1
|
Yaskolka Meir A, Yun H, Stampfer MJ, Liang L, Hu FB. Nutrition, DNA methylation and obesity across life stages and generations. Epigenomics 2023; 15:991-1015. [PMID: 37933548 DOI: 10.2217/epi-2023-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Obesity is a complex multifactorial condition that often manifests in early life with a lifelong burden on metabolic health. Diet, including pre-pregnancy maternal diet, in utero nutrition and dietary patterns in early and late life, can shape obesity development. Growing evidence suggests that epigenetic modifications, specifically DNA methylation, might mediate or accompany these effects across life stages and generations. By reviewing human observational and intervention studies conducted over the past 10 years, this work provides a comprehensive overview of the evidence linking nutrition to DNA methylation and its association with obesity across different age periods, spanning from preconception to adulthood and identify future research directions in the field.
Collapse
Affiliation(s)
- Anat Yaskolka Meir
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Huan Yun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Meir J Stampfer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Rubio K, Hernández-Cruz EY, Rogel-Ayala DG, Sarvari P, Isidoro C, Barreto G, Pedraza-Chaverri J. Nutriepigenomics in Environmental-Associated Oxidative Stress. Antioxidants (Basel) 2023; 12:771. [PMID: 36979019 PMCID: PMC10045733 DOI: 10.3390/antiox12030771] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Complex molecular mechanisms define our responses to environmental stimuli. Beyond the DNA sequence itself, epigenetic machinery orchestrates changes in gene expression induced by diet, physical activity, stress and pollution, among others. Importantly, nutrition has a strong impact on epigenetic players and, consequently, sustains a promising role in the regulation of cellular responses such as oxidative stress. As oxidative stress is a natural physiological process where the presence of reactive oxygen-derived species and nitrogen-derived species overcomes the uptake strategy of antioxidant defenses, it plays an essential role in epigenetic changes induced by environmental pollutants and culminates in signaling the disruption of redox control. In this review, we present an update on epigenetic mechanisms induced by environmental factors that lead to oxidative stress and potentially to pathogenesis and disease progression in humans. In addition, we introduce the microenvironment factors (physical contacts, nutrients, extracellular vesicle-mediated communication) that influence the epigenetic regulation of cellular responses. Understanding the mechanisms by which nutrients influence the epigenome, and thus global transcription, is crucial for future early diagnostic and therapeutic efforts in the field of environmental medicine.
Collapse
Affiliation(s)
- Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Estefani Y. Hernández-Cruz
- Postgraduate in Biological Sciences, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad de Mexico 04510, Mexico
| | - Diana G. Rogel-Ayala
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | | | - Ciro Isidoro
- Department of Health Sciences, Università del Piemonte Orientale, Via Paolo Solaroli 17, 28100 Novara, Italy
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad de Mexico 04510, Mexico
| |
Collapse
|
3
|
Chen K, Lu P, Beeraka NM, Sukocheva OA, Madhunapantula SV, Liu J, Sinelnikov MY, Nikolenko VN, Bulygin KV, Mikhaleva LM, Reshetov IV, Gu Y, Zhang J, Cao Y, Somasundaram SG, Kirkland CE, Fan R, Aliev G. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers. Semin Cancer Biol 2022; 83:556-569. [PMID: 33035656 DOI: 10.1016/j.semcancer.2020.09.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023]
Abstract
Epigenetic regulation of mitochondrial DNA (mtDNA) is an emerging and fast-developing field of research. Compared to regulation of nucler DNA, mechanisms of mtDNA epigenetic regulation (mitoepigenetics) remain less investigated. However, mitochondrial signaling directs various vital intracellular processes including aerobic respiration, apoptosis, cell proliferation and survival, nucleic acid synthesis, and oxidative stress. The later process and associated mismanagement of reactive oxygen species (ROS) cascade were associated with cancer progression. It has been demonstrated that cancer cells contain ROS/oxidative stress-mediated defects in mtDNA repair system and mitochondrial nucleoid protection. Furthermore, mtDNA is vulnerable to damage caused by somatic mutations, resulting in the dysfunction of the mitochondrial respiratory chain and energy production, which fosters further generation of ROS and promotes oncogenicity. Mitochondrial proteins are encoded by the collective mitochondrial genome that comprises both nuclear and mitochondrial genomes coupled by crosstalk. Recent