1
|
Rathmacher JA, Pitchford LM, Stout JR, Townsend JR, Jäger R, Kreider RB, Campbell BI, Kerksick CM, Harty PS, Candow DG, Roberts BM, Arent SM, Kalman DS, Antonio J. International society of sports nutrition position stand: β-hydroxy-β-methylbutyrate (HMB). J Int Soc Sports Nutr 2025; 22:2434734. [PMID: 39699070 PMCID: PMC11740297 DOI: 10.1080/15502783.2024.2434734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on an analysis of the literature regarding the effects of β-Hydroxy-β-Methylbutyrate (HMB). The following 12 points have been approved by the Research Committee of the Society: 1. HMB is a metabolite of the amino acid leucine that is naturally produced in both humans and other animals. Two forms of HMB have been studied: Calcium HMB (HMB-Ca) and a free acid form of HMB (HMB-FA). HMB-FA appears to lead to increased appearance of HMB in the bloodstream when compared to HMB-Ca, though recent results are mixed. 2. The available safety/toxicity data suggest that chronic HMB-Ca and HMB-FA consumption are safe for oral HMB supplementation in humans up to at least one year. 3. There are no negative effects of HMB-Ca and HMB-FA on glucose tolerance and insulin sensitivity in humans. There may be improvements in glucose metabolism in younger adults. 4. The primary mode of action of HMB appears to be through its dual mechanism to enhance muscle protein synthesis and suppress muscle protein breakdown. HMB's activation of mTORC1 is independent of the leucine-sensing pathway (Sestrin2-GATOR2 complex). 5. HMB may help reduce muscle damage and promote muscle recovery, which can promote muscle growth/repair. HMB may also have anti-inflammatory effects, which could contribute to reducing muscle damage and soreness. 6. HMB consumption in close proximity to an exercise bout may be beneficial to increase muscle protein synthesis and attenuate the inflammatory response. HMB can provide a beneficial physiological effect when consumed both acutely and chronically in humans. 7. Daily HMB supplementation (38 mg/kg body weight) in combination with exercise training may improve body composition through increasing lean mass and/or decreasing fat mass with benefits in participants across age, sex, and training status. The most pronounced of these improvements in body composition with HMB have been observed in studies with robust resistance training programs and dietary control. 8. HMB may improve strength and power in untrained individuals, but its performance benefits in trained athletes are mixed and increase with an increase in study duration (>6 weeks). HMB's beneficial effects on athletic performance are thought to be driven by improved recovery. 9. HMB supplementation appears to potentially have a positive impact on aerobic performance, especially in trained athletes. The mechanisms of the effects are unknown. 10. HMB supplementation may be important in a non-exercising sedentary and aging population to improve muscle strength, functionality, and muscle quality. The effects of HMB supplementation with exercise are varied, but the combination may have a beneficial effect on the treatment of age-associated sarcopenia under select conditions. 11. HMB may be effective in countering muscle disuse atrophy during periods of inactivity due to illness or injury. The modulation of mitochondrial dynamics and lipid metabolism by HMB may be a potential mechanism for preventing disuse atrophy and aiding rehabilitation beyond HMB's effects on rates of muscle protein synthesis and degradation. 12. The efficacy of HMB in combination with certain nutrients may be enhanced under select conditions.
Collapse
Affiliation(s)
- John A. Rathmacher
- MTI Biotech Inc, Ames, IA, USA
- lowa State University, Department of Animal Science, Ames, IA, USA
| | - Lisa M. Pitchford
- MTI Biotech Inc, Ames, IA, USA
- Iowa State University, Department of Kinesiology, Ames, IA, USA
| | - Jeffrey R. Stout
- University of Central Florida, School of Kinesiology and Rehabilitation Sciences, Orlando, FL, USA
| | - Jeremy R. Townsend
- Research, Nutrition, and Innovation, AG1, Carson City, NV, USA
- Concordia University Chicago, Health & Human Performance, River Forest, IL, USA
| | | | - Richard B. Kreider
- Texas A&M University, Exercise & Sports Nutrition Lab, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Bill I. Campbell
- University of South Florida, Performance & Physique Enhancement Laboratory, Exercise Science Program, Tampa, FL, USA
| | - Chad M. Kerksick
- Lindenwood University, Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, Saint Charles, MO, USA
| | - Patrick S. Harty
- Lindenwood University, Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, Saint Charles, MO, USA
| | - Darren G. Candow
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - Brandon M. Roberts
- 10 General Greene Ave, Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Shawn M. Arent
- University of South Carolina, Department of Exercise Science, Arnold School of Public Health, Columbia, SC, USA
| | - Douglas S. Kalman
- Dr. Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Nutrition Department, Davie, FL, USA
| | - Jose Antonio
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| |
Collapse
|
2
|
Imanian B, Hemmatinafar M, Daryanoosh F, Koureshfard N, Sadeghi R, Niknam A, Rezaei R, Qashqaei A. The effect of probiotics and casein supplementation on aerobic capacity parameters of male soccer players. J Int Soc Sports Nutr 2024; 21:2382165. [PMID: 39039903 PMCID: PMC11268215 DOI: 10.1080/15502783.2024.2382165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND In the realm of sports science, nutrition is a well-established pillar for athletes' training, performance, and post-workout recovery. However, the role of gut microbiota, often overlooked, is a novel and intriguing aspect that can significantly impact athletic performance. With this in mind, our study ventures into uncharted territory, investigating the effect of probiotic and casein supplementation on the aerobic capacity of male soccer players. METHOD A double-blinded and placebo-controlled study was conducted with 44 male soccer players (Age: 22.81 ± 2.76 yr, Height: 177.90 ± 6.75 cm, Weight: 67.42 ± 8.44 kg). The participants were subjected to the Bruce test in the beginning; then, they were randomly divided into four groups, each consisting of 11 people: probiotics (PRO), casein (CAS), probiotics with casein (PRO+CAS), and placebo (PLA). PRO group was given one probiotic capsule (containing strains of Lactiplantibacillus plantarum BP06, Lacticaseibacillus casei BP07, Lactobacillus acidophilus BA05, Lactobacillus delbrueckii BD08 bulgaricus, Bifidobacterium infantis BI04, Bifidobacterium longum BL03, Bifidobacterium breve BB02 and Streptococcus salivarius thermophilus BT01, with a total dose of 4.5 × 1011 CFU) during dinner, while the CAS group consumed 20 grams of casein powder 45 minutes before bed. The PRO+CAS group was given one probiotic capsule during dinner and 20 grams of casein powder 45 minutes before bed. The participants in the PLA group were given one red capsule (containing 5 grams of starch) during dinner. All participants were instructed to take the supplements only on training days, three times a week for four weeks. The maximal oxygen consumption (VO2max), Ventilatory Threshold (VT), Time-to-exhaustion (TTE), Respiratory Compensation Point (RCP), Isocapnic area Time (Time-IC), Isocapnic area oxygen consumption (VO2-IC), and Hypocapnic Hyperventilation area Time (Time-HHV), after the Bruce test were Measured. All data were analyzed using SPSS Windows software, mixed repeated measure ANOVA, and Bonferroni post hoc test at p < 0.05 level. RESULTS The current study's findings illustrated that, after the intervention, TTE (p = 0.01) and RCP (p = 0.01) were significantly improved in PRO+CAS compared to the PLA group. No significant difference was observed between PRO and PLA (p = 0.52), PRO and CAS (p = 0.999), PRO and PRO+CAS (p = 0.9), CAS and PLA (p = 0.65), CAS and PRO+CAS (p = 0.73) in TTE. In addition, no significant difference was observed between PRO and CAS (p = 0.999), PRO and PLA (p = 0.40), PRO and PRO+CAS (p = 0.999), CAS and PLA (p = 0.263), CAS and PRO+CAS (p = 0.999) in RCP. Time-HHV was significantly higher in PRO+CAS (p = 0.000) and CAS (p = 0.047) compared to the PLA group. However, no significant difference was observed in the Time-HHV between PRO and CAS (p = 0.999), PRO and PRO+CAS (p = 0.25), PRO and PLA (p = 0.12), and CAS and PRO+CAS (p = 0.57). Additionally, all the groups had no significant differences in VO2max, VT1, VO2-IC and Time-IC. CONCLUSION The findings showed that consuming probiotics and casein could relatively improve the aerobic capacity of male soccer players. Nevertheless, simultaneous consumption of probiotics and casein had a more pronounced effect on aerobic capacity indicators, especially TTE and Time-HHV.
