1
|
Guo Q, Yu Y, Suo J, Tang X, Zhang S, Crouch C, Bruton B, Tarpey I, Liu X, Zhao G, Suo X. Oral delivery of Eimeria acervulina transfected sequentially with two copies of the VP2 gene induces immunity against infectious bursal disease virus in chickens. Front Vet Sci 2024; 11:1367912. [PMID: 38659453 PMCID: PMC11041627 DOI: 10.3389/fvets.2024.1367912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024] Open
Abstract
Chicken coccidiosis caused by Eimeria spp. can occur on almost all poultry farms, causing huge economic losses to the industry. Genetically manipulated Eimeria parasites as a vaccine vector to deliver viral antigens have been reported. In our preliminary study, transgenic E. acervulina expressing a VP2 gene (Ea-VP2) of the infectious bursal disease virus (IBDV) demonstrated partial protection against IBDV infection. To enhance immune responses, we aimed to increase the VP2 gene copy number in transgenic E. acervulina. In this study, we used a novel plasmid vector carrying a VP2 gene fused with three flag tags and a red fluorescent reporter gene (mCherry). The vector was introduced into Ea-VP2 sporozoites through nucleofection, leading to the generation of Ea-2VP2. Subsequent analysis revealed a notable escalation in the fluorescent rate, increasing from 0.11 to 95.1% following four consecutive passages facilitated by fluorescent-activated cell sorting. Verification via PCR, Western blot, and immunofluorescence confirmed the successful construction of the Ea-2VP2 population. Despite lower fecundity compared to wild-type E. acervulina, Ea-2VP2 maintained immunogenicity. Our research effectively created a transgenic E. acervulina strain transfected sequentially with two copies of the VP2 gene from IBDV. This modification resulted in an increased humoral immune response after primary immunization in chickens. Additionally, it demonstrated a degree of protection within the bursa against IBDV infection. Future studies will focus on further enhancing immune response levels.
Collapse
Affiliation(s)
- Qingbin Guo
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ying Yu
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingxia Suo
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sixin Zhang
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Colin Crouch
- MSD Animal Health, Milton Keynes, United Kingdom
| | - Beth Bruton
- MSD Animal Health, Milton Keynes, United Kingdom
| | - Ian Tarpey
- MSD Animal Health, Milton Keynes, United Kingdom
| | - Xianyong Liu
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guanghui Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xun Suo
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Torabi S, Soleimani S, Mahravani H, Ebrahimi MM, Shahsavandi S. Mouse Fibroblast L929 Cell Line as a Useful Tool for Replication and Adaptation of Infectious Bursal Disease Virus. ARCHIVES OF RAZI INSTITUTE 2023; 78:863-871. [PMID: 38028862 PMCID: PMC10657944 DOI: 10.22092/ari.2023.361584.2663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/05/2023] [Indexed: 12/01/2023]
Abstract
Infectious bursal disease virus (IBDV) causes a highly contagious disease associated with immunosuppression in young chickens. Production of either egg-based or primary cell-based high-quality vaccines requires time-consuming and costly procedures. To determine a suitable cell line for IBDV replication, L929 cell line was a candidate for the growth kinetics processing of the virus. The L929 cells were proliferated in monolayer, and doubling time was calculated. Replication kinetics an IBDV isolate at the multiplicity of infection 0.1 PFU/cell were determined using virus titration. To adapt IBDV on L929 cells, seven consecutive passages were performed. Virus titer and levels of apoptosis were quantitatively analyzed at each passage. The viral VP2 gene was amplified and sequenced in three passages. An average doubling time of 21 h was estimated for monolayers of L929 cells. Although during early passages, virus growth did not produce a clear cytopathic effect (CPE), an increase in IBDV titers was observed. Serial passages led to the evidence of marked CPEs and an increase in the virus titer in the third passage. During the fourth to seventh passages, consistent CPEs characterized by the formation of granulated and round cells were evident within 24 to 48 hours post-inoculation. The titer of the virus was increased in the third passage onwards to peak in the fourth and constant at 5.9 TCID50 until the end passage. The IBDV replication in connection with DNA fragmentation and FITC, revealed the characteristic picture of apoptosis in a time-dependent manner. We found that the IBDV could easily be adapted to L929 cells, increasing virus yields by about two orders of magnitude. These results indicated that the cell line may be useful in the production of efficient virus particles.
