1
|
Yang L, Zeng XT, Luo RH, Tang Y, Ren SX, Long XY, Fu XH, Zhang WJ, Ren HY, Zheng YT, Cheng W. CRTC3 restricts SARS-CoV-2 replication and is antagonized by CREB. Virol Sin 2024:S1995-820X(24)00207-4. [PMID: 39736320 DOI: 10.1016/j.virs.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025] Open
Abstract
Virus-encoding RNA-dependent RNA polymerase (RdRp) is essential for genome replication and gene transcription of human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We previously identified the interaction between the catalytic subunit NSP12 of SARS-CoV-2 RdRp and the host protein CREB-regulated transcription coactivator 3 (CRTC3), a member of the CRTC family that regulates cyclic AMP response element-binding protein (CREB)-mediated transcriptional activation. Currently, the implication of CRTC3 in the pathogenesis of HCoVs is poorly understood. Herein, we demonstrated that CRTC3 attenuates RdRp activity and SARS-CoV-2 genome replication, therefore reducing the production of progeny viruses. The interaction of CRTC3 with NSP12 contributes to its inhibitory effect on RdRp activity. Furthermore, we expanded the suppressive effects of two other CRTC family members (CRTC1 and CRTC2) on the RdRp activities of lethal HCoVs, including SARS-CoV-2 and Middle East respiratory syndrome coronavirus (MERS-CoV), along with the CREB antagonization. Overall, our research suggests that CRTCs restrict the replication of HCoVs and are antagonized by CREB, which not only provides new insights into the replication regulation of HCoVs, but also offers important information for the development of anti-HCoV interventions.
Collapse
Affiliation(s)
- Li Yang
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiao-Tao Zeng
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China; Research and Innovation Center, Pengzhou People's Hospital, Pengzhou 610000, China
| | - Rong-Hua Luo
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Ying Tang
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Si-Xue Ren
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xin-Yan Long
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiang-Hui Fu
- Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wan-Jiang Zhang
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi 832003, China
| | - Hai-Yan Ren
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China.
| | - Wei Cheng
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Willett JDS, Gravel A, Dubuc I, Gudimard L, Dos Santos Pereira Andrade AC, Lacasse É, Fortin P, Liu JL, Cervantes JA, Galvez JH, Djambazian HHV, Zwaig M, Roy AM, Lee S, Chen SH, Ragoussis J, Flamand L. SARS-CoV-2 rapidly evolves lineage-specific phenotypic differences when passaged repeatedly in immune-naïve mice. Commun Biol 2024; 7:191. [PMID: 38365933 PMCID: PMC10873417 DOI: 10.1038/s42003-024-05878-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
The persistence of SARS-CoV-2 despite the development of vaccines and a degree of herd immunity is partly due to viral evolution reducing vaccine and treatment efficacy. Serial infections of wild-type (WT) SARS-CoV-2 in Balb/c mice yield mouse-adapted strains with greater infectivity and mortality. We investigate if passaging unmodified B.1.351 (Beta) and B.1.617.2 (Delta) 20 times in K18-ACE2 mice, expressing the human ACE2 receptor, in a BSL-3 laboratory without selective pressures, drives human health-relevant evolution and if evolution is lineage-dependent. Late-passage virus causes more severe disease, at organism and lung tissue scales, with late-passage Delta demonstrating antibody resistance and interferon suppression. This resistance co-occurs with a de novo spike S371F mutation, linked with both traits. S371F, an Omicron-characteristic mutation, is co-inherited at times with spike E1182G per Nanopore sequencing, existing in different within-sample viral variants at others. Both S371F and E1182G are linked to mammalian GOLGA7 and ZDHHC5 interactions, which mediate viral-cell entry and antiviral response. This study demonstrates SARS-CoV-2's tendency to evolve with phenotypic consequences, its evolution varying by lineage, and suggests non-dominant quasi-species contribution.
