1
|
de Oliveira IA, dos Reis LDNA, Fonseca MEDN, Melo FFS, Boiteux LS, Pereira-Carvalho RDC. Geminiviridae and Alphasatellitidae Diversity Revealed by Metagenomic Analysis of Susceptible and Tolerant Tomato Cultivars across Distinct Brazilian Biomes. Viruses 2024; 16:899. [PMID: 38932191 PMCID: PMC11209153 DOI: 10.3390/v16060899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The diversity of Geminiviridae and Alphasatellitidae species in tomatoes was assessed via high-throughput sequencing of 154 symptomatic foliar samples collected from 2002 to 2017 across seven Brazilian biomes. The first pool (BP1) comprised 73 samples from the North (13), Northeast (36), and South (24) regions. Sixteen begomoviruses and one Topilevirus were detected in BP1. Four begomovirus-like contigs were identified as putative novel species (NS). NS#1 was reported in the semi-arid (Northeast) region and NS#2 and NS#4 in mild subtropical climates (South region), whereas NS#3 was detected in the warm and humid (North) region. The second pool (BP2) comprised 81 samples from Southeast (39) and Central-West (42) regions. Fourteen viruses and subviral agents were detected in BP2, including two topileviruses, a putative novel begomovirus (NS#5), and two alphasatellites occurring in continental highland areas. The five putative novel begomoviruses displayed strict endemic distributions. Conversely, tomato mottle leaf curl virus (a monopartite species) displayed the most widespread distribution occurring across the seven sampled biomes. The overall diversity and frequency of mixed infections were higher in susceptible (16 viruses + alphasatellites) in comparison to tolerant (carrying the Ty-1 or Ty-3 introgressions) samples, which displayed 9 viruses. This complex panorama reinforces the notion that the tomato-associated Geminiviridae diversity is yet underestimated in Neotropical regions.
Collapse
Affiliation(s)
- Izaías Araújo de Oliveira
- Department of Plant Pathology, University of Brasília (UnB), Brasília 70910-900, DF, Brazil; (I.A.d.O.); (L.d.N.A.d.R.); (F.F.S.M.)
| | | | | | - Felipe Fochat Silva Melo
- Department of Plant Pathology, University of Brasília (UnB), Brasília 70910-900, DF, Brazil; (I.A.d.O.); (L.d.N.A.d.R.); (F.F.S.M.)
| | - Leonardo Silva Boiteux
- Department of Plant Pathology, University of Brasília (UnB), Brasília 70910-900, DF, Brazil; (I.A.d.O.); (L.d.N.A.d.R.); (F.F.S.M.)
- Embrapa Vegetable Crops (Hortaliças), National Center for Vegetable Crops Research (CNPH),Brasília 70275-970, DF, Brazil;
| | - Rita de Cássia Pereira-Carvalho
- Department of Plant Pathology, University of Brasília (UnB), Brasília 70910-900, DF, Brazil; (I.A.d.O.); (L.d.N.A.d.R.); (F.F.S.M.)
| |
Collapse
|
2
|
Zarzyńska-Nowak A, Minicka J, Wieczorek P, Hasiów-Jaroszewska B. Development of Stable Infectious cDNA Clones of Tomato Black Ring Virus Tagged with Green Fluorescent Protein. Viruses 2024; 16:125. [PMID: 38257825 PMCID: PMC10819210 DOI: 10.3390/v16010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Tomato black ring virus (TBRV) is a member of the Nepovirus genus in the Secoviridae family, which infects a wide range of important crop species worldwide. In this work, we constructed four cDNA infectious clones of the TBRV tagged with the green fluorescent protein (TBRV-GFP), which varied in (i) the length of the sequences flanking the GFP insert, (ii) the position of the GFP insert within the RNA2 polyprotein, and (iii) the addition of a self-cutting 2A protein. The presence of the GFP coding sequence in infected plants was verified by RT-PCR, while the infectivity and stability of the constructs were verified by mechanical inoculation of the host plants. The systemic spread of TBRV-GFP within plants was observed under UV light at a macroscopic level, monitoring GFP-derived fluorescence in leaves, and at a microscopic level using confocal microscopy. The obtained clones are a valuable tool for future studies of TBRV-host interactions, virus biology, and the long-term monitoring of its distribution in infected plants.
