1
|
Asawapaithulsert P, Ngamprasertchai T, Kitro A. Japanese Encephalitis Vaccine Acceptance and Strategies for Travelers: Insights from a Scoping Review and Practitioners in Endemic Countries. Vaccines (Basel) 2023; 11:1683. [PMID: 38006016 PMCID: PMC10674921 DOI: 10.3390/vaccines11111683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Japanese encephalitis (JE) remains the cause of vaccine-preventable encephalitis in individuals living in endemic areas and international travelers. Although rare, the disease's high fatality rate emphasizes the need for effective immunization. This review aims to provide updated data on the JE burden between 2017 and 2023, vaccine acceptance, and vaccine strategies for travelers. We prospectively identified studies, using MEDLINE and PubMed, published through 2023. JE incidence has decreased in local populations and remains low among travelers from non-endemic countries. The local JE risk cannot be utilized to determine traveler risk. Adult travelers naïve to JEV infection or immunization may be at potentially higher risk. The JE vaccine acceptance rates among international travelers visiting JE endemic areas range from 0.2% to 28.5%. The cost of the vaccine and low risk perception could be barriers to JE vaccination. For travelers, an accelerated two-dose regimen of inactivated Vero cell JE vaccine (JE-VC) or a single dosage of live attenuated JE vaccine (JE-LV) may be an option. In conclusion, the JE burden among residents and travelers is lower, but the risk is not negligible. Practitioners should prioritize sharing knowledge, increasing awareness, and promoting vaccinations and preventive measures to reduce tourists' risk of JE along their journey.
Collapse
Affiliation(s)
- Punyisa Asawapaithulsert
- Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Thundon Ngamprasertchai
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Amornphat Kitro
- Department of Community Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Japanese Encephalitis Vaccine Generates Cross-Reactive Memory T Cell Responses to Zika Virus in Humans. J Trop Med 2022; 2022:8379286. [DOI: 10.1155/2022/8379286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/22/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
Objective. Zika virus (ZIKV) and Japanese encephalitis virus (JEV) are mosquito-borne flaviviruses with sequence homology. ZIKV circulates in some regions where JEV also circulates, or where JE vaccination is used. Cross-immunity between flaviviruses exists, but the precise mechanisms remain unclear. We previously demonstrated that T cell immunity induced by the live-attenuated Japanese encephalitis (JE) SA14-14-2 vaccine conferred protective immunity against ZIKV infection in mice, which could even bypass antibody-dependent enhancement. However, the role of T cell immune, especially memory T cell subsets, in cross-reactive immune responses between JE vaccine and ZIKV in humans has not been reported. Methods. We examined central and effector memory CD4+ and CD8+ T cell (TCM and TEM) responses (including degranulation, cytokines, and chemokines) in the presence of JEV and ZIKV, respectively, by using qualified peripheral blood mononuclear cell samples from 18 children who had recently received a two-dose course of JE vaccine SA14-14-2 as well as seven children without JE vaccination. Results. Cross-reactive CD8+ TCM in response to ZIKV was characterized by secretion of IFN-γ, whereas CD8+ TEM did not show significant upregulation of functional factors. In the presence of ZIKV, IFN-γ and TNF-α expression was upregulated by CD4+ TEM, and the expression signature of CD4+ TCM is more cytotoxic potential. Conclusions. We profiled the cross-reactive memory T cell responses to ZIKV in JE vaccine recipients. These data will provide evidence for the mechanism of cross-reactive memory T cell immune responses between JEV and ZIKV and a more refined view of bivalent vaccine design strategy.
