected groups. However, prevalence accumulated more slowly in the triploid group reaching 19% and 56% at 14 and 21 days post exposure (dpe) respectively. Whereas prevalence in the diploid group was 82% and 100% at the same time points indicating some differences between diploid and triploid fish. Both heart and pancreas from infected groups at 14 dpe showed typical histopathological changes associated with pancreas disease. Observation of this slower accumulation of prevalence following a natural infection route was possible due to the early sampling points and the exposure to a relatively low dose of virus. The triploid salmon in this study were not more susceptible to SAV3 than diploid salmon indicating that they could be used commercially to reduce the environmental impact of escaped farmed fish interbreeding with wild salmon. This is important information regarding the future use of triploid fish in large scale aquaculture where SAV3 is a financial threat to increased production.
Collapse
|
19
|
Reid KM, Patel S, Robinson AJ, Bu L, Jarungsriapisit J, Moore LJ, Salinas I. Salmonid alphavirus infection causes skin dysbiosis in Atlantic salmon (Salmo salar L.) post-smolts. PLoS One 2017; 12:e0172856. [PMID: 28264056 PMCID: PMC5338768 DOI: 10.1371/journal.pone.0172856] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/12/2017] [Indexed: 01/08/2023] Open
Abstract
Interactions among host, microbiota and viral pathogens are complex and poorly understood. The goal of the present study is to assess the changes in the skin microbial community of Atlantic salmon (Salmo salar L.) in response to experimental infection with salmonid alphavirus (SAV). The salmon skin microbial community was determined using 16S rDNA pyrosequencing in five different experimental groups: control, 7 days after infection with low-dose SAV, 14 days after infection with low-dose SAV, 7 days after infection with high-dose SAV, and 14 days after infection with high-dose SAV. Both infection treatment and time after infection were strong predictors of the skin microbial community composition. Skin samples from SAV3 infected fish showed an unbalanced microbiota characterized by a decreased abundance of Proteobacteria such as Oleispira sp. and increased abundances of opportunistic taxa including Flavobacteriaceae, Streptococcaceae and Tenacibaculum sp. These results demonstrate that viral infections can result in skin dysbiosis likely rendering the host more susceptible to secondary bacterial infections.
Collapse
Affiliation(s)
- Kristin M. Reid
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Sonal Patel
- Institute of Marine Research, Bergen, Norway
| | - Aaron J. Robinson
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lijing Bu
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | | | | | - Irene Salinas
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
20
|
Moore LJ, Jarungsriapisit J, Nilsen TO, Stefansson S, Taranger GL, Secombes CJ, Morton HC, Patel S. Immune gene profiles in Atlantic salmon (salmo salar L.) post-smolts infected with SAV3 by bath-challenge show a delayed response and lower levels of gene transcription compared to injected fish. FISH & SHELLFISH IMMUNOLOGY 2017; 62:320-331. [PMID: 28137651 DOI: 10.1016/j.fsi.2017.01.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
Salmonid alphavirus (SAV) causes pancreatic disease (PD) in salmonids in Northern Europe which results in large economic losses within the aquaculture industry. In order to better understand the underlying immune mechanisms during a SAV3 infection Atlantic salmon post-smolts were infected by either i.m.-injection or bath immersion and their immune responses compared. Analysis of viral loads showed that by 14 dpi i.m.-injected and bath immersion groups had 95.6% and 100% prevalence respectively and that both groups had developed the severe pathology typical of PD. The immune response was evaluated by using RT-qPCR to measure the transcription of innate immune genes involved in the interferon (IFN) response as well as genes associated with inflammation. Our results showed that IFNa transcription was only weakly upregulated, especially in the bath immersion group. Despite this, high levels of the IFN-stimulated genes (ISGs) such as Mx and viperin were observed. The immune response in the i.m.-injected group as measured by immune gene transcription was generally faster, and more pronounced than the response in the bath immersion group, especially at earlier time-points. The response in the bath immersion group started later as expected and appeared to last longer often exceeding the response in the i.m-injected fish at later time-points. High levels of transcription of many genes indicative of an active innate immune response were present in both groups.