Collapse
Affiliation(s)
- Babak Imanian
- Shiraz University, Department of Sport Science, Faculty of Education and Psychology, Shiraz, Iran
| | - Mohammad Hemmatinafar
- Shiraz University, Department of Sport Science, Faculty of Education and Psychology, Shiraz, Iran
| | - Farhad Daryanoosh
- Shiraz University, Department of Sport Science, Faculty of Education and Psychology, Shiraz, Iran
| | - Negar Koureshfard
- Shiraz University, Department of Sport Science, Faculty of Education and Psychology, Shiraz, Iran
| | - Reza Sadeghi
- Shiraz University, Department of Sport Science, Faculty of Education and Psychology, Shiraz, Iran
| | - Alireza Niknam
- Shiraz University, Department of Sport Science, Faculty of Education and Psychology, Shiraz, Iran
| | - Rasoul Rezaei
- Shiraz University, Department of Sport Science, Faculty of Education and Psychology, Shiraz, Iran
| | - Ali Qashqaei
- Shiraz University, Department of Sport Science, Faculty of Education and Psychology, Shiraz, Iran
| |
Collapse
|
3
|
Varghese S, Rao S, Khattak A, Zamir F, Chaari A. Physical Exercise and the Gut Microbiome: A Bidirectional Relationship Influencing Health and Performance. Nutrients 2024; 16:3663. [PMID: 39519496 PMCID: PMC11547208 DOI: 10.3390/nu16213663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: The human gut microbiome is a complex ecosystem of microorganisms that can influence our health and exercise habits. On the other hand, physical exercise can also impact our microbiome, affecting our health. Our narrative review examines the bidirectional relationship between physical activity and the gut microbiome, as well as the potential for targeted probiotic regimens to enhance sports performance. Methods: We conducted a comprehensive literature review to select articles published up till January 2024 on the topics of physical exercise, sports, probiotics, and gut microbiota from major scientific databases, incorporating over 100 studies. Results: We found that the impact of physical activity on the gut microbiome varies with the type and intensity of exercise. Moderate exercise promotes a healthy immune system, while high-intensity exercise for a long duration can cause a leaky gut and consequent systemic inflammation, which may disrupt the microbial balance. Combining aerobic and resistance training significantly affects bacterial diversity, linked to a lower prevalence of chronic metabolic disorders. Furthermore, exercise enhances gut microbiome diversity, increases SCFA production, improves nutrient utilization, and modulates neural and hormonal pathways, improving gut barrier integrity. Our findings also showed probiotic supplementation is associated with decreased inflammation, enhanced sports performance, and fewer gastrointestinal disturbances, suggesting that the relationship between the gut microbiome and physical activity is mutually influential. Conclusions: The bidirectional relationship between physical activity and the gut microbiome is exemplified by how exercise can promote beneficial bacteria while a healthy gut microbiome can potentially enhance exercise ability through various mechanisms. These findings underscore the importance of adding potential tailored exercise regimens and probiotic supplementation that consider individual microbiome profiles into exercise programs.
Collapse
Affiliation(s)
| | | | | | | | - Ali Chaari
- Department of Biochemistry, Premedical Division, Weill Cornell Medicine–Qatar, Qatar Foundation, Education City, Doha P.O. Box 24144, Qatar; (S.V.); (S.R.); (A.K.); (F.Z.)
| |
Collapse
|
4
|
Gross KN, Harty PS, Krieger JM, Mumford PW, Sunderland KL, Hagele AM, Kerksick CM. Milk or Kefir, in Comparison to Water, Do Not Enhance Running Time-Trial Performance in Endurance Master Athletes. Nutrients 2024; 16:717. [PMID: 38474845 DOI: 10.3390/nu16050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
This study compared flavored kefir (KFR) and flavored milk (MLK) as a recovery drink in endurance master athletes. Using a randomized, placebo-controlled, non-blinded crossover design, 11 males and females completed three testing visits whilst acutely ingesting either KFR, MLK, or water as a placebo (PLA). KFR supplementation occurred for 14 days before the KFR-testing day, followed by a 3-week washout period. Testing visits consisted of an exhausting-exercise (EE) bout, a 4-h rest period where additional carbohydrate feeding was provided, and a treadmill 5 km time trial (TT). The Gastrointestinal Symptom Rating Scale (GSRS) survey was assessed at four timepoints. Blood was collected at baseline and after the TT and was analyzed for I-FABP levels. No significant difference (PLA: 33:39.1 ± 6:29.0 min, KFR: 33:41.1 ± 5:44.4 min, and MLK: 33:36.2 ± 6:40.5 min, p = 0.99) was found between the groups in TT performance. The KFR GSRS total score was significantly lower than the PLA after EE (p = 0.005). No differences in I-FABP were observed between conditions. In conclusion, acute KFR supplementation did not impact TT performance or I-FABP levels but may have reduced subjective GI symptoms surrounding exercise when compared to MLK or PLA.