reports determined the defects in the collective mitochondrial genome that are conducive to breast cancer initiation and progression. Mutational damage to mtDNA, as well as its overproliferation and deletions, were reported to alter the nuclear epigenetic landscape. Unbalanced mitoepigenetics and adverse regulation of oxidative phosphorylation (OXPHOS) can efficiently facilitate cancer cell survival. Accordingly, several mitochondria-targeting therapeutic agents (biguanides, OXPHOS inhibitors, vitamin-E analogues, and antibiotic bedaquiline) were suggested for future clinical trials in breast cancer patients. However, crosstalk mechanisms between altered mitoepigenetics and cancer-associated mtDNA mutations remain largely unclear. Hence, mtDNA mutations and epigenetic modifications could be considered as potential molecular markers for early diagnosis and targeted therapy of breast cancer. This review discusses the role of mitoepigenetic regulation in cancer cells and potential employment of mtDNA modifications as novel anti-cancer targets.
Collapse
Affiliation(s)
- Kuo Chen
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China; Institue for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Pengwei Lu
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China
| | - Narasimha M Beeraka
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - SubbaRao V Madhunapantula
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Junqi Liu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China
| | - Mikhail Y Sinelnikov
- Institue for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Vladimir N Nikolenko
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Department of Normal and Topographic Anatomy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University (MSU), 31-5 Lomonosovsky Prospect, 117192, Moscow, Russia
| | - Kirill V Bulygin
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Department of Normal and Topographic Anatomy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University (MSU), 31-5 Lomonosovsky Prospect, 117192, Moscow, Russia
| | - Liudmila M Mikhaleva
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation
| | - Igor V Reshetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Yuanting Gu
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China
| | - Jin Zhang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, 223 West Main Street Salem, WV, 26426, USA
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, 223 West Main Street Salem, WV, 26426, USA
| | - Ruitai Fan
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China.
| | - Gjumrakch Aliev
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation; Institute of Physiologically Active Compounds of Russian Academy of Sciences, Severny pr. 1, Chernogolovka, Moscow Region, 142432, Russia; GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA
| |
Collapse
|
4
|
Teo CWL, Png SJY, Ung YW, Yap WN. Therapeutic effects of intranasal tocotrienol-rich fraction on rhinitis symptoms in platelet-activating factor induced allergic rhinitis. Allergy Asthma Clin Immunol 2022; 18:52. [PMID: 35698169 PMCID: PMC9195334 DOI: 10.1186/s13223-022-00695-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/30/2022] [Indexed: 12/22/2022] Open
Abstract
Background Platelet-activating factor (PAF) has been suggested to be a potent inflammatory mediator in Allergic rhinitis (AR) pathogenesis. Vitamin E, an essential nutrient that comprises tocopherol and tocotrienol, is known as a potential therapeutic agent for airway allergic inflammation. This study aimed to investigate the beneficial effects of intranasal Tocotrienol-rich fraction (TRF) on PAF-induced AR in a rat model. Methods Sprague Dawley rats were randomly assigned into 3 groups: Control, PAF-induced AR and PAF-induced AR with TRF treatment. To induce AR, 50 μl of 16 μg/ml PAF was nasally instilled into each nostril. From day 1 to 7 after AR induction, 10 μl of 16 μg/μl TRF was delivered intranasally to the TRF treatment group. Complete upper skulls were collected for histopathological evaluation on day 8. Results The average severity scores of AR were significantly higher in the PAF-induced AR rats compared to both control and PAF-induced AR with TRF treatment. The histologic examination of the nasal structures showed moderate degree of inflammation and polymorphonuclear cells infiltration in the lamina propria, mucosa damage and vascular congestion in the PAF-induced AR rats. TRF was able to ameliorate the AR symptoms by restoring the nasal structures back to normal. H&E staining demonstrated a statistically significant benefit upon TRF treatment, where minimal degree of inflammation, and a reduction in the infiltration of polymorphonuclear cells, mucosa damage and vascular congestion were observed. Conclusion TRF exhibited symptomatic relief action in AR potentially due to its antioxidant, anti-inflammatory and anti-allergic properties.