Collapse
Affiliation(s)
- Julian Daniel Sunday Willett
- Quantitative Life Sciences Ph.D. Program, McGill University, Montreal, QC, Canada
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Annie Gravel
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
| | - Isabelle Dubuc
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
| | - Leslie Gudimard
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
| | | | - Émile Lacasse
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
| | - Paul Fortin
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Division of Rheumatology, Department of Medicine, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Ju-Ling Liu
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jose Avila Cervantes
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jose Hector Galvez
- Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada
| | - Haig Hugo Vrej Djambazian
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Melissa Zwaig
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Anne-Marie Roy
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Sally Lee
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Shu-Huang Chen
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jiannis Ragoussis
- McGill Genome Centre, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
| | - Louis Flamand
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada.
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
3
|
Yang L, Zeng XT, Luo RH, Ren SX, Liang LL, Huang QX, Tang Y, Fan H, Ren HY, Zhang WJ, Zheng YT, Cheng W. SARS-CoV-2 NSP12 utilizes various host splicing factors for replication and splicing regulation. J Med Virol 2024; 96:e29396. [PMID: 38235848 DOI: 10.1002/jmv.29396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/19/2023] [Accepted: 01/01/2024] [Indexed: 01/19/2024]
Abstract
The RNA-dependent RNA polymerase (RdRp) is a crucial element in the replication and transcription of RNA viruses. Although the RdRps of lethal human coronaviruses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) have been extensively studied, the molecular mechanism of the catalytic subunit NSP12, which is involved in pathogenesis, remains unclear. In this study, the biochemical and cell biological results demonstrate the interactions between SARS-CoV-2 NSP12 and seven host proteins, including three splicing factors (SLU7, PPIL3, and AKAP8). The entry efficacy of SARS-CoV-2 considerably decreased when SLU7 or PPIL3 was knocked out, indicating that abnormal splicing of the host genome was responsible for this occurrence. Furthermore, the polymerase activity and stability of SARS-CoV-2 RdRp were affected by the three splicing factors to varying degrees. In addition, NSP12 and its homologues from SARS-CoV and MERS-CoV suppressed the alternative splicing of cellular genes, which were influenced by the three splicing factors. Overall, our research illustrates that SARS-CoV-2 NSP12 can engage with various splicing factors, thereby impacting virus entry, replication, and gene splicing. This not only improves our understanding of how viruses cause diseases but also lays the foundation for the development of antiviral therapies.
Collapse
Affiliation(s)
- Li Yang
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiao-Tao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Rong-Hua Luo
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Si-Xue Ren
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lin-Lin Liang
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiu-Xia Huang
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ying Tang
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hong Fan
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hai-Yan Ren
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wan-Jiang Zhang
- Department of Pathophysiology, Shihezi University School of Medicine, the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang, China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Patange S, Maragh S. Fire Burn and Cauldron Bubble: What Is in Your Genome Editing Brew? Biochemistry 2023; 62:3500-3511. [PMID: 36306429 PMCID: PMC10734218 DOI: 10.1021/acs.biochem.2c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/28/2022] [Indexed: 11/28/2022]
Abstract
Genome editing is a rapidly evolving biotechnology with the potential to transform many sectors of industry such as agriculture, biomanufacturing, and medicine. This technology is enabled by an ever-growing portfolio of biomolecular reagents that span the central dogma, from DNA to RNA to protein. In this paper, we draw from our unique perspective as the National Metrology Institute of the United States to bring attention to the importance of understanding and reporting genome editing formulations accurately and promoting concepts to verify successful delivery into cells. Achieving the correct understanding may be hindered by the way units, quantities, and stoichiometries are reported in the field. We highlight the variability in how editing formulations are reported in the literature and examine how a reference molecule could be used to verify the delivery of a reagent into cells. We provide recommendations on how more accurate reporting of editing formulations and more careful verification of the steps in an editing experiment can help set baseline expectations of reagent performance, toward the aim of enabling genome editing studies to be more reproducible. We conclude with a future outlook on technologies that can further our control and enable our understanding of genome editing outcomes at the single-cell level.