Collapse
Affiliation(s)
- Kristen N Gross
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO 63301, USA
| | - Patrick S Harty
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO 63301, USA
| | - Joesi M Krieger
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO 63301, USA
| | - Petey W Mumford
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO 63301, USA
| | - Kyle L Sunderland
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO 63301, USA
| | - Anthony M Hagele
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO 63301, USA
| | - Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO 63301, USA
| |
Collapse
|
5
|
Chen B, Zeng Y, Wang J, Lei M, Gan B, Wan Z, Wu L, Luo G, Cao S, An T, Zhang Q, Pan K, Jing B, Ni X, Zeng D. Targeted Screening of Fiber Degrading Bacteria with Probiotic Function in Herbivore Feces. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10215-5. [PMID: 38300451 DOI: 10.1007/s12602-024-10215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Cellulolytic bacteria with probiotic functions play a crucial role in promoting the intestinal health in herbivores. In this study, we aimed to correlate the 16S rRNA gene amplicon sequencing and fiber-degrading enzyme activity data from six different herbivore feces samples. By utilizing the separation and screening steps of probiotics, we targeted and screened high-efficiency fiber-degrading bacteria with probiotic functions. The animals included Maiwa Yak (MY), Holstein cow (CC), Tibetan sheep (TS), Southern Sichuan black goat (SG), Sichuan white rex rabbit (CR), and New Zealand white rabbit (ZR). The results showed that the enzymes associated with fiber degradation were higher in goat and sheep feces compared to cattle and rabbit's feces. Correlation analysis revealed that Bacillus and Fibrobacter were positively correlated with five types of fiber-degrading related enzymes. Notably, the relative abundance of Bacillus in the feces of Tibetan sheep was significantly higher than that of other five herbivores. A strain TS5 with good cellulose decomposition ability from the feces of Tibetan sheep by Congored staining, filter paper decomposition test, and enzyme activity determination was isolated. The strain was identified as Bacillus velezensis by biological characteristics, biochemical analysis, and 16S rRNA gene sequencing. To test the probiotic properties of Bacillus velezensis TS5, we evaluated its tolerance to acid and bile salt, production of digestive enzymes, antioxidants, antibacterial activity, and adhesion ability. The results showed that the strain had good tolerance to pH 2.0 and 0.3% bile salts, as well as good potential to produce cellulase, protease, amylase, and lipase. This strain also had good antioxidant capacity and the ability to antagonistic Staphylococcus aureus BJ216, Salmonella SC06, Enterotoxigenic Escherichia coli CVCC196, and Escherichia coli ATCC25922. More importantly, the strain had good self-aggregation and Caco-2 cell adhesion rate. In addition, we tested the safety of Bacillus velezensis TS5 by hemolysis test, antimicrobial susceptibility test, and acute toxicity test in mice. The results showed that the strain had no hemolytic phenotype, did not develop resistance to 19 commonly used antibiotics, had no cytotoxicity to Caco-2, and did not have acute toxic harm to mice. In summary, this study targeted isolated and screened a strain of Bacillus velezensis TS5 with high fiber-degrading ability and probiotic potency. This strain can be used as a potential probiotic for feeding microbial preparations for ruminants.
Collapse
Affiliation(s)
- Benhao Chen
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jie Wang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingxia Lei
- Neijiang Center for Animal and Plant Epidemic Disease Prevention and Control and Agricultural Products Quality Inspection, Neijiang, China
| | - Baoxing Gan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiqiang Wan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liqian Wu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangrong Luo
- Sichuan Longri Breeding Stock Farm, Aba Autonomous Prefecture, China
| | - Suizhong Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tianwu An
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Qibin Zhang
- Agricultural Comprehensive Service Center of Beimu Town, Neijiang, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
6
|
Walden KE, Hagele AM, Orr LS, Gross KN, Krieger JM, Jäger R, Kerksick CM. Probiotic BC30 Improves Amino Acid Absorption from Plant Protein Concentrate in Older Women. Probiotics Antimicrob Proteins 2024; 16:125-137. [PMID: 36515888 PMCID: PMC10850210 DOI: 10.1007/s12602-022-10028-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Weizmannia coagulans GBI-30, 6086 (BC30) has previously been shown to increase protein digestion in an in vitro model of the stomach and small intestine and amino acid appearance in healthy men and women after ingestion of milk protein concentrate. The impact of ingesting BC30 with other protein sources or in other demographics is largely unknown. The purpose of this study was to examine the impact of adding BC30 to a 20-g dose of a blend of rice and pea protein on postprandial changes in blood amino acids concentrations in healthy, older women. Healthy, older females (n = 30, 58.5 ± 5.2 years, 165.4 ± 6.8 cm, 65.6 ± 8.8 kg, 23.7 ± 3.2 kg/m2) completed two separate 14-day supplementation protocols separated by a 3-week washout period. Participants were instructed to ingest a 20-g protein dose of a blend of rice and pea protein concentrates (ProDiem Plant Protein Solutions, Kerry) with (PPCBC30) or without (PPC) the addition of 1 × 109 CFU BC30 (Kerry). Body composition and demographics were assessed upon arrival to the laboratory. Upon ingestion of their final assigned supplemental dose, blood samples were taken at 0 (baseline), 30-, 60-, 90-, 120-, 180-, and 240-min post-consumption and analyzed for amino acid concentrations. Alanine (p = 0.018), tryptophan (p = 0.003), cysteine (p = 0.041), essential amino acids (p = 0.050), and total amino acids (p = 0.039) all exhibited significantly (p ≤ 0.05) greater AUC with PPCBC30 when compared to PPC. In addition, tryptophan (p = 0.003), cysteine (p = 0.021), essential amino acids (p = 0.049), and total amino acids (p = 0.035) displayed significantly greater (p ≤ 0.05) concentration maximum (CMax) values in PPCBC30 when compared to PPC. Finally, time to reach CMax (TMax) was similar between conditions with 80% of all measured amino acids and amino acid combinations achieving CMax at a similar time (~ 60 min). Only phenylalanine TMax was found to be different (p = 0.01) between the two conditions with PPC displaying a greater proportion of TMax values after 30 min. Following qualitative (non-inferential) assessment, 88% of all measured outcomes achieved a higher AUC with PPCBC30 and 100% of all outcomes achieved a higher CMax with PPCBC30. In concert with previous findings in a younger mixed gender cohort with milk protein, the addition of BC30 to a daily 20-g dose of plant protein concentrate in healthy older women improved AUC and CMax values in several individual amino acids and amino acid combinations. Retrospectively registered on April 6, 2022, at ClinicalTrials.gov as NCT05313178.
Collapse
Affiliation(s)
- Kylie E Walden
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA
| | - Anthony M Hagele
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA
| | - Logan S Orr
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA
| | - Kristen N Gross
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA
| | - Joesi M Krieger
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA
| | | | - Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA.
| |
Collapse
|
7
|
Gross K, Santiago M, Krieger JM, Hagele AM, Zielinska K, Scheiman J, Jäger R, Kostic A, Kerksick CM. Impact of probiotic Veillonella atypica FB0054 supplementation on anaerobic capacity and lactate. iScience 2024; 27:108643. [PMID: 38222109 PMCID: PMC10784697 DOI: 10.1016/j.isci.2023.108643] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/28/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024] Open
Abstract
Seven healthy, physically active men (n = 3) and women (n = 4) (30.7 ± 7.5 years, 172.7 ± 8.7 cm, 70.4 ± 11.6 kg, 23.6 ± 4.1 kg/m2, 49.2 ± 8.4 mL/kg/min) supplemented for 14 days with a placebo (PLA) or 1 × 1010 CFU doses of the probiotic Veillonella atypica FB0054 (FitBiomics, New York, NY). Participants had safety panels, hemodynamics, lactate, and anaerobic capacity assessed. Stool samples were collected to evaluate for metagenomic and metabolomic changes. Exhaustion times were not different between groups, whereas anaerobic capacity tended to shorten with PLA (61.14 ± 72.04 s; 95% CI: -5.49, 127.77 s, p = 0.066) with no change with VA (13.29 ± 100.13 s, 95% CI: -79.32, 105.89 s, p = 0.738). No changes in lactate, hemodynamics, or bacterial community changes were observed, whereas 14 metabolites exhibited differential expression patterns with VA supplementation. In conclusion, VA maintained exercise performance that tended to decline in PLA. Supplementation was well tolerated with no changes in safety markers or reported adverse events.