Collapse
Affiliation(s)
- Cheryl Wei Ling Teo
- Research and Development Department, Davos Life Science, 3 Biopolis Drive, #04-19, Synapse, 138623, Singapore, Singapore. .,Research and Development Department, KL-Kepong Oleomas (KLK Oleo), Level 8, Menara KLK, No 1, Jalan PJU 7/6, Mutiara Damansara, 47810, Petaling Jaya, Selangor, Malaysia.
| | - Stephanie Jia Ying Png
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Yee Wei Ung
- Research and Development Department, KL-Kepong Oleomas (KLK Oleo), Level 8, Menara KLK, No 1, Jalan PJU 7/6, Mutiara Damansara, 47810, Petaling Jaya, Selangor, Malaysia
| | - Wei Ney Yap
- Research and Development Department, Davos Life Science, 3 Biopolis Drive, #04-19, Synapse, 138623, Singapore, Singapore.,Research and Development Department, KL-Kepong Oleomas (KLK Oleo), Level 8, Menara KLK, No 1, Jalan PJU 7/6, Mutiara Damansara, 47810, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
5
|
Guimarães JR, Coêlho MDC, de Oliveira NFP. Contribution of DNA methylation to the pathogenesis of Sjögren's syndrome: A review. Autoimmunity 2022; 55:215-222. [DOI: 10.1080/08916934.2022.2062593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Juliana Ramalho Guimarães
- Graduate Program in Dentistry, Centre of Health Sciences, Federal University of Paraíba – UFPB, João Pessoa, PB, Brazil
| | - Marina de Castro Coêlho
- Graduate Program in Dentistry, Centre of Health Sciences, Federal University of Paraíba – UFPB, João Pessoa, PB, Brazil
| | - Naila Francis Paulo de Oliveira
- Graduate Program in Dentistry, Centre of Health Sciences, Federal University of Paraíba – UFPB, João Pessoa, PB, Brazil
- Molecular Biology Department, Centre of Exact and Natural Sciences, Federal University of Paraíba – UFPB, João Pessoa, PB, Brazil
| |
Collapse
|
6
|
Kumari A, Bhawal S, Kapila S, Yadav H, Kapila R. Health-promoting role of dietary bioactive compounds through epigenetic modulations: a novel prophylactic and therapeutic approach. Crit Rev Food Sci Nutr 2020; 62:619-639. [PMID: 33081489 DOI: 10.1080/10408398.2020.1825286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The epigenome is an overall epigenetic state of an organism, which is as important as that of the genome for normal development and functioning of an individual. Epigenetics involves heritable but reversible changes in gene expression through alterations in DNA methylation, histone modifications and regulation of non-coding RNAs in cells, without any change in the DNA sequence. Epigenetic changes are owned by various environmental factors including pollution, microbiota and diet, which have profound effects on epigenetic modifiers. The bioactive compounds present in the diet mainly include curcumin, resveratrol, catechins, quercetin, genistein, sulforaphane, epigallocatechin-3-gallate, alkaloids, vitamins, and peptides. Bioactive compounds released during fermentation by the action of microbes also have a significant effect on the host epigenome. Besides, recent studies have explored the new insights in vitamin's functions through epigenetic regulation. These bioactive compounds exert synergistic, preventive and therapeutic effects when combined as well as when used with chemotherapeutic agents. Therefore, these compounds have potential of therapeutic agents that could be used as "Epidrug" to treat many inflammatory diseases and various cancers where chemotherapy results have many side effects. In this review, the effect of diet derived bioactive compounds through epigenetic modulations on in vitro and in vivo models is discussed.
