1
|
Nematollahzadeh S, Athukorala A, Donnelly CM, Pavan S, Atelie-Djossou V, Di Iorio E, Nath B, Helbig KJ, McSharry BP, Forwood JK, Sarker S, Alvisi G. Mechanistic Insights Into an Ancient Adenovirus Precursor Protein VII Show Multiple Nuclear Import Receptor Pathways. Traffic 2024; 25:e12953. [PMID: 39301720 DOI: 10.1111/tra.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 09/22/2024]
Abstract
Adenoviral pVII proteins are multifunctional, highly basic, histone-like proteins that can bind to and transport the viral genome into the host cell nucleus. Despite the identification of several nuclear localization signals (NLSs) in the pVII protein of human adenovirus (HAdV)2, the mechanistic details of nuclear transport are largely unknown. Here we provide a full characterization of the nuclear import of precursor (Pre-) pVII protein from an ancient siadenovirus, frog siadenovirus 1 (FrAdV1), using a combination of structural, functional, and biochemical approaches. Two strong NLSs (termed NLSa and NLSd) interact with importin (IMP)β1 and IMPα, respectively, and are the main drivers of nuclear import. A weaker NLS (termed NLSb) also contributes, together with an additional signal (NLSc) which we found to be important for nucleolar targeting and intranuclear binding. Expression of wild-type and NLS defective derivatives Pre-pVII in the presence of selective inhibitors of different nuclear import pathways revealed that, unlike its human counterpart, FrAdV1 Pre-pVII nuclear import is dependent on IMPα/β1 and IMPβ1, but not on transportin-1 (IMPβ2). Clearly, AdVs evolved to maximize the nuclear import pathways for the pVII proteins, whose subcellular localization is the result of a complex process. Therefore, our results pave the way for an evolutionary comparison of the interaction of different AdVs with the host cell nuclear transport machinery.
Collapse
Affiliation(s)
| | - Ajani Athukorala
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Camilla M Donnelly
- School of Dentistry and Medical Sciences Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Silvia Pavan
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Enzo Di Iorio
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Babu Nath
- School of Dentistry and Medical Sciences Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Karla J Helbig
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Brian P McSharry
- School of Dentistry and Medical Sciences Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Jade K Forwood
- School of Dentistry and Medical Sciences Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Subir Sarker
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, Padua, Italy
| |
Collapse
|
2
|
Adenoviruses in Avian Hosts: Recent Discoveries Shed New Light on Adenovirus Diversity and Evolution. Viruses 2022; 14:v14081767. [PMID: 36016389 PMCID: PMC9416666 DOI: 10.3390/v14081767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
While adenoviruses cause infections in a wide range of vertebrates, members of the genus Atadenovirus, Siadenovirus, and Aviadenovirus predominantly infect avian hosts. Several recent studies on avian adenoviruses have encouraged us to re-visit previously proposed adenovirus evolutionary concepts. Complete genomes and partial DNA polymerase sequences of avian adenoviruses were extracted from NCBI and analysed using various software. Genomic analyses and constructed phylogenetic trees identified the atadenovirus origin from an Australian native passerine bird in contrast to the previously established reptilian origin. In addition, we demonstrated that the theories on higher AT content in atadenoviruses are no longer accurate and cannot be considered as a species demarcation criterion for the genus Atadenovirus. Phylogenetic reconstruction further emphasised the need to reconsider siadenovirus origin, and we recommend extended studies on avian adenoviruses in wild birds to provide finer evolutionary resolution.
Collapse
|
3
|
Adenovirus Structure: What Is New? Int J Mol Sci 2021; 22:ijms22105240. [PMID: 34063479 PMCID: PMC8156859 DOI: 10.3390/ijms22105240] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Adenoviruses are large (~950 Å) and complex non-enveloped, dsDNA icosahedral viruses. They have a pseudo-T = 25 triangulation number with at least 12 different proteins composing the virion. These include the major and minor capsid proteins, core proteins, maturation protease, terminal protein, and packaging machinery. Although adenoviruses have been studied for more than 60 years, deciphering their architecture has presented a challenge for structural biology techniques. An outstanding event was the first near-atomic resolution structure of human adenovirus type 5 (HAdV-C5), solved by cryo-electron microscopy (cryo-EM) in 2010. Discovery of new adenovirus types, together with methodological advances in structural biology techniques, in particular cryo-EM, has lately produced a considerable amount of new, high-resolution data on the organization of adenoviruses belonging to different species. In spite of these advances, the organization of the non-icosahedral core is still a great unknown. Nevertheless, alternative techniques such as atomic force microscopy (AFM) are providing interesting glimpses on the role of the core proteins in genome condensation and virion stability. Here we summarize the current knowledge on adenovirus structure, with an emphasis on high-resolution structures obtained since 2010.