Collapse
Affiliation(s)
- Kristen Gross
- Exercise and Performance Nutrition Laboratory, Kinesiology Department, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO, USA
| | | | - Joesi M. Krieger
- Exercise and Performance Nutrition Laboratory, Kinesiology Department, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO, USA
| | - Anthony M. Hagele
- Exercise and Performance Nutrition Laboratory, Kinesiology Department, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO, USA
| | - Kinga Zielinska
- FitBiomics, Inc, New York City, NY, USA
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | | | | | - Alex Kostic
- FitBiomics, Inc, New York City, NY, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, Kinesiology Department, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO, USA
| |
Collapse
|
8
|
Marttinen M, Anjum M, Saarinen MT, Ahonen I, Lehtinen MJ, Nurminen P, Laitila A. Enhancing Bioaccessibility of Plant Protein Using Probiotics: An In Vitro Study. Nutrients 2023; 15:3905. [PMID: 37764689 PMCID: PMC10535511 DOI: 10.3390/nu15183905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
As plant-based diets become more popular, there is an interest in developing innovations to improve the bioaccessibility of plant protein. In this study, seven probiotic strains (Bifidobacterium animalis subsp. lactis B420, B. lactis Bl-04, Lactobacillus acidophilus NCFM, Lacticaseibacillus rhamnosus HN001, Lacticaseibacillus paracasei subsp. paracasei Lpc-37, Lactiplantibacillus plantarum Lp-115, and Lactococcus lactis subsp. lactis Ll-23) were evaluated for their capacity to hydrolyze soy and pea protein ingredients in an in vitro digestion model of the upper gastrointestinal tract (UGIT). Compared to the control digestion of protein without a probiotic, all the studied strains were able to increase the digestion of soy or pea protein, as evidenced by an increase in free α-amino nitrogen (FAN) and/or free amino acid concentration. The increase in FAN varied between 13 and 33% depending on the protein substrate and probiotic strain. The survival of probiotic bacteria after exposure to digestive fluids was strain-dependent and may have affected the strain's capacity to function and aid in protein digestion in the gastrointestinal environment. Overall, our results from the standardized in vitro digestion model provide an approach to explore probiotics for improved plant protein digestion and bioaccessibility of amino acids; however, human clinical research is needed to evaluate the efficacy of probiotics on amino acid absorption and bioavailability in vivo.
Collapse
Affiliation(s)
- Maija Marttinen
- IFF Health and Biosciences, Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Mehreen Anjum
- IFF Health and Biosciences, Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Markku T. Saarinen
- IFF Health and Biosciences, Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | | | - Markus J. Lehtinen
- IFF Health and Biosciences, Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Päivi Nurminen
- IFF Health and Biosciences, Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - Arja Laitila
- IFF Health and Biosciences, Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460 Kantvik, Finland
| |
Collapse
|
9
|
Teichenné J, Catalán Ú, Mariné-Casadó R, Domenech-Coca C, Mas-Capdevila A, Alcaide-Hidalgo JM, Chomiciute G, Rodríguez-García A, Hernández A, Gutierrez V, Puiggròs F, Del Bas JM, Caimari A. Bacillus coagulans GBI-30, 6086 (BC30) improves lactose digestion in rats exposed to a high-lactose meal. Eur J Nutr 2023; 62:2649-2659. [PMID: 37249602 DOI: 10.1007/s00394-023-03183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE Bacillus coagulans GBI-30, 6086 (BC30) was previously shown to improve nutrient digestibility and amino acid absorption from milk protein in vitro. However, the effect of supplementation with this probiotic on lactose digestibility has not yet been evaluated in vivo. METHODS Wistar female rats were exposed to an acute high-lactose diet (LD; 35% lactose) meal challenge after 7 days of administration of BC30 (LD-BC; n = 10) or vehicle (LD-C; n = 10). Rats treated with vehicle and exposed to control diet (CD; 35% corn starch) meal were used as controls (CD-C; n = 10). Carbohydrate oxidation (CH_OX) and lipid oxidation (L_OX) were monitored by indirect calorimetry before and after lactose challenge. After the challenge, rats were treated daily with vehicle or probiotic for an additional week and were fed with CD or LD ad libitum to determine the effects of BC30 administration in a lactose-induced diarrhoea and malnutrition model. RESULTS LD-C rats showed lower CH_OX levels than CD rats, while LD-BC rats showed similar CH_OX levels compared to CD rats during the lactose challenge, suggesting a better digestion of lactose in the rats supplemented with BC30. BC30 completely reversed the increase in the small intestine length of LD-C animals. LD-BC rats displayed increased intestinal mRNA Muc2 expression. No significant changes were observed due to BC30 administration in other parameters, such as serum calprotectin, intestinal MPO activity, intestinal A1AT and SGLT1 levels or intestinal mRNA levels of Claudin2 and Occludin. CONCLUSION Treatment with BC30 improved the digestibility of lactose in an acute lactose challenge and ameliorated some of the parameters associated with lactose-induced malnutrition.
Collapse
Affiliation(s)
- Joan Teichenné
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain.
| | - Úrsula Catalán
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Cristina Domenech-Coca
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Anna Mas-Capdevila
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Juan María Alcaide-Hidalgo
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Gertruda Chomiciute
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | | | - Ana Hernández
- Delafruit SLU, 43470, La Selva del Camp, Catalonia, Spain
| | | | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain.
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| |
Collapse
|
10
|
Longo M, Jericó D, Córdoba KM, Riezu-Boj JI, Urtasun R, Solares I, Sampedro A, Collantes M, Peñuelas I, Moreno-Aliaga MJ, Ávila MA, Pierro ED, Barajas M, Milagro FI, Dongiovanni P, Fontanellas A. Nutritional Interventions with Bacillus coagulans Improved Glucose Metabolism and Hyperinsulinemia in Mice with Acute Intermittent Porphyria. Int J Mol Sci 2023; 24:11938. [PMID: 37569315 PMCID: PMC10418637 DOI: 10.3390/ijms241511938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Acute intermittent porphyria (AIP) is a metabolic disorder caused by mutations in the porphobilinogen deaminase (PBGD) gene, encoding the third enzyme of the heme synthesis pathway. Although AIP is characterized by low clinical penetrance (~1% of PBGD mutation carriers), patients with clinically stable disease report chronic symptoms and frequently show insulin resistance. This study aimed to evaluate the beneficial impact of nutritional interventions on correct carbohydrate dysfunctions in a mouse model of AIP that reproduces insulin resistance and altered glucose metabolism. The addition of spores of Bacillus coagulans in drinking water for 12 weeks modified the gut microbiome composition in AIP mice, ameliorated glucose tolerance and hyperinsulinemia, and stimulated fat disposal in adipose tissue. Lipid breakdown may be mediated by muscles burning energy and heat dissipation by brown adipose tissue, resulting in a loss of fatty tissue and improved lean/fat tissue ratio. Probiotic supplementation also improved muscle glucose uptake, as measured using Positron Emission Tomography (PET) analysis. In conclusion, these data provide a proof of concept that probiotics, as a dietary intervention in AIP, induce relevant changes in intestinal bacteria composition and improve glucose uptake and muscular energy utilization. Probiotics may offer a safe, efficient, and cost-effective option to manage people with insulin resistance associated with AIP.
