1
|
Owashi KP, Liu P, Metanbou S, Capel C, Balédent O. Phase-contrast MRI analysis of cerebral blood and CSF flow dynamic interactions. Fluids Barriers CNS 2024; 21:88. [PMID: 39468704 PMCID: PMC11514974 DOI: 10.1186/s12987-024-00578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Following the Monro-Kellie doctrine, the Cerebral Blood Volume Changes (CB_VC) should be mirrored by the Cerebrospinal Fluid Volume Changes (CSF_VC) at the spinal canal. Cervical level is often chosen to estimate CB_VC during the cardiac cycle. However, due to the heterogeneity in the anatomy of extracranial internal jugular veins and their high compliance, we hypothesize that the intracranial level could be a better choice to investigate blood and cerebrospinal fluid (CSF) interactions. This study aims to determine which level, intracranial or extracranial, is more suitable for measuring arterial and venous flows to study cerebral blood and CSF dynamics interactions. METHODS The spinal CSF and cerebral blood flow measured at intracranial and extracranial levels were quantified using cine phase-contrast magnetic resonance imaging (PC-MRI) in 38 healthy young adults. Subsequently, CSF_VC and CB_VC were calculated, and by linear regression analysis (R2 and slope), the relationship between CB_VC at both levels and the spinal CSF_VC was compared. The differences between extracranial and intracranial measurements were assessed using either a paired Student's t-test or Wilcoxon's test, depending on the normality of the data distribution. RESULTS The CB_VC amplitude was significantly higher at the extracranial level (0.89 ± 0.28 ml/CC) compared to the intracranial level (0.73 ± 0.19 ml/CC; p < 0.001). CSF oscillations through the spinal canal do not completely balance blood volume changes. The R2 and the slope values obtained from the linear regression analysis between CSF and blood flows were significantly higher in magnitude for the intracranial CB_VC (R2: 0.82 ± 0.16; slope: - 0.74 ± 0.19) compared to the extracranial CB_VC (R2: 0.47 ± 0.37; slope: -0.36 ± 0.33; p < 0.001). Interestingly, extracranial CB_VC showed a greater variability compared to intracranial CB_VC. CONCLUSION Our results confirmed that CSF does not completely and instantaneously balance cerebral blood expansion during the cardiac cycle. Nevertheless, the resting volume is very small compared to the total intracranial volume. To our knowledge, this study is the first to demonstrate these findings using cerebral blood flow measured intracranially below the Circle of Willis. Additionally, our findings show that cerebral arterial and venous flow dynamic measurements during the cardiac cycle obtained by PC-MRI at the intracranial plane strongly correlate with CSF oscillations measured in the spinal canal. Therefore, the intracranial vascular plane is more relevant for analyzing cerebral blood and CSF interactions during the cardiac cycle compared to measurements taken at the cervical vascular level.
Collapse
Affiliation(s)
- Kimi Piedad Owashi
- Medical Image Processing Department, CHU Amiens-Picardie University Hospital, Amiens, France.
- CHIMERE UR 7516, Jules Verne University of Picardy, Amiens, France.
