1
|
Akl EM, Mohamed RS, Abdelgayed SS, Fouda K, Abdel-Wahhab MA. Characterization and antioxidant activity of flaxseed mucilage and evaluation of its dietary supplementation in improving calcium absorption in vivo. BIOACTIVE CARBOHYDRATES AND DIETARY FIBRE 2024; 32:100444. [DOI: 10.1016/j.bcdf.2024.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
2
|
Harahap IA, Kuligowski M, Cieslak A, Kołodziejski PA, Suliburska J. Effect of Tempeh and Daidzein on Calcium Status, Calcium Transporters, and Bone Metabolism Biomarkers in Ovariectomized Rats. Nutrients 2024; 16:651. [PMID: 38474779 DOI: 10.3390/nu16050651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Menopause marks a critical life stage characterized by hormonal changes that significantly impact bone health, leading to a heightened susceptibility to bone fractures. This research seeks to elucidate the impact of daidzein and tempeh on calcium status, calcium transporters, and bone metabolism in an ovariectomized rat model. Forty female Wistar rats, aged 3 months, participated in a two-phase experiment. The initial phase involved inducing a calcium deficit, while the second phase comprised dietary interventions across five groups: Sham (S) and Ovariectomy (O) with a standard diet, O with bisphosphonate (OB), O with pure daidzein (OD), and O with tempeh (OT). Multiple parameters, encompassing calcium levels, calcium transporters, bone histopathology, and serum bone metabolism markers, were evaluated. The findings revealed that the OT group showcased heightened levels of bone turnover markers, such as pyridinoline, C-telopeptide of type I collagen, bone alkaline phosphatase, and procollagen type I N-terminal propeptide, in contrast to S and O groups, with statistical significance (p < 0.05). Histopathologically, both the OD and OT groups exhibited effects akin to the OB group, indicating a decrease in the surface area occupied by adipocytes in the femoral bone structure, although statistically non-equivalent, supporting the directionally similar trends. Although TRPV5 and TRPV6 mRNA expression levels in the jejunum and duodenum did not display statistically significant differences (p > 0.05), the OD and OT groups exhibited increased expression compared to the O group. We hypothesized that obtained results may be related to the effect of isoflavones on estrogen pathways because of their structurally similar to endogenous estrogen and weak estrogenic properties. In conclusion, the daily consumption of pure daidzein and tempeh could potentially improve and reinstate calcium status, calcium transport, and bone metabolism in ovariectomized rats. Additionally, isoflavone products demonstrate effects similar to bisphosphonate drugs on these parameters in ovariectomized rats.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland
| | - Maciej Kuligowski
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland
| | - Adam Cieslak
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Paweł A Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland
| |
Collapse
|
3
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 145.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
4
|
Podgórska B, Wielogórska-Partyka M, Godzień J, Siemińska J, Ciborowski M, Szelachowska M, Krętowski A, Siewko K. Applications of Metabolomics in Calcium Metabolism Disorders in Humans. Int J Mol Sci 2022; 23:ijms231810407. [PMID: 36142318 PMCID: PMC9499180 DOI: 10.3390/ijms231810407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of the disorders of calcium metabolism is not fully understood. This review discusses the studies in which metabolomics was applied in this area. Indeed, metabolomics could play an essential role in discovering biomarkers and elucidating pathological mechanisms. Despite the limited bibliography, the present review highlights the potential of metabolomics in identifying the biomarkers of some of the most common endocrine disorders, such as primary hyperparathyroidism (PHPT), secondary hyperparathyroidism (SHPT), calcium deficiency, osteoporosis and vitamin D supplementation. Metabolites related to above-mentioned diseorders were grouped into specific classes and mapped into metabolic pathways. Furthermore, disturbed metabolic pathways can open up new directions for the in-depth exploration of the basic mechanisms of these diseases at the molecular level.