Collapse
Affiliation(s)
- Miriam Longo
- Hepatology: Porphyrias & Carcinogenesis Laboratory, Solid Tumors Program, CIMA-University of Navarra, 31008 Pamplona, Spain; (M.L.); (D.J.); (K.M.C.); (A.S.); (M.A.Á.)
- Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.D.P.); (P.D.)
| | - Daniel Jericó
- Hepatology: Porphyrias & Carcinogenesis Laboratory, Solid Tumors Program, CIMA-University of Navarra, 31008 Pamplona, Spain; (M.L.); (D.J.); (K.M.C.); (A.S.); (M.A.Á.)
| | - Karol M. Córdoba
- Hepatology: Porphyrias & Carcinogenesis Laboratory, Solid Tumors Program, CIMA-University of Navarra, 31008 Pamplona, Spain; (M.L.); (D.J.); (K.M.C.); (A.S.); (M.A.Á.)
| | - José Ignacio Riezu-Boj
- Center for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (J.I.R.-B.); (M.J.M.-A.); (F.I.M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (M.C.); (I.P.)
| | - Raquel Urtasun
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain; (R.U.); (M.B.)
| | - Isabel Solares
- Rare Disease Unit, Internal Medicine Department, Clinica Universidad de Navarra, 31008 Pamplona, Spain;
| | - Ana Sampedro
- Hepatology: Porphyrias & Carcinogenesis Laboratory, Solid Tumors Program, CIMA-University of Navarra, 31008 Pamplona, Spain; (M.L.); (D.J.); (K.M.C.); (A.S.); (M.A.Á.)
| | - María Collantes
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (M.C.); (I.P.)
- MicroPET Research Unit, CIMA-CUN, 31008 Pamplona, Spain
- Nuclear Medicine-Department, CUN, 31008 Pamplona, Spain
| | - Ivan Peñuelas
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (M.C.); (I.P.)
- MicroPET Research Unit, CIMA-CUN, 31008 Pamplona, Spain
- Nuclear Medicine-Department, CUN, 31008 Pamplona, Spain
| | - María Jesús Moreno-Aliaga
- Center for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (J.I.R.-B.); (M.J.M.-A.); (F.I.M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (M.C.); (I.P.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Matías A. Ávila
- Hepatology: Porphyrias & Carcinogenesis Laboratory, Solid Tumors Program, CIMA-University of Navarra, 31008 Pamplona, Spain; (M.L.); (D.J.); (K.M.C.); (A.S.); (M.A.Á.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (M.C.); (I.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena Di Pierro
- Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.D.P.); (P.D.)
| | - Miguel Barajas
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain; (R.U.); (M.B.)
| | - Fermín I. Milagro
- Center for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (J.I.R.-B.); (M.J.M.-A.); (F.I.M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (M.C.); (I.P.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.D.P.); (P.D.)
| | - Antonio Fontanellas
- Hepatology: Porphyrias & Carcinogenesis Laboratory, Solid Tumors Program, CIMA-University of Navarra, 31008 Pamplona, Spain; (M.L.); (D.J.); (K.M.C.); (A.S.); (M.A.Á.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (M.C.); (I.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
11
|
Calvani R, Picca A, Coelho-Júnior HJ, Tosato M, Marzetti E, Landi F. "Diet for the prevention and management of sarcopenia". Metabolism 2023:155637. [PMID: 37352971 DOI: 10.1016/j.metabol.2023.155637] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Sarcopenia is a geriatric condition characterized by a progressive loss of skeletal muscle mass and strength, with an increased risk of adverse health outcomes (e.g., falls, disability, institutionalization, reduced quality of life, mortality). Pharmacological remedies are currently unavailable for preventing the development of sarcopenia, halting its progression, or impeding its negative health outcomes. The most effective strategies to contrast sarcopenia rely on the adoption of healthier lifestyle behaviors, including adherence to high-quality diets and regular physical activity. In this review, the role of nutrition in the prevention and management of sarcopenia is summarized. Special attention is given to current "blockbuster" dietary regimes and agents used to counteract age-related muscle wasting, together with their putative mechanisms of action. Issues related to the design and implementation of effective nutritional strategies are discussed, with a focus on unanswered questions on the most appropriate timing of nutritional interventions to preserve muscle health and function into old age. A brief description is also provided on new technologies that can facilitate the development and implementation of personalized nutrition plans to contrast sarcopenia.
Collapse
Affiliation(s)
- Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy; Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy.
| | - Hélio José Coelho-Júnior
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Matteo Tosato
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| |
Collapse
|
12
|
Zhang S, Li P, Lee S, Wang Y, Tan C, Shang N. Weizmannia coagulans: an Ideal Probiotic for Gut Health. FOOD SCIENCE AND HUMAN WELLNESS 2023:1-20. [DOI: 10.26599/fshw.2022.9250002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Prokopidis K, Giannos P, Kirwan R, Ispoglou T, Galli F, Witard OC, Triantafyllidis KK, Kechagias KS, Morwani-Mangnani J, Ticinesi A, Isanejad M. Impact of probiotics on muscle mass, muscle strength and lean mass: a systematic review and meta-analysis of randomized controlled trials. J Cachexia Sarcopenia Muscle 2023; 14:30-44. [PMID: 36414567 PMCID: PMC9891957 DOI: 10.1002/jcsm.13132] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/27/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Probiotics have shown potential to counteract sarcopenia, although the extent to which they can influence domains of sarcopenia such as muscle mass and strength in humans is unclear. The aim of this systematic review and meta-analysis was to explore the impact of probiotic supplementation on muscle mass, total lean mass and muscle strength in human adults. A literature search of randomized controlled trials (RCTs) was conducted through PubMed, Scopus, Web of Science and Cochrane Library from inception until June 2022. Eligible RCTs compared the effect of probiotic supplementation versus placebo on muscle and total lean mass and global muscle strength (composite score of all muscle strength outcomes) in adults (>18 years). To evaluate the differences between groups, a meta-analysis was conducted using the random effects inverse-variance model by utilizing standardized mean differences. Twenty-four studies were included in the systematic review and meta-analysis exploring the effects of probiotics on muscle mass, total lean mass and global muscle strength. Our main analysis (k = 10) revealed that muscle mass was improved following probiotics compared with placebo (SMD: 0.42, 95% CI: 0.10-0.74, I2 = 57%, P = 0.009), although no changes were revealed in relation to total lean mass (k = 12; SMD: -0.03, 95% CI: -0.19 - 0.13, I2 = 0%, P = 0.69). Interestingly, a significant increase in global muscle strength was also observed among six RCTs (SMD: 0.69, 95% CI: 0.33-1.06, I2 = 64%, P = 0.0002). Probiotic supplementation enhances both muscle mass and global muscle strength; however, no beneficial effects were observed in total lean mass. Investigating the physiological mechanisms underpinning different ageing groups and elucidating appropriate probiotic strains for optimal gains in muscle mass and strength are warranted.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.,Society of Meta-research and Biomedical Innovation, London, UK
| | - Panagiotis Giannos
- Society of Meta-research and Biomedical Innovation, London, UK.,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Richard Kirwan
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Francesco Galli
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Laboratory and Human Anatomy Laboratory, University of Perugia, Perugia, Italy
| | - Oliver C Witard
- Faculty of Life Sciences and Medicine, Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Konstantinos K Triantafyllidis
- Society of Meta-research and Biomedical Innovation, London, UK.,Department of Nutrition & Dietetics, Musgrove Park Hospital, Taunton & Somerset NHS Foundation Trust, Taunton, UK
| | - Konstantinos S Kechagias
- Society of Meta-research and Biomedical Innovation, London, UK.,Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jordi Morwani-Mangnani
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Masoud Isanejad
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
14
|
Application of Weizmannia coagulans in the medical and livestock industry. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Products enriched with probiotics have always been fashionable. Weizmannia coagulans has become a hot research topic in the academic community due to their multiple functional properties and high resistance to stress, which can retain their activity in a variety of harsh environments. This review aims to evaluate the probiotic effects of different strains of Weizmannia coagulans in animals and humans and to inspire better exploitation of the value of this strain.