| | - Pan Liu
- Medical Image Processing Department, CHU Amiens-Picardie University Hospital, Amiens, France
- CHIMERE UR 7516, Jules Verne University of Picardy, Amiens, France
| | - Serge Metanbou
- Radiology Department, CHU Amiens-Picardie University Hospital, Amiens, France
| | - Cyrille Capel
- CHIMERE UR 7516, Jules Verne University of Picardy, Amiens, France
- Neurosurgery Department, CHU Amiens-Picardie University Hospital, Amiens, France
| | - Olivier Balédent
- Medical Image Processing Department, CHU Amiens-Picardie University Hospital, Amiens, France
- CHIMERE UR 7516, Jules Verne University of Picardy, Amiens, France
| |
Collapse
|
2
|
Dai C, Zhao P, Ding H, Lv H, Qiu X, Tang R, Xu N, Huang Y, Han X, Yang Z, Wang Z. Cerebral Sinus Hemodynamics in Adults Revealed by 4D Flow MRI. J Magn Reson Imaging 2024; 60:1706-1717. [PMID: 38235948 DOI: 10.1002/jmri.29210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND The hemodynamics of the cerebral sinuses play a vital role in understanding blood flow-related diseases, yet the hemodynamics of the cerebral sinuses in normal adults remains an unresolved issue. PURPOSE To evaluate hemodynamics in the cerebral sinus of adults using 4-dimensional flow MRI (4D Flow MRI). STUDY TYPE Cross-sectional. POPULATION Ninety-nine healthy volunteers (mean age, 42.88 ± 13.16 years old; females/males, 55/44). FIELD STRENGTH/SEQUENCE 3 T/4D Flow MRI. ASSESSMENT The blood flow velocity, average blood flow rate (Q), and vortexes at the superior sagittal sinus (SSS), straight sinus (STS), transverse sinus, sigmoid sinus, and jugular bulb of each volunteer were evaluated by two independent neuroradiologists. The relationship between the total cerebral Q and sex and age was also assessed. Twelve volunteers underwent two scans within a month. STATISTICAL TESTS The intraclass correlation coefficient (ICC) evaluated the inter-observer agreement. Blood flow parameters among volunteers were compared by the independent-sample t-test or Mann-Whitney U test. The multiple linear regression equation was used to evaluate the relationship between total cerebral Q and age and sex. P < 0.05 indicated statistical significance. RESULTS The test-retest and interobserver reliability of average velocity and Q were moderate to high (ICC: 0.54-0.99). Cerebral sinus velocity varied by segment and cardiac cycle. The SSS's velocity and Q increased downstream and Q near torcular herophili was 3.5 times that through the STS. The total cerebral Q decreased by 0.06 mL/s per year (β = -0.06 ± 0.013) and was sex-independent within the group. Vortexes were found in 12.12%, 8.9%, and 59.8% of torcular herophili, transverse-sigmoid junction, and jugular bulb, respectively, and were related to higher upstream flow. DATA CONCLUSION Cerebral sinuses could be measured visually and quantitatively in vivo by 4D Flow MRI, providing a basis for future research on pulsating tinnitus, multiple sclerosis, and other related diseases. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Chihang Dai
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Heyu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Qiu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruowei Tang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ning Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yan Huang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xu Han
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Moyet J, Baledent O, Slovenski T, Todessayi P, Metanbou S, Deschasse G, Bloch F, Capel C. Assessment of neurofluid dynamics in relation to clinical improvement after tap-test: pilot study. Acta Neurochir (Wien) 2024; 166:358. [PMID: 39225886 DOI: 10.1007/s00701-024-06239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Idiopathic Normal pressure hydrocephalus (iNPH) is an under-diagnosed in elderly patients but none of the diagnostic tests are currently sufficiently sensitive or specific. The objective of this study was to analyze the dynamics of neurofluids by PC-MRI in relation to clinical evolution as measured using the iNPH grading scale after tap-test. METHOD We prospectively included patients with suspected iNPH. All these patients underwent PCMRI to assess craniospinal hemohydrodynamics with analysis of the stroke volume of the cephalospinal fluid (CSF) within the Sylvius' aqueduct, within the high cervical subarachnoid spaces and the arteriovenous stroke volume. By this means, we calculated a compliance index. Morphological analysis was carried out using the DESH score. The infusion test was measuring the resistance to CSF flow. We analysed all these parameters according to the clinical improvement of the patients. RESULTS 23 patients were included. Compliance index assessed by PC-MRI was significantly higher in the group of patients with improvement > 10% (p = 0.015). CONCLUSIONS Our study highlights the importance of investigating arteriovenous and CSF interactions in iNPH. This involves understanding the physiological and pathophysiological mechanisms related to the circulation of neurofluids. The analysis of the interactions of these neurofluids allows for a comprehensive understanding of the system.