Collapse
Affiliation(s)
- Simona Patange
- Biosystems and Biomaterials
Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Samantha Maragh
- Biosystems and Biomaterials
Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
5
|
Cesar-Silva D, Pereira-Dutra FS, Giannini ALM, Maya-Monteiro CM, de Almeida CJG. Lipid compartments and lipid metabolism as therapeutic targets against coronavirus. Front Immunol 2023; 14:1268854. [PMID: 38106410 PMCID: PMC10722172 DOI: 10.3389/fimmu.2023.1268854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023] Open
Abstract
Lipids perform a series of cellular functions, establishing cell and organelles' boundaries, organizing signaling platforms, and creating compartments where specific reactions occur. Moreover, lipids store energy and act as secondary messengers whose distribution is tightly regulated. Disruption of lipid metabolism is associated with many diseases, including those caused by viruses. In this scenario, lipids can favor virus replication and are not solely used as pathogens' energy source. In contrast, cells can counteract viruses using lipids as weapons. In this review, we discuss the available data on how coronaviruses profit from cellular lipid compartments and why targeting lipid metabolism may be a powerful strategy to fight these cellular parasites. We also provide a formidable collection of data on the pharmacological approaches targeting lipid metabolism to impair and treat coronavirus infection.
Collapse
Affiliation(s)
- Daniella Cesar-Silva
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Filipe S. Pereira-Dutra
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Lucia Moraes Giannini
- Laboratory of Functional Genomics and Signal Transduction, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa M. Maya-Monteiro
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratory of Endocrinology and Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Cecília Jacques G. de Almeida
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Anwar MU, van der Goot FG. Refining S-acylation: Structure, regulation, dynamics, and therapeutic implications. J Cell Biol 2023; 222:e202307103. [PMID: 37756661 PMCID: PMC10533364 DOI: 10.1083/jcb.202307103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
With a limited number of genes, cells achieve remarkable diversity. This is to a large extent achieved by chemical posttranslational modifications of proteins. Amongst these are the lipid modifications that have the unique ability to confer hydrophobicity. The last decade has revealed that lipid modifications of proteins are extremely frequent and affect a great variety of cellular pathways and physiological processes. This is particularly true for S-acylation, the only reversible lipid modification. The enzymes involved in S-acylation and deacylation are only starting to be understood, and the list of proteins that undergo this modification is ever-increasing. We will describe the state of knowledge on the enzymes that regulate S-acylation, from their structure to their regulation, how S-acylation influences target proteins, and finally will offer a perspective on how alterations in the balance between S-acylation and deacylation may contribute to disease.
Collapse
Affiliation(s)
- Muhammad U. Anwar
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Chen P, Wu M, He Y, Jiang B, He ML. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Signal Transduct Target Ther 2023; 8:237. [PMID: 37286535 DOI: 10.1038/s41392-023-01510-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by coronavirus SARS-CoV-2 infection has become a global pandemic due to the high viral transmissibility and pathogenesis, bringing enormous burden to our society. Most patients infected by SARS-CoV-2 are asymptomatic or have mild symptoms. Although only a small proportion of patients progressed to severe COVID-19 with symptoms including acute respiratory distress syndrome (ARDS), disseminated coagulopathy, and cardiovascular disorders, severe COVID-19 is accompanied by high mortality rates with near 7 million deaths. Nowadays, effective therapeutic patterns for severe COVID-19 are still lacking. It has been extensively reported that host metabolism plays essential roles in various physiological processes during virus infection. Many viruses manipulate host metabolism to avoid immunity, facilitate their own replication, or to initiate pathological response. Targeting the interaction between SARS-CoV-2 and host metabolism holds promise for developing therapeutic strategies. In this review, we summarize and discuss recent studies dedicated to uncovering the role of host metabolism during the life cycle of SARS-CoV-2 in aspects of entry, replication, assembly, and pathogenesis with an emphasis on glucose metabolism and lipid metabolism. Microbiota and long COVID-19 are also discussed. Ultimately, we recapitulate metabolism-modulating drugs repurposed for COVID-19 including statins, ASM inhibitors, NSAIDs, Montelukast, omega-3 fatty acids, 2-DG, and metformin.