Collapse
Affiliation(s)
- S Torabi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - S Soleimani
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - H Mahravani
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - M M Ebrahimi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - S Shahsavandi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
3
|
Hessien M, Donia T, Tabll AA, Adly E, Abdelhafez TH, Attia A, Alkafaas SS, Kuna L, Glasnovic M, Cosic V, Smolic R, Smolic M. Mechanistic-Based Classification of Endocytosis-Related Inhibitors: Does It Aid in Assigning Drugs against SARS-CoV-2? Viruses 2023; 15:v15051040. [PMID: 37243127 DOI: 10.3390/v15051040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) canonically utilizes clathrin-mediated endocytosis (CME) and several other endocytic mechanisms to invade airway epithelial cells. Endocytic inhibitors, particularly those targeting CME-related proteins, have been identified as promising antiviral drugs. Currently, these inhibitors are ambiguously classified as chemical, pharmaceutical, or natural inhibitors. However, their varying mechanisms may suggest a more realistic classification system. Herein, we present a new mechanistic-based classification of endocytosis inhibitors, in which they are segregated among four distinct classes including: (i) inhibitors that disrupt endocytosis-related protein-protein interactions, and assembly or dissociation of complexes; (ii) inhibitors of large dynamin GTPase and/or kinase/phosphatase activities associated with endocytosis; (iii) inhibitors that modulate the structure of subcellular components, especially the plasma membrane, and actin; and (iv) inhibitors that cause physiological or metabolic alterations in the endocytosis niche. Excluding antiviral drugs designed to halt SARS-CoV-2 replication, other drugs, either FDA-approved or suggested through basic research, could be systematically assigned to one of these classes. We observed that many anti-SARS-CoV-2 drugs could be included either in class III or IV as they interfere with the structural or physiological integrity of subcellular components, respectively. This perspective may contribute to our understanding of the relative efficacy of endocytosis-related inhibitors and support the optimization of their individual or combined antiviral potential against SARS-CoV-2. However, their selectivity, combined effects, and possible interactions with non-endocytic cellular targets need more clarification.
Collapse
Affiliation(s)
- Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Thoria Donia
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ashraf A Tabll
- National Research Centre, Microbial Biotechnology Department, Biotechnology Research Institute, Giza 12622, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Eiman Adly
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tawfeek H Abdelhafez
- National Research Centre, Microbial Biotechnology Department, Biotechnology Research Institute, Giza 12622, Egypt
| | - Amany Attia
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Lucija Kuna
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, University of J. J. Strossmayer Osijek, 31000 Osijek, Croatia
| | - Marija Glasnovic
- Department of Medicine, Family Medicine and History of Medicine, Faculty of Medicine Osijek, University of J. J. Strossmayer Osijek, 31000 Osijek, Croatia
| | - Vesna Cosic
- Department of Paediatrics and Gynaecology with Obstetrics, Faculty of Dental Medicine and Health Osijek, University of J. J. Strossmayer Osijek, 31000 Osijek, Croatia
| | - Robert Smolic
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, University of J. J. Strossmayer Osijek, 31000 Osijek, Croatia
| | - Martina Smolic
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, University of J. J. Strossmayer Osijek, 31000 Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine Osijek, University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
4
|