Collapse
Affiliation(s)
- Ankita Kumari
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Shalaka Bhawal
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hariom Yadav
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
7
|
Fujii R, Yamada H, Munetsuna E, Yamazaki M, Ando Y, Mizuno G, Tsuboi Y, Ohashi K, Ishikawa H, Hagiwara C, Maeda K, Hashimoto S, Suzuki K. Associations between dietary vitamin intake, ABCA1 gene promoter DNA methylation, and lipid profiles in a Japanese population. Am J Clin Nutr 2019; 110:1213-1219. [PMID: 31504085 DOI: 10.1093/ajcn/nqz181] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Higher intake of fruits and vegetables is associated with reduced risk of specific types of cancer and of cardiovascular disease (CVD), but the protective role of the vitamins contained in fruits and vegetables on CVD is controversial. This discrepancy can raise the question of the effects of antioxidants in vitamins on CVD. Recently, we reported that higher vegetable intake was significantly associated with the decreased DNA methylation level of ATP-binding cassette transporter A1 (ABCA1), a gene associated with HDL-cholesterol metabolism. OBJECTIVE We investigated whether ABCA1 DNA methylation mediates an effect of dietary vitamin intake on lipid profiles, an important risk factor for CVD, in a Japanese population. METHODS A total of 225 individuals (108 men and 117 women) with no clinical history and no drug use for dyslipidemia participated in this cross-sectional study. We used the pyrosequencing method to measure the ABCA1 DNA methylation levels at 8 CpG sites, and we used mean DNA methylation level in statistical analysis. Dietary vitamin intake was assessed with the FFQ and adjusted for the residual method. RESULTS In women, higher dietary vitamin intake [vitamin A, β-carotene, folic acid, vitamin C (VC), vitamin D, and vitamin E] was significantly associated with lower mean ABCA1 DNA methylation levels (P = 0.004, 0.03, 0.005, 0.001, 0.03, and 0.04, respectively). In addition, in women, we found a significant inverse association between mean ABCA1 DNA methylation and HDL cholesterol (P = 0.04) but not for other lipid indexes. Mediation analysis showed a significant indirect effect of VC intake on HDL cholesterol through ABCA1 DNA methylation level in women (P = 0.04). CONCLUSIONS Although this study does not prove causality, the results suggest that ABCA1 DNA methylation mediates the protective effect of VC on HDL cholesterol in women, which could offer a novel biological mechanism in CVD prevention.
Collapse
Affiliation(s)
- Ryosuke Fujii
- Department of Preventive Medical Sciences, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Hiroya Yamada
- Department of Hygiene, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Mirai Yamazaki
- Department of Clinical Biochemistry, School of Medical Sciences, Fujita Health University, Toyoake, Japan.,Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan
| | - Yoshitaka Ando
- Department of Clinical Biochemistry, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Genki Mizuno
- Department of Clinical Biochemistry, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Koji Ohashi
- Department of Clinical Biochemistry, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Clinical Biochemistry, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Chiharu Hagiwara
- Department of Preventive Medical Sciences, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Keisuke Maeda
- Department of Preventive Medical Sciences, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Shuji Hashimoto
- Department of Hygiene, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| |
Collapse
|
8
|
Dietary vegetable intake is inversely associated with ATP-binding cassette protein A1 (ABCA1) DNA methylation levels among Japanese women. Nutrition 2019; 65:1-5. [DOI: 10.1016/j.nut.2019.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/21/2019] [Accepted: 02/14/2019] [Indexed: 11/20/2022]
|