Collapse
Affiliation(s)
- Julien Moyet
- Department of Gerontology, University Hospital Amiens-Picardie, 1 Rond-Point du Professeur Christian Cabrol, 80054, Amiens Cedex 1, France.
- Laboratory of Functional Neurosciences UR 4559, Jules Verne University of Picardie, Amiens, France.
| | - Olivier Baledent
- Laboratory CHIMERE UR 7516, Jules Verne University of Picardie, Amiens, France
| | - Tomislav Slovenski
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Pietro Todessayi
- Laboratory CHIMERE UR 7516, Jules Verne University of Picardie, Amiens, France
| | - Serge Metanbou
- Department of Radiology, University Hospital Amiens-Picardie, Amiens, France
| | - Guillaume Deschasse
- Department of Gerontology, University Hospital Amiens-Picardie, 1 Rond-Point du Professeur Christian Cabrol, 80054, Amiens Cedex 1, France
| | - Frédéric Bloch
- Department of Gerontology, University Hospital Amiens-Picardie, 1 Rond-Point du Professeur Christian Cabrol, 80054, Amiens Cedex 1, France
- Laboratory of Functional Neurosciences UR 4559, Jules Verne University of Picardie, Amiens, France
| | - Cyrille Capel
- Laboratory CHIMERE UR 7516, Jules Verne University of Picardie, Amiens, France
- Department of Neurosurgery, University Hospital Amiens-Picardie, Amiens, France
| |
Collapse
|
4
|
Wu CH, Chen SP, Chung CP, Yu KW, Lin TM, Luo CB, Lirng JF, Lee IH, Chang FC. Early Improvement in Interstitial Fluid Flow in Patients With Severe Carotid Stenosis After Angioplasty and Stenting. J Stroke 2024; 26:415-424. [PMID: 39205535 PMCID: PMC11471351 DOI: 10.5853/jos.2023.04203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/10/2024] [Accepted: 02/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND PURPOSE This study aimed to investigate early changes in interstitial fluid (ISF) flow in patients with severe carotid stenosis after carotid angioplasty and stenting (CAS). METHODS We prospectively recruited participants with carotid stenosis ≥80% undergoing CAS at our institute between October 2019 and March 2023. Magnetic resonance imaging (MRI), including diffusion tensor imaging (DTI), and the Mini-Mental State Examination (MMSE) were performed 3 days before CAS. MRI with DTI and MMSE were conducted within 24 hours and 2 months after CAS, respectively. The diffusion tensor image analysis along the perivascular space (DTI-ALPS) index was calculated from the DTI data to determine the ISF status. Increments were defined as the ratio of the difference between post- and preprocedural values to preprocedural values. RESULTS In total, 102 participants (age: 67.1±8.9 years; stenosis: 89.5%±5.7%) with longitudinal data were evaluated. The DTI-ALPS index increased after CAS (0.85±0.15; 0.85 [0.22] vs. 0.86±0.14; 0.86 [0.21]; P=0.022), as did the MMSE score (25.9±3.7; 24.0 [4.0] vs. 26.9±3.4; 26.0 [3.0]; P<0.001). Positive correlations between increments in the DTI-ALPS index and MMSE score were found in all patients (rs=0.468; P<0.001). CONCLUSION An increased 24-hour post-CAS DTI-ALPS index suggests early improvement in ISF flow efficiency. The positive correlation between the 24-hour DTI-ALPS index and 2-month MMSE score increments suggests that early ISF flow improvement may contribute to long-term cognitive improvement after CAS.