Collapse
Affiliation(s)
- Beata Podgórska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
- Correspondence: ; Tel.: +48-85-831-83-12
| | - Marta Wielogórska-Partyka
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Joanna Godzień
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Julia Siemińska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Michał Ciborowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Małgorzata Szelachowska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Adam Krętowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Katarzyna Siewko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|
5
|
Tao X, Shao Y, Xu D, Huang Y, Yu X, Zhong T, Wang L, Chung SK, Chen D, Yu L, Xiao Y. Dietary Patterns and Nutrient Intake in University Students of Macao: A Cross-Sectional Study. Nutrients 2022; 14:nu14173642. [PMID: 36079899 PMCID: PMC9460302 DOI: 10.3390/nu14173642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Nutritional status affects the health of the public and is one of the key factors influencing social-economic development. To date, little research on the nutritional status of the Macao university student population has been conducted. OBJECTIVES To identify and evaluate the dietary pattern and the nutritional intake among Macao university students. METHODS The Macao students were selected by the stratified cluster random sampling method. A semi-quantitative food frequency questionnaire was used to investigate food consumption. Data were analyzed through a t-test and factor analysis by using SPSS Version 24.0. RESULTS A total of 1230 questionnaires were distributed. From the respondents, 1067 (86.7%) were valid. In general, we identified three major dietary patterns in this population: (1) fruit and vegetable dietary pattern, characterized by abundant consumption of fruits and vegetables; (2) grain and high fat dietary pattern, characterized as high intakes of grains and animal foods; (3) high sugar dietary pattern, characterized by a large quantity of daily sugary drinks. The average daily intake of vitamin A, thiamine, calcium, and iodine were significantly lower than the Chinese Recommended Nutrient Intake (RNI) in the subjects. Conclusions: The dietary pattern of Macao students is similar to that of other Asians. Surprisingly, the daily intake of vitamin A, thiamine, calcium, and iodine by Macao university students is significantly lower than the Chinese RNI.
Collapse
Affiliation(s)
- Xiaoyu Tao
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ying Shao
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Donghan Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yunzhi Huang
- School of Education, Zhongshan Polytechnic, Zhongshan 528404, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Dong Chen
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Lili Yu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Correspondence: (L.Y.); (Y.X.)
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Correspondence: (L.Y.); (Y.X.)
| |
Collapse
|
6
|
Preparation and Characterization of Calcium-Incorporated Rosa roxburghii Tratt and Its Efficacy on Bone Mineral Density in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5122396. [PMID: 35497912 PMCID: PMC9045994 DOI: 10.1155/2022/5122396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
Abstract
The deficiency of traditional calcium preparation will gradually be replaced by the new type of calcium preparation. Rosa roxburghii fruit (R. roxburghii) is popular for its rich nutrients and functional ingredients. The fermentation broth of R. roxburghii, involving amino acids, flavonoids, triterpenes, polysaccharides, and other compounds, is favorable for calcium chelation. Thus, this study fabricated calcium-incorporated R. roxburghii (FECa) and further illustrated its efficacy on bone mineral density (BMD) in rats. The calcium holding capacity of FECa was identified and confirmed using AAS. Ion complexation of FECa was characterized using 1H-NMR, UV, SEM and EDS, and FTIR. The calcium contents of femurs were increased by 36%, and the bone trabeculae of femurs were significantly increased. Net calcium balance was enhanced to further improve BMD by oral administration of FECa. The above results indicate that FECa can be a potential and efficient calcium supplementation agent.
Collapse
|
7
|
Yan X, Zhao M, Zou W, Tian P, Sun L, Wang M, Zhao C. Investigation of the incompatibility of Knoxiae Radix and Glycyrrhizae Radix et Rhizoma in rats by 1 H NMR and MS-based untargeted metabolomic analysis. Biomed Chromatogr 2021; 35:e5120. [PMID: 33749888 DOI: 10.1002/bmc.5120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/07/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022]
Abstract
Knoxiae Radix (HDJ, usually used after being processed into CHDJ) is a traditional Chinese herbal medicine that has been recorded in the Chinese Pharmacopoeia for many years. It is said that Glycyrrhizae Radix et Rhizoma (GC) is incompatible with HDJ, but this is unproven. In this work, nontargeted metabolomics experiments were performed on rats to evaluate the effect of the combination of the two herbals. For this, we conducted a 28-day administration in rats. The plasma, urine and kidney tissues were collected for a metabolomics study based on 1 H NMR and LC-MS. The OPLS-DA method was used to screen biomarkers. In addition, the KEGG Pathway database and MetaboAnalyst were used to find metabolic pathways. Twenty-two significant metabolites were identified. These metabolites were related to many metabolic pathways such as amino acid metabolism, synthesis and degradation of ketone bodies. Significant changes in urine creatinine levels revealed that CHDJ is nephrotoxic. When the GC-CHDJ mass ratio was 1, the toxicity was strengthened; when the GC-CHDJ' mass ratio was 3, the toxicity was alleviated. This is the first time that a metabolomics approach has been used to investigate the incompatibility of GC-CHDJ.
Collapse
Affiliation(s)
- Xu Yan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Min Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Wanru Zou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Pengyao Tian
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Lin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|