Methods
This review summarizes the latest research progress of Weizmannia coagulans from two major applications in animal breeding and human health.
Results
The functional properties of Weizmannia coagulans are extensively recognized. In animals, the strain can promote nutrient absorption, reduce mortality, and enhance the slaughter rate in livestock and poultry. In humans, the strain can be used to treat gastrointestinal disorders, immunomodulation, depressive symptoms, and non-alcoholic fatty liver. Weizmannia coagulans is projected as an ideal substitute for antibiotics and other chemical drugs.
Conclusion
Despite the outstanding functional properties of Weizmannia coagulans, there are numerous strains of Weizmannia coagulans and significant differences between strains in functional and physiological properties. Currently, there are few literature reports on the probiotic mechanism and functional gene identification of Weizmannia coagulans, which is crucial for the commercialization of Weizmannia coagulans and the benefit of human society.
Collapse
|
15
|
Garvey SM, Mah E, Blonquist TM, Kaden VN, Spears JL. The probiotic Bacillus subtilis BS50 decreases gastrointestinal symptoms in healthy adults: a randomized, double-blind, placebo-controlled trial. Gut Microbes 2022; 14:2122668. [PMID: 36269141 PMCID: PMC9590435 DOI: 10.1080/19490976.2022.2122668] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Durable spore-forming probiotics are increasingly formulated into foods, beverages, and dietary supplements. To help meet this demand, the safety and efficacy of daily supplementation of Bacillus subtilis BS50 for 6 weeks was investigated in a randomized, double-blind, placebo-controlled, parallel clinical trial of 76 healthy adults. Before and during supplementation, gastrointestinal symptoms were recorded daily using a multi-symptom questionnaire. Clinical chemistry, hematology, plasma lipids, and intestinal permeability and inflammation markers were measured at baseline and end of study. Compared to placebo, 2 × 109 colony-forming units (CFU) BS50 per day increased the proportion of participants showing improvement from baseline to week 6 in the composite score for bloating, burping, and flatulence (47.4% vs. 22.2%), whereby the odds of detecting an improvement were higher with BS50 (OR [95% CI]: 3.2 [1.1, 8.7], p = .024). Analyses of individual gastrointestinal symptoms indicate that BS50 increased the proportion of participants showing an improvement at week 6 compared to placebo for burping (44.7% vs. 22.2%, p = .041) and bloating (31.6% vs. 13.9%, p = .071), without affecting other symptoms. There were no clinically meaningful changes in clinical chemistry, hematology, plasma lipids and intestinal permeability and other inflammation markers. In conclusion, the results suggest that dietary supplementation of 2 × 109 CFU Bacillus subtilis BS50 per day is a well-tolerated and safe strategy to alleviate gas-related gastrointestinal symptoms in healthy adults. ABBREVIATIONS AE adverse event; BHD bowel habits diary; BMI body mass index; BSS Bristol Stool Scale; CFU colony-forming unit; CRP C-reactive protein; FGID functional gastrointestinal disorder; GI gastrointestinal; GITQ Gastrointestinal Tolerance Questionnaire; GLP-1 glucagon-like peptide 1; GSRS Gastrointestinal Symptom Rating Scale; HDL-C high-density lipoprotein-cholesterol; IBS irritable bowel syndrome; IL-10 interleukin-10; ITT intent-to-treat; LBP lipopolysaccharide binding protein; LDL-C low-density lipoprotein-cholesterol; PP per protocol; PYY peptide YY; TG triglyceride; total-C total cholesterol.
Collapse
Affiliation(s)
- Sean M. Garvey
- BIO-CAT Microbials, LLC, Shakopee, MN, USA,BIO-CAT, Inc., Troy, VA, USA,Sean M. Garvey Department of Research and Development, BIO-CAT Microbials, LLC, 689 Canterbury Rd S, Shakopee, MN55379, USA
| | - Eunice Mah
- Biofortis Research, Inc., Addison, IL, USA
| | | | | | - Jessica L. Spears
- BIO-CAT Microbials, LLC, Shakopee, MN, USA,CONTACT Jessica L. Spears
| |
Collapse
|
16
|
López-Martínez MI, Miguel M, Garcés-Rimón M. Protein and Sport: Alternative Sources and Strategies for Bioactive and Sustainable Sports Nutrition. Front Nutr 2022; 9:926043. [PMID: 35782926 PMCID: PMC9247391 DOI: 10.3389/fnut.2022.926043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Nutrition and sport play an important role in achieving a healthy lifestyle. In addition to the intake of nutrients derived from the normal diet, some sport disciplines require the consumption of supplements that contribute positively to improved athletic performance. Protein intake is important for many aspects related to health, and current evidence suggests that some athletes require increased amounts of this nutrient. On the other hand, society's demand for more environmentally friendly products, focus on the search for alternative food sources more sustainable. This review aims to summarize the latest research on novel strategies and sources for greener and functional supplementation in sport nutrition. Alternative protein sources such as insects, plants or mycoproteins have proven to be an interesting substrate due to their high added value in terms of bioactivity and sustainability. Protein hydrolysis has proven to be a very useful technology to revalue by-products, such as collagen, by producing bioactive peptides beneficial on athletes performance and sport-related complications. In addition, it has been observed that certain amino acids from plant sources, as citrulline or theanine, can have an ergogenic effect for this target population. Finally, the future perspectives of protein supplementation in sports nutrition are discussed. In summary, protein supplementation in sports nutrition is a very promising field of research, whose future perspective lies with the search for alternatives with greater bioactive potential and more sustainable than conventional sources.