Collapse
|
3
|
Chen T, Zhu S, Wei N, Zhao Z, Niu J, Si Y, Cao S, Ye J. Protective Immune Responses Induced by an mRNA-LNP Vaccine Encoding prM-E Proteins against Japanese Encephalitis Virus Infection. Viruses 2022; 14:1121. [PMID: 35746593 PMCID: PMC9227124 DOI: 10.3390/v14061121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Japanese encephalitis virus (JEV) is an important zoonotic pathogen, which causes central nervous system symptoms in humans and reproductive disorders in swine. It has led to severe impacts on human health and the swine industry; however, there is no medicine available for treating yet. Therefore, vaccination is the best preventive measure for this disease. In the study, a modified mRNA vaccine expressing the prM and E proteins of the JEV P3 strain was manufactured, and a mouse model was used to assess its efficacy. The mRNA encoding prM and E proteins showed a high level of protein expression in vitro and were encapsulated into a lipid nanoparticle (LNP). Effective neutralizing antibodies and CD8+ T-lymphocytes-mediated immune responses were observed in vaccinated mice. Furthermore, the modified mRNA can protect mice from a lethal challenge with JEV and reduce neuroinflammation caused by JEV. This study provides a new option for the JE vaccine and lays a foundation for the subsequent development of a more efficient and safer JEV mRNA vaccine.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.C.); (S.Z.); (N.W.); (Z.Z.); (J.N.); (Y.S.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuo Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.C.); (S.Z.); (N.W.); (Z.Z.); (J.N.); (Y.S.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Ning Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.C.); (S.Z.); (N.W.); (Z.Z.); (J.N.); (Y.S.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Zikai Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.C.); (S.Z.); (N.W.); (Z.Z.); (J.N.); (Y.S.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjun Niu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.C.); (S.Z.); (N.W.); (Z.Z.); (J.N.); (Y.S.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Youhui Si
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.C.); (S.Z.); (N.W.); (Z.Z.); (J.N.); (Y.S.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.C.); (S.Z.); (N.W.); (Z.Z.); (J.N.); (Y.S.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.C.); (S.Z.); (N.W.); (Z.Z.); (J.N.); (Y.S.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
A VLP-Based Vaccine Candidate Protects Mice against Japanese Encephalitis Virus Infection. Vaccines (Basel) 2022; 10:vaccines10020197. [PMID: 35214656 PMCID: PMC8877874 DOI: 10.3390/vaccines10020197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Japanese encephalitis virus (JEV) is the leading cause of epidemic encephalitis in Asia, and vaccination is the most effective way to prevent JE. Although several licensed vaccines were widely used, there is still a demand for developing safer, cheaper, and more effective JE vaccines. In the current study, a virus-like particle (VLP) vaccine candidate containing the envelope structural protein of JEV expressed by the Pichia pastoris was assembled in vitro. It elicited a robust humoral and cellular immune response in mice model, conferring immunodeficient mice complete protection against lethal doses of JEV challenge. Furthermore, pigs immunized with VLP alone without adjuvant via intramuscular produced high neutralizing antibodies against JEV. Consequently, this study showed a new design of JEV subunit vaccine based on VLP strategy and demonstrated the potential for clinical application.
Collapse
|
5
|
Leventhal SS, Clancy C, Erasmus J, Feldmann H, Hawman DW. An Intramuscular DNA Vaccine for SARS-CoV-2 Decreases Viral Lung Load but Not Lung Pathology in Syrian Hamsters. Microorganisms 2021; 9:1040. [PMID: 34065996 PMCID: PMC8151856 DOI: 10.3390/microorganisms9051040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/23/2022] Open
Abstract
The 2019 novel coronavirus, SARS-CoV-2, first reported in December 2019, has infected over 102 million people around the world as of February 2021 and thus calls for rapid development of safe and effective interventions, namely vaccines. In our study, we evaluated a DNA vaccine against SARS-CoV-2 in the Syrian hamster model. Hamsters were vaccinated with a DNA-plasmid encoding the SARS-CoV-2 full length spike open reading frame (ORF) to induce host cells to produce spike protein and protective immune responses before exposure to infectious virus. We tested this vaccine candidate by both intranasal (IN) and intramuscular (IM) routes of administration and complexing with and without an in vivo delivery reagent. Hamsters receiving prime-boost-boost IM-only vaccinations recovered body weight quicker, had decreased lung viral loads, and increased SARS-CoV-2-specific antibody titers compared to control vaccinated animals but, surprisingly, lung pathology was as severe as sham vaccinated controls. The IM/IN combination group showed no efficacy in reducing lung virus titers or pathology. With increasing public health need for rapid and effective interventions, our data demonstrate that in some vaccine contexts, significant antibody responses and decreased viral loads may not be sufficient to prevent lung pathology.
Collapse
Affiliation(s)
- Shanna S. Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA; (S.S.L.); (C.C.); (H.F.)
| | - Chad Clancy
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA; (S.S.L.); (C.C.); (H.F.)
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Jesse Erasmus
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA;
- HDT Bio, Seattle, WA 98102, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA; (S.S.L.); (C.C.); (H.F.)
| | - David W. Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA; (S.S.L.); (C.C.); (H.F.)
| |
Collapse
|