1
|
Meshrif WS, El-Kholy SE, El-Husseiny IM, Dawood R, El-Azm ARA, Salem ML. Reduced fitness of the mosquito Culex pipiens (Diptera: Culicidae) after feeding on a blood meal with hepatitis C virus. J Invertebr Pathol 2022; 189:107719. [PMID: 35085584 DOI: 10.1016/j.jip.2022.107719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
|
2
|
Gold AS, Feitosa-Suntheimer F, Asad S, Adeoye B, Connor JH, Colpitts TM. Examining the Role of Niemann-Pick C1 Protein in the Permissiveness of Aedes Mosquitoes to Filoviruses. ACS Infect Dis 2020; 6:2023-2028. [PMID: 32609483 DOI: 10.1021/acsinfecdis.0c00018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aedes mosquitoes vector many viruses with divergent characteristics, yet the criteria needed for a virus to be vectored by an arthropod remain unknown. The intracellular cholesterol transporter protein Niemann-Pick C1 (NPC1) has been identified as the necessary entry receptor for filoviruses such as Ebola and Marburg viruses. While homologues of NPC1 are observed in mosquitoes, currently no filovirus has been identified as circulating in mosquitoes. This work aimed at increasing the understanding of the mosquito vector by examining the capability of a virus to gain the ability to enter mosquito cells. We developed a model system of Aedes cells expressing human NPC1 (hNPC1) and attempted to infect these cells with recombinant vesicular stomatitis virus expressing the Ebola virus glycoprotein. As compared to the control cells, no significant increase in infection was observed in cells expressing hNPC1, demonstrating that the expression of human NPC1 alone is not sufficient to support filovirus infection, and that host factors other than NPC1 determine filovirus susceptibility of mosquito cells.
Collapse
Affiliation(s)
- Alexander S. Gold
- Department of Microbiology, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories, 620 Albany Street, Boston, Massachusetts 02118, United States
| | - Fabiana Feitosa-Suntheimer
- Department of Microbiology, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories, 620 Albany Street, Boston, Massachusetts 02118, United States
| | - Sultan Asad
- Department of Microbiology, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories, 620 Albany Street, Boston, Massachusetts 02118, United States
| | - Bukola Adeoye
- Department of Microbiology, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories, 620 Albany Street, Boston, Massachusetts 02118, United States
| | - John H. Connor
- Department of Microbiology, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories, 620 Albany Street, Boston, Massachusetts 02118, United States
| | - Tonya M. Colpitts
- Department of Microbiology, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories, 620 Albany Street, Boston, Massachusetts 02118, United States
| |
Collapse
|
3
|
The MultiBac system: a perspective. Emerg Top Life Sci 2019; 3:477-482. [PMID: 33523169 DOI: 10.1042/etls20190084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 11/17/2022]
Abstract
Baculovirus expression is a time-tested technique to produce proteins in insect cells, in high quality and quantity for a range of applications. MultiBac is a baculovirus expression system we developed originally for producing multiprotein complexes comprising many subunits, for structural and mechanistic studies. First introduced in 2004, MultiBac is now in use in many laboratories worldwide, accelerating research programmes in academia and industry. We have continuously optimized our MultiBac system, providing customized reagents and standard operating protocols to facilitate its use also by non-specialists. More recently, we have generated MultiBac genomes tailored for specific purposes, for example, to produce humanized glycoproteins, high-value pharmaceutical targets including kinases, viral polymerases, and virus-like particles (VLPs) as promising vaccine candidates. By altering the host tropism of the baculovirion, we created MultiBacMam, a heterologous DNA delivery toolkit to target mammalian cells, tissues and organisms. Introducing CRISPR/Cas modalities, we set the stage for large-scale genomic engineering applications utilizing this high-capacity DNA delivery tool. Exploiting synthetic biology approaches and bottom-up design, we engage in optimizing the properties of our baculoviral genome, also to improve manufacturing at scale. Here we provide a perspective of our MultiBac system and its developments, past, present and future.
Collapse
|
4
|
Henriques BS, Gomes B, da Costa SG, Moraes CDS, Mesquita RD, Dillon VM, Garcia EDS, Azambuja P, Dillon RJ, Genta FA. Genome Wide Mapping of Peptidases in Rhodnius prolixus: Identification of Protease Gene Duplications, Horizontally Transferred Proteases and Analysis of Peptidase A1 Structures, with Considerations on Their Role in the Evolution of Hematophagy in Triatominae. Front Physiol 2017; 8:1051. [PMID: 29326597 PMCID: PMC5736985 DOI: 10.3389/fphys.2017.01051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/30/2017] [Indexed: 12/27/2022] Open
Abstract
Triatominae is a subfamily of the order Hemiptera whose species are able to feed in the vertebrate blood (i.e., hematophagy). This feeding behavior presents a great physiological challenge to insects, especially in Hemipteran species with a digestion performed by lysosomal-like cathepsins instead of the more common trypsin-like enzymes. With the aim of having a deeper understanding of protease involvement in the evolutionary adaptation for hematophagy in Hemipterans, we screened peptidases in the Rhodnius prolixus genome and characterized them using common blast (NCBI) and conserved domain analyses (HMMER/blast manager software, FAT, plus PFAM database). We compared the results with available sequences from other hemipteran species and with 18 arthropod genomes present in the MEROPS database. Rhodnius prolixus contains at least 433 protease coding genes, belonging to 71 protease families. Seven peptidase families in R. prolixus presented higher gene numbers when compared to other arthropod genomes. Further analysis indicated that a gene expansion of the protease family A1 (Eukaryotic aspartyl protease, PF00026) might have played a major role in the adaptation to hematophagy since most of these peptidase genes seem to be recently acquired, are expressed in the gut and present putative secretory pathway signal peptides. Besides that, most R. prolixus A1 peptidases showed high frequencies of basic residues at the protein surface, a typical structural signature of Cathepsin D-like proteins. Other peptidase families expanded in R. prolixus (i.e., C2 and M17) also presented significant differences between hematophagous (higher number of peptidases) and non-hematophagous species. This study also provides evidence for gene acquisition from microorganisms in some peptidase families in R. prolixus: (1) family M74 (murein endopeptidase), (2) family S29 (Hepatitis C virus NS3 protease), and (3) family S24 (repressor LexA). This study revealed new targets for studying the adaptation of these insects for digestion of blood meals and their competence as vectors of Chagas disease.
Collapse
Affiliation(s)
- Bianca S Henriques
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil
| | - Bruno Gomes
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil
| | - Samara G da Costa
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil
| | - Caroline da Silva Moraes
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil
| | - Rafael D Mesquita
- National Institute of Science and Technology for Molecular Entomology (INCT-EM), Cidade Universitária, Rio de Janeiro, Brazil.,Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Viv M Dillon
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Eloi de Souza Garcia
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil.,National Institute of Science and Technology for Molecular Entomology (INCT-EM), Cidade Universitária, Rio de Janeiro, Brazil
| | - Patricia Azambuja
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil.,National Institute of Science and Technology for Molecular Entomology (INCT-EM), Cidade Universitária, Rio de Janeiro, Brazil
| | - Roderick J Dillon
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Fernando A Genta
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil.,National Institute of Science and Technology for Molecular Entomology (INCT-EM), Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|