Collapse
Affiliation(s)
- Manuel I. López-Martínez
- Departamento de Bioactividad y Análisis de Alimenos, Instituto de Investigación en Ciencias de la Alimentación (CIAL, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Marta Miguel
- Departamento de Bioactividad y Análisis de Alimenos, Instituto de Investigación en Ciencias de la Alimentación (CIAL, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
- *Correspondence: Marta Miguel
| | - Marta Garcés-Rimón
- Grupo de Investigación en Biotecnología Alimentaria, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
17
|
Preclinical Safety Assessment of Bacillus subtilis BS50 for Probiotic and Food Applications. Microorganisms 2022; 10:microorganisms10051038. [PMID: 35630480 PMCID: PMC9144164 DOI: 10.3390/microorganisms10051038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the commercial rise of probiotics containing Bacillaceae spp., it remains important to assess the safety of each strain before clinical testing. Herein, we performed preclinical analyses to address the safety of Bacillus subtilis BS50. Using in silico analyses, we screened the 4.15 Mbp BS50 genome for genes encoding known Bacillus toxins, secondary metabolites, virulence factors, and antibiotic resistance. We also assessed the effects of BS50 lysates on the viability and permeability of cultured human intestinal epithelial cells (Caco-2). We found that the BS50 genome does not encode any known Bacillus toxins. The BS50 genome contains several gene clusters involved in the biosynthesis of secondary metabolites, but many of these antimicrobial metabolites (e.g., fengycin) are common to Bacillus spp. and may even confer health benefits related to gut microbiota health. BS50 was susceptible to seven of eight commonly prescribed antibiotics, and no antibiotic resistance genes were flanked by the complete mobile genetic elements that could enable a horizontal transfer. In cell culture, BS50 cell lysates did not diminish either Caco-2 viability or monolayer permeability. Altogether, BS50 exhibits a robust preclinical safety profile commensurate with commercial probiotic strains and likely poses no significant health risk to humans.
Collapse
|
18
|
Kharnaior P, Tamang JP. Metagenomic-Metabolomic Mining of Kinema, a Naturally Fermented Soybean Food of the Eastern Himalayas. Front Microbiol 2022; 13:868383. [PMID: 35572705 PMCID: PMC9106393 DOI: 10.3389/fmicb.2022.868383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Kinema is a popular sticky fermented soybean food of the Eastern Himalayan regions of North East India, east Nepal, and south Bhutan. We hypothesized that some dominant bacteria in kinema may contribute to the formation of targeted and non-targeted metabolites for health benefits; hence, we studied the microbiome-metabolite mining of kinema. A total of 1,394,094,912 bp with an average of 464,698,304 ± 120,720,392 bp was generated from kinema metagenome, which resulted in the identification of 47 phyla, 331 families, 709 genera, and 1,560 species. Bacteria (97.78%) were the most abundant domain with the remaining domains of viruses, eukaryote, and archaea. Firmicutes (93.36%) was the most abundant phylum with 280 species of Bacillus, among which Bacillus subtilis was the most dominant species in kinema followed by B. glycinifermentans, B. cereus, B. licheniformis, B. thermoamylovorans, B. coagulans, B. circulans, B. paralicheniformis, and Brevibacillus borstelensis. Predictive metabolic pathways revealed the abundance of genes associated with metabolism (60.66%), resulting in 216 sub-pathways. A total of 361 metabolites were identified by metabolomic analysis (liquid chromatography-mass spectrophotometry, LC-MS). The presence of metabolites, such as chrysin, swainsonine, and 3-hydroxy-L-kynurenine (anticancer activity) and benzimidazole (antimicrobial, anticancer, and anti-HIV activities), and compounds with immunomodulatory effects in kinema supports its therapeutic potential. The correlation between the abundant species of Bacillus and primary and secondary metabolites was constructed with a bivariate result. This study proves that Bacillus spp. contribute to the formation of many targeted and untargeted metabolites in kinema for health-promoting benefits.
Collapse
Affiliation(s)
| | - Jyoti Prakash Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| |
Collapse
|
19
|
The effect of Bacillus coagulans Unique IS-2 supplementation on plasma amino acid levels and muscle strength in resistance trained males consuming whey protein: a double-blind, placebo-controlled study. Eur J Nutr 2022; 61:2673-2685. [DOI: 10.1007/s00394-022-02844-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
|
20
|
Active Women Across the Lifespan: Nutritional Ingredients to Support Health and Wellness. Sports Med 2022; 52:101-117. [PMID: 36173598 PMCID: PMC9521557 DOI: 10.1007/s40279-022-01755-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 12/15/2022]
Abstract
Women are the largest consumers of dietary supplements. Dietary supplements can play a role in health and performance, particularly for women. Growing evidence and innovations support the unique physiological and nutrient timing needs for women. Despite the need for more nutrition and exercise-specific research in women, initial data and known physiological differences between sexes related to the brain, respiration, bone, and muscle support new product development and evidence-based education for active women regarding the use of dietary supplements. In this narrative review, we discuss hormonal and metabolic considerations with the potential to impact nutritional recommendations for active women. We propose four potential areas of opportunity for ingredients to help support the health and well-being of active women, including: (1) body composition, (2) energy/fatigue, (3) mental health, and (4) physical health.
Collapse
|
21
|
The Athlete Gut Microbiome and its Relevance to Health and Performance: A Review. Sports Med 2022; 52:119-128. [PMID: 36396898 PMCID: PMC9734205 DOI: 10.1007/s40279-022-01785-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/19/2022]
Abstract
The human gut microbiome is a complex ecosystem of microorganisms that play an important role in human health, influencing functions such as vitamin uptake, digestion and immunomodulation. While research of the gut microbiome has expanded considerably over the past decade, some areas such as the relationship between exercise and the microbiome remain relatively under investigated. Despite this, multiple studies have shown a potential bidirectional relationship between exercise and the gut microbiome, with some studies demonstrating the possibility of influencing this relationship. This, in turn, could provide a useful route to influence athletic performance via microbiome manipulation, a valuable prospect for many elite athletes and their teams. The evidence supporting the potential benefits of pursuing this route and associated future perspectives are discussed in this review.
Collapse
|
22
|
de Marco Castro E, Murphy CH, Roche HM. Targeting the Gut Microbiota to Improve Dietary Protein Efficacy to Mitigate Sarcopenia. Front Nutr 2021; 8:656730. [PMID: 34235167 PMCID: PMC8256992 DOI: 10.3389/fnut.2021.656730] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is characterised by the presence of diminished skeletal muscle mass and strength. It is relatively common in older adults as ageing is associated with anabolic resistance (a blunted muscle protein synthesis response to dietary protein consumption and resistance exercise). Therefore, interventions to counteract anabolic resistance may benefit sarcopenia prevention and are of utmost importance in the present ageing population. There is growing speculation that the gut microbiota may contribute to sarcopenia, as ageing is also associated with [1) dysbiosis, whereby the gut microbiota becomes less diverse, lacking in healthy butyrate-producing microorganisms and higher in pathogenic bacteria, and [2) loss of epithelial tight junction integrity in the lining of the gut, leading to increased gut permeability and higher metabolic endotoxemia. Animal data suggest that both elements may impact muscle physiology, but human data corroborating the causality of the association between gut microbiota and muscle mass and strength are lacking. Mechanisms wherein the gut microbiota may alter anabolic resistance include an attenuation of gut-derived low-grade inflammation and/or the increased digestibility of protein-containing foods and consequent higher aminoacidemia, both in favour of muscle protein synthesis. This review focuses on the putative links between the gut microbiota and skeletal muscle in the context of sarcopenia. We also address the issue of plant protein digestibility because plant proteins are increasingly important from an environmental sustainability perspective, yet they are less efficient at stimulating muscle protein synthesis than animal proteins.