Collapse
Affiliation(s)
- Peiran Chen
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Binghua Jiang
- Cell Signaling and Proteomic Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China.
| |
Collapse
|
8
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
9
|
Targeting RNA G-quadruplex with repurposed drugs blocks SARS-CoV-2 entry. PLoS Pathog 2023; 19:e1011131. [PMID: 36701392 PMCID: PMC9904497 DOI: 10.1371/journal.ppat.1011131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/07/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
The rapid emergence of SARS-CoV-2 variants of concern, the complexity of infection, and the functional redundancy of host factors, underscore an urgent need for broad-spectrum antivirals against the continuous COVID-19 pandemic, with drug repurposing as a viable therapeutic strategy. Here we report the potential of RNA G-quadruplex (RG4)-targeting therapeutic strategy for SARS-CoV-2 entry. Combining bioinformatics, biochemical and biophysical approaches, we characterize the existence of RG4s in several SARS-CoV-2 host factors. In silico screening followed by experimental validation identify Topotecan (TPT) and Berbamine (BBM), two clinical approved drugs, as RG4-stabilizing agents with repurposing potential for COVID-19. Both TPT and BBM can reduce the protein level of RG4-containing host factors, including ACE2, AXL, FURIN, and TMPRSS2. Intriguingly, TPT and BBM block SARS-CoV-2 pseudovirus entry into target cells in vitro and murine tissues in vivo. These findings emphasize the significance of RG4 in SARS-CoV-2 pathogenesis and provide a potential broad-spectrum antiviral strategy for COVID-19 prevention and treatment.
Collapse
|
10
|
Liu G, Li X, Yang F, Qi J, Shang L, Zhang H, Li S, Xu F, Li L, Yu H, Li Y, Dong X, Song Q, Zhu F, Chen G, Cao C, Jiang L, Su J, Yang L, Xu X, Zhang Z, Zhao RC, Li B. C-Phycocyanin Ameliorates the Senescence of Mesenchymal Stem Cells through ZDHHC5-Mediated Autophagy via PI3K/AKT/mTOR Pathway. Aging Dis 2023:AD.2023.0121. [PMID: 37163424 PMCID: PMC10389819 DOI: 10.14336/ad.2023.0121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/15/2023] [Indexed: 05/12/2023] Open
Abstract
The senescence of mesenchymal stem cells (MSCs) impairs their regenerative capacity to maintain tissue homeostasis. Numerous studies are focusing on the interventions and mechanisms to attenuate the senescence of MSCs. C-phycocyanin (C-PC) is reported to have multiple functions such as antitumor, antioxidation, anti-inflammation and anti-aging roles, but there is little research about the effects of C-PC on the senescence of MSCs. Here we investigated the roles and mechanism of C-PC on MSCs senescence. In vitro results showed that C-PC could reduce senescence, enhance proliferation, promote the adipogenic and osteogenic differentiation in senescent MSCs induced by oxidative stress. In vivo D-Galactose (D-Gal) induced rats aging models showed C-PC also increased the viability and differentiation of intrinsic senescent bone marrow derived MSCs (BMSCs). Furthermore, C-PC also decreased the levels of oxidative stress markers ROS or MDA, elevated the SOD activity, and increased the anti-inflammatory factors. Proteomic chip analysis showed that C-PC interacted with ZDHHC5, and their interaction was verified by pull down assay. Overexpression of ZDHHC5 aggravated the senescence of MSCs and greatly lessened the beneficial effects of C-PC on senescence. In addition, we found ZDHHC5 regulated autophagy by altering LC3, Beclin1 and PI3K/AKT/mTOR pathway. In summary, our data indicated that C-PC ameliorates the senescence of MSCs through zinc finger Asp-His-His-Cys (DHHC) domain-containing protein 5 (ZDHHC5) mediated autophagy via PI3K/AKT/mTOR pathway. The present study uncovered the key role of autophagy in MSCs senescence and PI3K/AKT/mTOR pathway may be a potential target for anti-senescence studies of MSCs.