Collapse
|
4
|
Burman SSR, Nance ML, Jeliazkov JR, Labonte JW, Lubin JH, Biswas N, Gray JJ. Novel sampling strategies and a coarse-grained score function for docking homomers, flexible heteromers, and oligosaccharides using Rosetta in CAPRI rounds 37-45. Proteins 2020; 88:973-985. [PMID: 31742764 PMCID: PMC8589291 DOI: 10.1002/prot.25855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
Critical Assessment of PRediction of Interactions (CAPRI) rounds 37 through 45 introduced larger complexes, new macromolecules, and multistage assemblies. For these rounds, we used and expanded docking methods in Rosetta to model 23 target complexes. We successfully predicted 14 target complexes and recognized and refined near-native models generated by other groups for two further targets. Notably, for targets T110 and T136, we achieved the closest prediction of any CAPRI participant. We created several innovative approaches during these rounds. Since round 39 (target 122), we have used the new RosettaDock 4.0, which has a revamped coarse-grained energy function and the ability to perform conformer selection during docking with hundreds of pregenerated protein backbones. Ten of the complexes had some degree of symmetry in their interactions, so we tested Rosetta SymDock, realized its shortcomings, and developed the next-generation symmetric docking protocol, SymDock2, which includes docking of multiple backbones and induced-fit refinement. Since the last CAPRI assessment, we also developed methods for modeling and designing carbohydrates in Rosetta, and we used them to successfully model oligosaccharide-protein complexes in round 41. Although the results were broadly encouraging, they also highlighted the pressing need to invest in (a) flexible docking algorithms with the ability to model loop and linker motions and in (b) new sampling and scoring methods for oligosaccharide-protein interactions.
Collapse
Affiliation(s)
- Shourya S. Roy Burman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Morgan L. Nance
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland
| | | | - Jason W. Labonte
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Joseph H. Lubin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Naireeta Biswas
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Gottdenker NL, Gregory CR, Ard MB, Lorenz WW, Nilsen RA, Ritchie BW. Histopathologic Changes, Ultrastructure, and Molecular Characterization of an Adenovirus in a Sun Conure ( Aratinga solstitialis). Avian Dis 2020; 63:531-538. [PMID: 31967440 DOI: 10.1637/aviandiseases-d-19-00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/21/2019] [Indexed: 11/05/2022]
Abstract
In this case report, we describe the pathologic changes and the ultrastructural and molecular characteristics of an adenovirus in a sun conure (Aratinga solstitialis) that presented with a history of sudden death. On histologic examination, there was multifocal hepatic and splenic necrosis. Within some hepatocytes and unidentified cells in the spleen, renal interstitial fibroblasts, and ovarian stroma were intranuclear amphophilic inclusion bodies. Electron microscopy of affected tissue showed intranuclear icosahedral viral particles with an inner capsid (29.2-33.8 nm in diameter) and an outer capsid (70.2-71.7 nm in diameter). Next-generation sequencing and BLAST analysis of complementary DNA synthesized from RNA extracted from formalin-fixed tissues showed an adenovirus, designated sun conure adenovirus (SCAdv). A DNA in situ hybridization (ISH) probe, constructed from the SCAdv and similar sequences from GenBank, was also positive in the intranuclear inclusion bodies, whereas standard ISH for psittacine adenovirus 1 was negative. These results show that ancillary diagnostic testing, such as next-generation sequencing, even using formalin-fixed, paraffin-embedded tissues, along with ISH, can be useful in identifying additional, unknown viruses that show similar pathology to commonly known viruses but do not show up as positive on routine diagnostic tests.
Collapse
Affiliation(s)
- N L Gottdenker
- Department of Veterinary Pathology, The University of Georgia, Athens, GA 30602,
| | - C R Gregory
- Infectious Disease Laboratory, The University of Georgia, Athens, GA 30602
| | - M B Ard
- Department of Veterinary Pathology, The University of Georgia, Athens, GA 30602
| | - W W Lorenz
- Institute of Bioinformatics, The University of Georgia, Athens, GA 30602
| | - R A Nilsen
- Georgia Genomics and Bioinformatics Core, The University of Georgia, Athens, GA 30602
| | - B W Ritchie
- Infectious Disease Laboratory, The University of Georgia, Athens, GA 30602
| |
Collapse
|
6
|
Song Y, Wei Q, Liu Y, Bai Y, Deng R, Xing G, Zhang G. Development of novel subunit vaccine based on truncated fiber protein of egg drop syndrome virus and its immunogenicity in chickens. Virus Res 2019; 272:197728. [PMID: 31442468 DOI: 10.1016/j.virusres.2019.197728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
Egg-drop syndrome virus (EDSV) is an avian adenovirus that causes markedly decrease in egg production and in the quality of the eggs when it infects chickens. In this report, we engineered truncated fiber protein containing the entire knob domain and part of the shaft region as a vaccine candidate. The protein was obtained in the soluble fraction in Escherichia coli (E. coli), and expression level after nickel-affinity purification was 126 mg/L. By means of multiple characterization methods, it is demonstrated that the recombinant protein retains the native trimeric structure. A single inoculation with the structure-stabilized recombinant protein, even at the lowest dose of 2 μg, stimulated hemagglutination inhibition (HI) antibody responses in chickens, for at least 16 weeks. Neutralizing titers in sera from the protein immunized groups was similar to that of inactivated vaccine immunized group. The lymphocyte proliferation response and cytokine secretion were also induced in immunized SPF chickens. In addition, immunization with the fiber protein also significantly reduced the viral load in the liver. Taken together, these results suggest the truncated fiber protein as an effective single dose, long lasting and rapidly effective vaccine to protect against EDSV.
Collapse
Affiliation(s)
- Yapeng Song
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yilin Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China.
| |
Collapse
|