Collapse
Affiliation(s)
- Elena de Marco Castro
- Nutrigenomics Research Group, School of Public Health, Physiotherapy, and Sports Science, UCD Conway Institute, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Caoileann H Murphy
- Nutrigenomics Research Group, School of Public Health, Physiotherapy, and Sports Science, UCD Conway Institute, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland.,Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Helen M Roche
- Nutrigenomics Research Group, School of Public Health, Physiotherapy, and Sports Science, UCD Conway Institute, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland.,Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
23
|
Plant Proteins and Exercise: What Role Can Plant Proteins Have in Promoting Adaptations to Exercise? Nutrients 2021; 13:nu13061962. [PMID: 34200501 PMCID: PMC8230006 DOI: 10.3390/nu13061962] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 01/10/2023] Open
Abstract
Adequate dietary protein is important for many aspects of health with current evidence suggesting that exercising individuals need greater amounts of protein. When assessing protein quality, animal sources of protein routinely rank amongst the highest in quality, largely due to the higher levels of essential amino acids they possess in addition to exhibiting more favorable levels of digestibility and absorption patterns of the amino acids. In recent years, the inclusion of plant protein sources in the diet has grown and evidence continues to accumulate on the comparison of various plant protein sources and animal protein sources in their ability to stimulate muscle protein synthesis (MPS), heighten exercise training adaptations, and facilitate recovery from exercise. Without question, the most robust changes in MPS come from efficacious doses of a whey protein isolate, but several studies have highlighted the successful ability of different plant sources to significantly elevate resting rates of MPS. In terms of facilitating prolonged adaptations to exercise training, multiple studies have indicated that a dose of plant protein that offers enough essential amino acids, especially leucine, consumed over 8–12 weeks can stimulate similar adaptations as seen with animal protein sources. More research is needed to see if longer supplementation periods maintain equivalence between the protein sources. Several practices exist whereby the anabolic potential of a plant protein source can be improved and generally, more research is needed to best understand which practice (if any) offers notable advantages. In conclusion, as one considers the favorable health implications of increasing plant intake as well as environmental sustainability, the interest in consuming more plant proteins will continue to be present. The evidence base for plant proteins in exercising individuals has seen impressive growth with many of these findings now indicating that consumption of a plant protein source in an efficacious dose (typically larger than an animal protein) can instigate similar and favorable changes in amino acid update, MPS rates, and exercise training adaptations such as strength and body composition as well as recovery.
Collapse
|
24
|
Wohlgemuth KJ, Arieta LR, Brewer GJ, Hoselton AL, Gould LM, Smith-Ryan AE. Sex differences and considerations for female specific nutritional strategies: a narrative review. J Int Soc Sports Nutr 2021; 18:27. [PMID: 33794937 PMCID: PMC8015182 DOI: 10.1186/s12970-021-00422-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Although there is a plethora of information available regarding the impact of nutrition on exercise performance, many recommendations are based on male needs due to the dominance of male participation in the nutrition and exercise science literature. Female participation in sport and exercise is prevalent, making it vital for guidelines to address the sex-specific nutritional needs. Female hormonal levels, such as estrogen and progesterone, fluctuate throughout the mensural cycle and lifecycle requiring more attention for effective nutritional considerations. Sex-specific nutritional recommendations and guidelines for the active female and female athlete have been lacking to date and warrant further consideration. This review provides a practical overview of key physiological and nutritional considerations for the active female. Available literature regarding sex-specific nutrition and dietary supplement guidelines for women has been synthesized, offering evidenced-based practical information that can be incorporated into the daily lives of women to improve performance, body composition, and overall health.
Collapse
Affiliation(s)
- Kealey J Wohlgemuth
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Luke R Arieta
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gabrielle J Brewer
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andrew L Hoselton
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lacey M Gould
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Nutrition, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
25
|
Spears JL, Kramer R, Nikiforov AI, Rihner MO, Lambert EA. Safety Assessment of Bacillus subtilis MB40 for Use in Foods and Dietary Supplements. Nutrients 2021; 13:nu13030733. [PMID: 33668992 PMCID: PMC7996492 DOI: 10.3390/nu13030733] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/31/2022] Open
Abstract
With the growing popularity of probiotics in dietary supplements, foods, and beverages, it is important to substantiate not only the health benefits and efficacy of unique strains but also safety. In the interest of consumer safety and product transparency, strain identification should include whole-genome sequencing and safety assessment should include genotypic and phenotypic studies. Bacillus subtilis MB40, a unique strain marketed for use in dietary supplements, and food and beverage, was assessed for safety and tolerability across in silico, in vitro, and in vivo studies. MB40 was assessed for the absence of undesirable genetic elements encoding toxins and mobile antibiotic resistance. Tolerability was assessed in both rats and healthy human volunteers. In silico and in vitro testing confirmed the absence of enterotoxin and mobile antibiotic resistance genes of safety concern to humans. In rats, the no-observed-adverse-effect level (NOAEL) for MB40 after repeated oral administration for 14 days was determined to be 2000 mg/kg bw/day (equivalent to 3.7 × 1011 CFU/kg bw/day). In a 28 day human tolerability trial, 10 × 109 CFU/day of MB40 was well tolerated. Based on genome sequencing, strain characterization, screening for undesirable attributes and evidence of safety by appropriately designed safety evaluation studies in rats and humans, Bacillus subtilis MB40 does not pose any human health concerns under the conditions tested.
Collapse
Affiliation(s)
| | | | - Andrey I. Nikiforov
- Toxicology Regulatory Services, Charlottesville, VA 22911, USA; (A.I.N.); (M.O.R.)
| | - Marisa O. Rihner
- Toxicology Regulatory Services, Charlottesville, VA 22911, USA; (A.I.N.); (M.O.R.)
| | | |
Collapse
|
26
|
Plasma Amino Acid Response to Whey Protein Ingestion Following 28 Days of Probiotic ( Bacillus subtilis DE111) Supplementation in Active Men and Women. J Funct Morphol Kinesiol 2020; 6:jfmk6010001. [PMID: 33462163 PMCID: PMC7838959 DOI: 10.3390/jfmk6010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED We sought to determine if 28 days of probiotic supplementation influenced the plasma amino acid (AA) response to acute whey protein feeding. METHODS Twenty-two recreationally active men (n = 11; 24.3 ± 3.2 yrs; 89.3 ± 7.2 kg) and women (n = 11; 23.0 ± 2.8 yrs; 70.2 ± 15.2 kg) participated in this double-blind, placebo-controlled, randomized study. Before (PRE) and after 28 days of supplementation (POST), participants reported to the lab following a 10-hr fast and provided a resting blood draw (0 min), then subsequently consumed 25 g of whey protein. Blood samples were collected at 15-min intervals for 2 h post-consumption (15-120 min) and later analyzed for plasma leucine, branched-chain AA (BCAA), essential AA (EAA), and total AA (TAA). Participants received a probiotic (PROB) consisting of 1 x10-9 colony forming units (CFU) Bacillus subtilis DE111 (n = 11) or a maltodextrin placebo (PL) (n = 11) for 28 days. Plasma AA response and area under the curve (AUC) values were analyzed via repeated measures analysis of variance. RESULTS Our analysis indicated no significant (p < 0.05) differential responses for plasma leucine, BCAA, EAA, or TAA between PROB and PL from PRE to POST. AUC analysis revealed no group × time interaction for plasma leucine (p = 0.524), BCAA (p = 0.345), EAA (p = 0.512), and TAA (p = 0.712). CONCLUSION These data indicate that 28 days of Bacillus subtilis DE111 does not affect plasma AA appearance following acute whey protein ingestion.
Collapse
|