Collapse
Affiliation(s)
- Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Jingyu Qi
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lipeng Shang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lingne Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Huaxin Yu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Yang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Qinghang Song
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Feng Zhu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Liangqian Jiang
- Department of Medical Genetics, Linyi People's Hospital, Linyi, China
| | - Junzhe Su
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Robert Chunhua Zhao
- College of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Hu D, Zou H, Chen W, Li Y, Luo Z, Wang X, Guo D, Meng Y, Liao F, Wang W, Zhu Y, Wu J, Li G. ZDHHC11 Suppresses Zika Virus Infections by Palmitoylating the Envelope Protein. Viruses 2023; 15:144. [PMID: 36680184 PMCID: PMC9863066 DOI: 10.3390/v15010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Zika virus (ZIKV) is an RNA-enveloped virus that belongs to the Flavivirus genus, and ZIKV infections potentially induce severe neurodegenerative diseases and impair male fertility. Palmitoylation is an important post-translational modification of proteins that is mediated by a series of DHHC-palmitoyl transferases, which are implicated in various biological processes and viral infections. However, it remains to be investigated whether palmitoylation regulates ZIKV infections. In this study, we initially observed that the inhibition of palmitoylation by 2-bromopalmitate (2-BP) enhanced ZIKV infections, and determined that the envelope protein of ZIKV is palmitoylated at Cys308. ZDHHC11 was identified as the predominant enzyme that interacts with the ZIKV envelope protein and catalyzes its palmitoylation. Notably, ZDHHC11 suppressed ZIKV infections in an enzymatic activity-dependent manner and ZDHHC11 knockdown promoted ZIKV infection. In conclusion, we proposed that the envelope protein of ZIKV undergoes a novel post-translational modification and identified a distinct mechanism in which ZDHHC11 suppresses ZIKV infections via palmitoylation of the ZIKV envelope protein.
Collapse
Affiliation(s)
- Dingwen Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Haimei Zou
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Weijie Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Yuting Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziqing Luo
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xianyang Wang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Dekuan Guo
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yu Meng
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Feng Liao
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wenbiao Wang
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Ying Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Geng Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
12
|
Yang M. Redox stress in COVID-19: Implications for hematologic disorders. Best Pract Res Clin Haematol 2022; 35:101373. [PMID: 36494143 PMCID: PMC9374492 DOI: 10.1016/j.beha.2022.101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 01/08/2023]
Abstract
COVID-19 is the respiratory illness caused by the beta coronavirus SARS-CoV-2. COVID-19 is complicated by an increased risk for adverse thrombotic events that promote organ failure and death. While the mechanism of action for SARS-CoV-2 is still being understood, how SARS-CoV-2 infection impacts the redox environment in hematologic conditions is unclear. In this review, the redox mechanisms contributing to SARS-CoV-2 infection, coagulopathy and inflammation are briefly discussed. Specifically, sources of oxidant generation by hematopoietic and non-hematopoietic cells are identified with special emphasis on leukocytes, platelets, red cells, and endothelial cells. Furthermore, reactive cysteines in SARS-CoV-2 are also discussed with respect to oxidative cysteine modification and current therapeutic implications. Lastly, sickle cell disease will be discussed as a hematologic disorder with a pre-existing prothrombotic redox condition that complicates treatment strategies for COVID-19. An understanding of the redox mechanism may identify potential targets for COVID-19-mediated thrombosis in hematologic disorders.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02115, United States.
| |
Collapse
|
13
|
Tien CF, Tsai WT, Chen CH, Chou HJ, Zhang MM, Lin JJ, Lin EJ, Dai SS, Ping YH, Yu CY, Kuo YP, Tsai WH, Chen HW, Yu GY. Glycosylation and S-palmitoylation regulate SARS-CoV-2 spike protein intracellular trafficking. iScience 2022; 25:104709. [PMID: 35813875 PMCID: PMC9250814 DOI: 10.1016/j.isci.2022.104709] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/19/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