Huang Y, Shu G, Huang C, Han J, Li J, Chen H, Chen Z. Characterization and pathogenicity of a novel variant infectious bursal disease virus in China. Front Microbiol 2023; 13:1039259. [PMID: 37008302 PMCID: PMC10064860 DOI: 10.3389/fmicb.2022.1039259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/30/2022] [Indexed: 03/19/2023] Open
Abstract
Infectious bursal disease (IBD) is a highly epidemic and immunosuppressive disease of 3- to 6-week-old chicks caused by infectious bursal disease virus (IBDV). Since 2017, there has been a notable increase in the isolation rates of novel variant IBDV strains in China, of which characteristic amino acid residues were different from those of early antigen variants. In this study, one IBDV strain was isolated from a farm with suspected IBD outbreak in Shandong Province, China, which was designated LY21/2. The strain LY21/2 could replicate in MC38 cells with previous culture adaption in SPF chick embryos. Phylogenetic analysis revealed that LY21/2 formed one branch with novel variant IBDVs and shared 96.8–98.6% nucleotide sequence identity with them. Moreover, LY21/2 serving as the major parent underwent the recombination event of a variant strain (19D69), while the minor parent was a very virulent strain (Harbin-1). SPF chicks inoculated with LY21/2 showed no gross clinic symptom, whereas bursal atrophy was exhibited and apoptosis was occurred in 55.21% of bursal cells. The results of histopathology and immunohistochemical staining showed that lymphocyte depletion and connective tissue hyperplasia and IBDV antigen-positive cells were observed in the bursa of LY21/2-infected chicks. Besides, DNA fragmentation was detected in the LY21/2-infected bursal tissue section by TUNEL assay. Collectivtely, these data presented analysis and evaluation of the genetic characteristics and pathogenicity of a novel variant IBDV strain. This study may help in the development of biosafety strategies for the prevention and control of IBDV in poultry.
Collapse
Affiliation(s)
- Yuanling Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultral Science (CAAS), Shanghai, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Gang Shu,
| | - Cong Huang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultral Science (CAAS), Shanghai, China
| | - Jingyi Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jia Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultral Science (CAAS), Shanghai, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultral Science (CAAS), Shanghai, China
- Hongjun Chen,
| | - Zongyan Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultral Science (CAAS), Shanghai, China
- Zongyan Chen,
| |
Collapse
|
5
|
Liu Y, Zhou T, Hu J, Jin S, Wu J, Guan X, Wu Y, Cui J. Targeting Selective Autophagy as a Therapeutic Strategy for Viral Infectious Diseases. Front Microbiol 2022; 13:889835. [PMID: 35572624 PMCID: PMC9096610 DOI: 10.3389/fmicb.2022.889835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal degradation system which can recycle multiple cytoplasmic components under both physiological and stressful conditions. Autophagy could be highly selective to deliver different cargoes or substrates, including protein aggregates, pathogenic proteins or superfluous organelles to lysosome using a series of cargo receptor proteins. During viral invasion, cargo receptors selectively target pathogenic components to autolysosome to defense against infection. However, viruses not only evolve different strategies to counteract and escape selective autophagy, but also utilize selective autophagy to restrict antiviral responses to expedite viral replication. Furthermore, several viruses could activate certain forms of selective autophagy, including mitophagy, lipophagy, aggrephagy, and ferritinophagy, for more effective infection and replication. The complicated relationship between selective autophagy and viral infection indicates that selective autophagy may provide potential therapeutic targets for human infectious diseases. In this review, we will summarize the recent progress on the interplay between selective autophagy and host antiviral defense, aiming to arouse the importance of modulating selective autophagy as future therapies toward viral infectious diseases.