Collapse
Affiliation(s)
- Aleksandra Zarzyńska-Nowak
- Department of Virology and Bacteriology, Institute of Plant Protection—National Research Institute, Wladyslawa Wegorka 20, 60-318 Poznan, Poland; (J.M.); (B.H.-J.)
| | - Julia Minicka
- Department of Virology and Bacteriology, Institute of Plant Protection—National Research Institute, Wladyslawa Wegorka 20, 60-318 Poznan, Poland; (J.M.); (B.H.-J.)
| | - Przemysław Wieczorek
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection—National Research Institute, Wladyslawa Wegorka 20, 60-318 Poznan, Poland;
| | - Beata Hasiów-Jaroszewska
- Department of Virology and Bacteriology, Institute of Plant Protection—National Research Institute, Wladyslawa Wegorka 20, 60-318 Poznan, Poland; (J.M.); (B.H.-J.)
| |
Collapse
|
3
|
Kumar S, Gupta N, Chakraborty S. Geminiviral betasatellites: critical viral ammunition to conquer plant immunity. Arch Virol 2023; 168:196. [PMID: 37386317 DOI: 10.1007/s00705-023-05776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/30/2023] [Indexed: 07/01/2023]
Abstract
Geminiviruses have mastered plant cell modulation and immune invasion to ensue prolific infection. Encoding a relatively small number of multifunctional proteins, geminiviruses rely on satellites to efficiently re-wire plant immunity, thereby fostering virulence. Among the known satellites, betasatellites have been the most extensively investigated. They contribute significantly to virulence, enhance virus accumulation, and induce disease symptoms. To date, only two betasatellite proteins, βC1, and βV1, have been shown to play a crucial role in virus infection. In this review, we offer an overview of plant responses to betasatellites and counter-defense strategies deployed by betasatellites to overcome those responses.
Collapse
Affiliation(s)
- Sunil Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neha Gupta
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
4
|
Mubin M, Shabbir A, Nahid N, Liaqat I, Hassan M, Aljarba NH, Qahtani AA, Fauquet CM, Ye J, Nawaz-ul-Rehman MS. Patterns of Genetic Diversity among Alphasatellites Infecting Gossypium Species. Pathogens 2022; 11:pathogens11070763. [PMID: 35890008 PMCID: PMC9319557 DOI: 10.3390/pathogens11070763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
Alphasatellites are small single-stranded circular DNA molecules associated with geminiviruses and nanoviruses. In this study, a meta-analysis of known alphasatellites isolated from the genus Gossypium (cotton) over the last two decades was performed. The phylogenetic and pairwise sequence identity analysis suggested that cotton-infecting begomoviruses were associated with at least 12 different alphasatellites globally. Three out of twelve alphasatellite were associated with cotton leaf curl geminiviruses but were not isolated from cotton plants. The cotton leaf curl Multan alphasatellite, which was initially isolated from cotton, has now been reported in several plant species, including monocot plants such as sugarcane. Our recombination analysis suggested that four alphasatellites, namely cotton leaf curl Lucknow alphasatellites, cotton leaf curl Multan alphasatellites, Ageratum yellow vein Indian alphasatellites and Ageratum enation alphasatellites, evolved through recombination. Additionally, high genetic variability was detected among the cotton-infecting alphasatellites at the genome level. The nucleotide substitution rate for the replication protein of alphasatellites (alpha-Rep) was estimated to be relatively high (~1.56 × 10−3). However, unlike other begomoviruses and satellites, the first codon position of alpha-Rep rapidly changed compared to the second and third codon positions. This study highlights the biodiversity and recombination of alphasatellites associated with the leaf curl diseases of cotton crops.
Collapse
Affiliation(s)
- Muhammad Mubin
- Virology Lab, CABB University of Agriculture, Jail Road, Faisalabad 38000, Pakistan; (M.M.); (A.S.); (M.H.)
| | - Arzoo Shabbir
- Virology Lab, CABB University of Agriculture, Jail Road, Faisalabad 38000, Pakistan; (M.M.); (A.S.); (M.H.)
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, GC University Faisalabad, Faisalabad 38000, Pakistan;
| | - Iram Liaqat
- Microbiology Laboratory, Department of Zoology, GC University Lahore, Lahore 54000, Pakistan;
| | - Muhammad Hassan
- Virology Lab, CABB University of Agriculture, Jail Road, Faisalabad 38000, Pakistan; (M.M.); (A.S.); (M.H.)
| | - Nada H. Aljarba
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Ahmed Al Qahtani
- Department of Infection and Immunity, Research Center, King FaisaI Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | | | - Jian Ye
- Laboratory of Vector-Borne Diseases, State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Muhammad Shah Nawaz-ul-Rehman
- Virology Lab, CABB University of Agriculture, Jail Road, Faisalabad 38000, Pakistan; (M.M.); (A.S.); (M.H.)
- Correspondence:
| |
Collapse
|