Post-translational modifications (PTMs), such as glycosylation and palmitoylation, are critical to protein folding, stability, intracellular trafficking, and function. Understanding regulation of PTMs of SARS-CoV-2 spike (S) protein could help the therapeutic drug design. Herein, the VSV vector was used to produce SARS-CoV-2 S pseudoviruses to examine the roles of the 611LYQD614 and cysteine-rich motifs in S protein maturation and virus infectivity. Our results show that 611LY612 mutation alters S protein intracellular trafficking and reduces cell surface expression level. It also changes S protein glycosylation pattern and decreases pseudovirus infectivity. The S protein contains four cysteine-rich clusters with clusters I and II as the main palmitoylation sites. Mutations of clusters I and II disrupt S protein trafficking from ER-to-Golgi, suppress pseudovirus production, and reduce spike-mediated membrane fusion activity. Taken together, glycosylation and palmitoylation orchestrate the S protein maturation processing and are critical for S protein-mediated membrane fusion and infection. 611LY612 mutation alters the glycosylation pattern of the SARS-CoV-2 S protein 611LY612 mutation reduces S protein surface expression level Palmitoylation targets mature S protein to the Golgi and plasma membrane Palmitoylation is required for pseudovirus and SARS-CoV-2 production
Collapse
|
14
|
Mekhail K, Lee M, Sugiyama M, Astori A, St-Germain J, Latreille E, Khosraviani N, Wei K, Li Z, Rini J, Lee WL, Antonescu C, Raught B, Fairn GD. Fatty Acid Synthase inhibitor TVB-3166 prevents S-acylation of the Spike protein of human coronaviruses. J Lipid Res 2022; 63:100256. [PMID: 35921881 PMCID: PMC9339154 DOI: 10.1016/j.jlr.2022.100256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/24/2022] Open
Abstract
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses mediates host cell entry and is S-acylated on multiple phylogenetically conserved cysteine residues. Multiple protein acyltransferase enzymes have been reported to post-translationally modify spike proteins; however, strategies to exploit this modification are lacking. Using resin-assisted capture MS, we demonstrate that the spike protein is S-acylated in SARS-CoV-2-infected human and monkey epithelial cells. We further show that increased abundance of the acyltransferase ZDHHC5 associates with increased S-acylation of the spike protein, whereas ZDHHC5 knockout cells had a 40% reduction in the incorporation of an alkynyl-palmitate using click chemistry detection. We also found that the S-acylation of the spike protein is not limited to palmitate, as clickable versions of myristate and stearate were also labelled the protein. Yet, we observed that ZDHHC5 was only modified when incubated with alkyne-palmitate, suggesting it has specificity for this acyl-CoA, and that other ZDHHC enzymes may use additional fatty acids to modify the spike protein. Since multiple ZDHHC isoforms may modify the spike protein, we also examined the ability of the FASN inhibitor TVB-3166 to prevent S-acylation of the spike proteins of SARS-CoV-2 and human CoV-229E. We show that treating cells with TVB-3166 inhibited S-acylation of expressed spike proteins and attenuated the ability of SARS-CoV-2 and human CoV-229E to spread in vitro. Our findings further substantiate the necessity of CoV spike protein S-acylation and demonstrate that de novo fatty acid synthesis is critical for the proper S-acylation of the spike protein.
Collapse
Affiliation(s)
- Katrina Mekhail
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Minhyoung Lee
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Michael Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Audrey Astori
- Princess Margaret Cancer Centre, University Health Network, Ontario, Canada
| | | | - Elyse Latreille
- Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Negar Khosraviani
- Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Kuiru Wei
- Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Zhijie Li
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - James Rini
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Warren L Lee
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Costin Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Gregory D Fairn
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
15
|
Ramadan AA, Mayilsamy K, McGill AR, Ghosh A, Giulianotti MA, Donow HM, Mohapatra SS, Mohapatra S, Chandran B, Deschenes RJ, Roy A. Identification of SARS-CoV-2 Spike Palmitoylation Inhibitors That Results in Release of Attenuated Virus with Reduced Infectivity. Viruses 2022; 14:v14030531. [PMID: 35336938 PMCID: PMC8950683 DOI: 10.3390/v14030531] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/02/2023] Open
Abstract
The spike proteins of enveloped viruses are transmembrane glycoproteins that typically undergo post-translational attachment of palmitate on cysteine residues on the cytoplasmic facing tail of the protein. The role of spike protein palmitoylation in virus biogenesis and infectivity is being actively studied as a potential target of novel antivirals. Here, we report that palmitoylation of the first five cysteine residues of the C-terminal cysteine-rich domain of the SARS-CoV-2 S protein are indispensable for infection, and palmitoylation-deficient spike mutants are defective in membrane fusion. The DHHC9 palmitoyltransferase interacts with and palmitoylates the spike protein in the ER and Golgi and knockdown of DHHC9 results in reduced fusion and infection of SARS-CoV-2. Two bis-piperazine backbone-based DHHC9 inhibitors inhibit SARS-CoV-2 S protein palmitoylation and the resulting progeny virion particles released are defective in fusion and infection. This establishes these palmitoyltransferase inhibitors as potential new intervention strategies against SARS-CoV-2.