Collapse
Affiliation(s)
- L J Moore
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway
| | - J Jarungsriapisit
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway; Department of Biology, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
| | - T O Nilsen
- Uni Research Environment, Uni Research, Thormøhlensgt, 49B 5006 Bergen, Norway
| | - S Stefansson
- Department of Biology, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
| | - G L Taranger
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway
| | - C J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, UK
| | - H C Morton
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway
| | - S Patel
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway.
| |
Collapse
|
21
|
Lund M, Røsæg MV, Krasnov A, Timmerhaus G, Nyman IB, Aspehaug V, Rimstad E, Dahle MK. Experimental Piscine orthoreovirus infection mediates protection against pancreas disease in Atlantic salmon (Salmo salar). Vet Res 2016; 47:107. [PMID: 27769313 PMCID: PMC5075195 DOI: 10.1186/s13567-016-0389-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/04/2016] [Indexed: 11/10/2022] Open
Abstract
Viral diseases are among the main challenges in farming of Atlantic salmon (Salmo salar). The most prevalent viral diseases in Norwegian salmon aquaculture are heart and skeletal muscle inflammation (HSMI) caused by Piscine orthoreovirus (PRV), and pancreas disease (PD) caused by Salmonid alphavirus (SAV). Both PRV and SAV target heart and skeletal muscles, but SAV additionally targets exocrine pancreas. PRV and SAV are often present in the same locations and co-infections occur, but the effect of this crosstalk on disease development has not been investigated. In the present experiment, the effect of a primary PRV infection on subsequent SAV infection was studied. Atlantic salmon were infected with PRV by cohabitation, followed by addition of SAV shedder fish 4 or 10 weeks after the initial PRV infection. Histopathological evaluation, monitoring of viral RNA levels and host gene expression analysis were used to assess disease development. Significant reduction of SAV RNA levels and of PD specific histopathological changes were observed in the co-infected groups compared to fish infected by SAV only. A strong correlation was found between histopathological development and expression of disease related genes in heart. In conclusion, experimentally PRV infected salmon are less susceptible to secondary SAV infection and development of PD.
Collapse
Affiliation(s)
- Morten Lund
- Section of Immunology, Norwegian Veterinary Institute, Oslo, Norway
| | - Magnus Vikan Røsæg
- SalMar ASA, Kverva, Norway
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Aleksei Krasnov
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Gerrit Timmerhaus
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Ingvild Berg Nyman
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | | |
Collapse
|
22
|
Jarungsriapisit J, Moore LJ, Mæhle S, Skår C, Einen AC, Fiksdal IU, Morton HC, Stefansson SO, Taranger GL, Patel S. Relationship between viral dose and outcome of infection in Atlantic salmon, Salmo salar L., post-smolts bath-challenged with salmonid alphavirus subtype 3. Vet Res 2016; 47:102. [PMID: 27760562 PMCID: PMC5069985 DOI: 10.1186/s13567-016-0385-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/13/2016] [Indexed: 11/10/2022] Open
Abstract
Salmonid alphavirus subtype 3 (SAV3) causes pancreas disease (PD) and adversely affects salmonid aquaculture in Europe. A better understanding of disease transmission is currently needed in order to manage PD outbreaks. Here, we demonstrate the relationship between viral dose and the outcome of SAV3 infection in Atlantic salmon post-smolts using a bath challenge model. Fish were challenged at 12 °C with 3 different SAV3 doses; 139, 27 and 7 TCID50 L−1 of seawater. A dose of as little as 7 TCID50 L−1 of seawater was able to induce SAV3 infection in the challenged population with a substantial level of variation between replicate tanks and, therefore, likely represents a dose close to the minimum dose required to establish an infection in a population. These data also confirm the highly infectious nature of SAV through horizontal transmission. The outcome of SAV3 infection, evaluated by the prevalence of viraemic fish, SAV3-positive hearts, and the virus shedding rate, was positively correlated to the original SAV3 dose. A maximal shedding rate of 2.4 × 104 TCID50 L−1 of seawater h−1 kg−1 was recorded 10 days post-exposure (dpe) from the highest dose group. The method reported here, for the quantification of infectious SAV3 in seawater, could be useful to monitor PD status or obtain data from SAV3 outbreaks at field locations. This information could be incorporated into pathogen dispersal models to improve risk assessment and to better understand how SAV3 spreads between farms during outbreaks. This information may also provide new insights into the control and mitigation of PD.
Collapse
Affiliation(s)
- Jiraporn Jarungsriapisit
- Institute of Marine Research, Nordnesgaten 50, 5005, Bergen, Norway.,Department of Biology, University of Bergen, P. O. Box 7803, 5020, Bergen, Norway
| | - Lindsey J Moore
- Institute of Marine Research, Nordnesgaten 50, 5005, Bergen, Norway
| | - Stig Mæhle
- Institute of Marine Research, Nordnesgaten 50, 5005, Bergen, Norway
| | - Cecilie Skår
- Institute of Marine Research, Nordnesgaten 50, 5005, Bergen, Norway
| | | | | | | | - Sigurd O Stefansson
- Department of Biology, University of Bergen, P. O. Box 7803, 5020, Bergen, Norway
| | | | - Sonal Patel
- Institute of Marine Research, Nordnesgaten 50, 5005, Bergen, Norway.
| |
Collapse
|