Collapse
Affiliation(s)
- Yishan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Zhou
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shouheng Jin
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Identification of Chicken CD44 as a Novel B Lymphocyte Receptor for Infectious Bursal Disease Virus. J Virol 2022; 96:e0011322. [PMID: 35107370 DOI: 10.1128/jvi.00113-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious bursal disease virus (IBDV), which targets bursa B lymphocytes, causes severe immunosuppressive disease in chickens, inducing huge economic losses for the poultry industry. To date, the functional receptor for IBDV binding and entry into host cells remains unclear. This study used mass spectrometry to screen host proteins of chicken bursal lymphocytes interacting with VP2. The chicken transmembrane protein cluster of differentiation 44 (chCD44) was identified and evaluated for its interaction with IBDV VP2, the major capsid protein. Overexpression and knockdown experiments showed that chCD44 promotes replication of IBDV. Furthermore, soluble chCD44 and the anti-chCD44 antibody blocked virus binding. The results of receptor reconstitution indicated that chCD44 overexpression conferred viral binding capability in non-permissive cells. More important, although we found that IBDV could not replicate in the chCD44-overexpressed non-permissive cells, the virus could enter non-permissive cells using chCD44. Our finding reveals that chCD44 is a cellular receptor for IBDV, facilitating virus binding and entry in target cells by interacting with the IBDV VP2 protein. IMPORTANCE IBDV causes severe immunosuppressive disease in chickens, inducing huge economic losses for the poultry industry. However, the specific mechanism of IBDV invading host cells of IBDV was not very clear. This study shed light on which cellular protein component IBDV is used to bind and/or enter B lymphocytes. The results of our study revealed that chCD44 could promote both the binding and entry ability of IBDV in B lymphocytes, acting as a cellular receptor for IBDV. Besides, this is the first report about chicken CD44 function in viral replication. Our study impacts the understanding of the IBDV binding and entry process and sets the stage for further elucidation of the infection mechanism of IBDV.
Collapse
|
7
|
Chicken Heat Shock Protein 70 Is an Essential Host Protein for Infectious Bursal Disease Virus Infection In Vitro. Pathogens 2021; 10:pathogens10060664. [PMID: 34071696 PMCID: PMC8229272 DOI: 10.3390/pathogens10060664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Infectious bursal disease virus (IBDV) infection causes pathogenicity and mortality in chickens, leading to huge economic losses in the poultry industry worldwide. Studies of host-virus interaction can help us to better understand the viral pathogenicity. As a highly conservative host factor, heat shock protein 70 (Hsp70) is observed to be involved in numerous viral infections. However, there is little information about the role of chicken Hsp70 (cHsp70) in IBDV infection. In the present study, the increased expression of cHsp70 was observed during IBDV-infected DF-1 cells. Further studies revealed that Hsp70 had similar locations with the viral double-stranded RNA (dsRNA), and the result of pull-down assay showed the direct interaction between cHsp70 with dsRNA, viral proteins (vp)2 and 3, indicating that maybe cHsp70 participates in the formation of the replication and transcription complex. Furthermore, overexpression of cHsp70 promoted IBDV production and knockdown of cHsp70 using small interfering RNAs (siRNA) and reducedviral production, implying the necessity of cHsp70 in IBDV infection. These results reveal that cHsp70 is essential for IBDV infection in DF-1 cells, suggesting that targeting cHsp70 may be applied as an antiviral strategy.
Collapse
|
8
|
Wang Z, Li Y, Yang X, Zhao J, Cheng Y, Wang J. Mechanism and Complex Roles of HSC70 in Viral Infections. Front Microbiol 2020; 11:1577. [PMID: 32849328 PMCID: PMC7396710 DOI: 10.3389/fmicb.2020.01577] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Heat shock cognate 71-kDa protein (HSC70), a constitutively expressed molecular chaperon within the heat shock protein 70 family, plays crucial roles in maintaining cellular environmental homeostasis through implicating in a wide variety of physiological processes, such as ATP metabolism, protein folding and transporting, antigen processing and presentation, endocytosis, and autophagy. Notably, HSC70 also participates in multiple non-communicable diseases and some pathogen-caused infectious diseases. It is known that virus is an obligatory intracellular parasite and heavily relies on host machineries to self-replication. Undoubtedly, HSC70 is a striking target manipulated by virus to ensure the successful propagation. In this review, we summarize the recent advances of the regulatory mechanisms of HSC70 during viral infections, which will be conducive to further study viral pathogenesis.
Collapse
Affiliation(s)
- Zeng Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yongtao Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xia Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jun Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yuening Cheng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jianke Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.,Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|