Collapse
Affiliation(s)
- Ahmed A. Ramadan
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.A.R.); (K.M.); (A.R.M.); (A.G.); (S.S.M.); (S.M.); (B.C.)
| | - Karthick Mayilsamy
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.A.R.); (K.M.); (A.R.M.); (A.G.); (S.S.M.); (S.M.); (B.C.)
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Andrew R. McGill
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.A.R.); (K.M.); (A.R.M.); (A.G.); (S.S.M.); (S.M.); (B.C.)
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
- Department of Internal Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Anandita Ghosh
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.A.R.); (K.M.); (A.R.M.); (A.G.); (S.S.M.); (S.M.); (B.C.)
| | - Marc A. Giulianotti
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA; (M.A.G.); (H.M.D.)
| | - Haley M. Donow
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA; (M.A.G.); (H.M.D.)
| | - Shyam S. Mohapatra
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.A.R.); (K.M.); (A.R.M.); (A.G.); (S.S.M.); (S.M.); (B.C.)
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
- Department of Internal Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.A.R.); (K.M.); (A.R.M.); (A.G.); (S.S.M.); (S.M.); (B.C.)
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Bala Chandran
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.A.R.); (K.M.); (A.R.M.); (A.G.); (S.S.M.); (S.M.); (B.C.)
| | - Robert J. Deschenes
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.A.R.); (K.M.); (A.R.M.); (A.G.); (S.S.M.); (S.M.); (B.C.)
- Correspondence: (R.J.D.); (A.R.); Tel.: +1-(813)-974-6393 (R.J.D.); +1-(813)-974-5540 (A.R.)
| | - Arunava Roy
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA; (A.A.R.); (K.M.); (A.R.M.); (A.G.); (S.S.M.); (S.M.); (B.C.)
- Correspondence: (R.J.D.); (A.R.); Tel.: +1-(813)-974-6393 (R.J.D.); +1-(813)-974-5540 (A.R.)
| |
Collapse
|
16
|
Zeng XT, Yu XX, Cheng W. Correction to: The interactions of ZDHHC5/GOLGA7 with SARS‑CoV‑2 spike (S) protein and their effects on S protein's subcellular localization, palmitoylation and pseudovirus entry. Virol J 2022; 19:25. [PMID: 35115020 PMCID: PMC8811741 DOI: 10.1186/s12985-022-01750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Xiao-Tao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease‑Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiao-Xi Yu
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease‑Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease‑Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Li X, Shen L, Xu Z, Liu W, Li A, Xu J. Protein Palmitoylation Modification During Viral Infection and Detection Methods of Palmitoylated Proteins. Front Cell Infect Microbiol 2022; 12:821596. [PMID: 35155279 PMCID: PMC8829041 DOI: 10.3389/fcimb.2022.821596] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 01/31/2023] Open
Abstract
Protein palmitoylation—a lipid modification in which one or more cysteine thiols on a substrate protein are modified to form a thioester with a palmitoyl group—is a significant post-translational biological process. This process regulates the trafficking, subcellular localization, and stability of different proteins in cells. Since palmitoylation participates in various biological processes, it is related to the occurrence and development of multiple diseases. It has been well evidenced that the proteins whose functions are palmitoylation-dependent or directly involved in key proteins’ palmitoylation/depalmitoylation cycle may be a potential source of novel therapeutic drugs for the related diseases. Many researchers have reported palmitoylation of proteins, which are crucial for host-virus interactions during viral infection. Quite a few explorations have focused on figuring out whether targeting the acylation of viral or host proteins might be a strategy to combat viral diseases. All these remarkable achievements in protein palmitoylation have been made to technological advances. This paper gives an overview of protein palmitoylation modification during viral infection and the methods for palmitoylated protein detection. Future challenges and potential developments are proposed.
Collapse
Affiliation(s)
- Xiaoling Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Lingyi Shen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhao Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Aihua Li
- Clinical Lab, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Jun Xu, ;
| |
Collapse
|