Collapse
Affiliation(s)
- Chia-Hung Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Pin Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Ping Chung
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kai-Wei Yu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Te-Ming Lin
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chao-Bao Luo
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biomedical Engineering, Yuanpei University of Medical Technology, Hsinchu, Taiwan
- Department of Radiology, National Defense Medical Center, Taipei, Taiwan
| | - Jiing-Feng Lirng
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - I-Hui Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Feng-Chi Chang
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
5
|
Zeynalzadeh E, Khodadadi E, Khodadadi E, Ahmadian Z, Kazeminava F, Rasoulzadehzali M, Samadi Kafil H. Navigating the neurological frontier: Macromolecular marvels in overcoming blood-brain barrier challenges for advanced drug delivery. Heliyon 2024; 10:e35562. [PMID: 39170552 PMCID: PMC11336773 DOI: 10.1016/j.heliyon.2024.e35562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The blood-brain interface poses formidable obstacles in addressing neurological conditions such as Alzheimer's, Multiple Sclerosis, brain cancers, and cerebrovascular accidents. Serving as a safeguard against potential threats in the blood, this barrier hinders direct drug delivery to affected cells, necessitating specialized transport mechanisms. Within the realm of nanotechnology, the creation of nanoscale carriers, including macromolecules such as polymers, lipids, and metallic nanoparticles, is gaining prominence. These carriers, tailored in diverse forms and sizes and enriched with specific functional groups for enhanced penetration and targeting, are capturing growing interest. This revised abstract explores the macromolecular dimension in understanding how nanoparticles interact with the blood-brain barrier. It re-evaluates the structure and function of the blood-brain barrier, highlighting macromolecular nanocarriers utilized in drug delivery to the brain. The discussion delves into the intricate pathways through which drugs navigate the blood-brain barrier, emphasizing the distinctive attributes of macromolecular nanocarriers. Additionally, it explores recent innovations in nanotechnology and unconventional approaches to drug delivery. Ultimately, the paper addresses the intricacies and considerations in developing macromolecular-based nanomedicines for the brain, aiming to advance the creation and evolution of nanomedicines for neurological ailments.
Collapse
Affiliation(s)
- Elham Zeynalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Khodadadi
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fahimeh Kazeminava
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Rasoulzadehzali
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Vucevic D, Malis V, Bae WC, Ota H, Oshio K, McDonald MA, Miyazaki M. Visualization of Cerebrospinal Fluid Outflow and Egress along the Nerve Roots of the Lumbar Spine. Bioengineering (Basel) 2024; 11:708. [PMID: 39061790 PMCID: PMC11273714 DOI: 10.3390/bioengineering11070708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Intrinsic cerebrospinal fluid (CSF) dynamics in the brain have been extensively studied, particularly the egress sites of tagged intrinsic CSF in the meninges. Although spinal CSF recirculates within the central nervous system (CNS), we hypothesized that CSF outflows from the lumbar spinal canal. We aimed to visualize and semi-quantify the outflow using non-contrast MRI techniques. We utilized a 3 Tesla clinical MRI with a 16-channel spine coil, employing time-spatial labeling inversion (Time-SLIP) with tag-on and tag-off acquisitions, T2-weighted coronal 2D fluid-attenuated inversion recovery (FLAIR) and T2-weighted coronal 3D centric ky-kz single-shot FSE (cSSFSE). Images were acquired using time-spatial labeling inversion pulse (Time-SLIP) with tag-on and tag-off acquisitions with varying TI periods. Ten healthy volunteers with no known spinal diseases participated. Variations in tagged CSF outflow were observed across different thoracolumbar nerve root segments in all participants. We quantified CSF outflow at all lumbar levels and the psoas region. There was no significant difference among the ROIs for signal intensity. The tagged CSF outflow from the spinal canal is small but demonstrates egress to surrounding tissues. This finding may pave the way for exploring intrathecal drug delivery, understanding of CSF-related pathologies and its potential as a biomarker for peripheral neuropathy and radiculopathy.
Collapse
Affiliation(s)
- Diana Vucevic
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA; (D.V.); (V.M.); (W.C.B.); (M.A.M.)
| | - Vadim Malis
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA; (D.V.); (V.M.); (W.C.B.); (M.A.M.)
| | - Won C. Bae
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA; (D.V.); (V.M.); (W.C.B.); (M.A.M.)
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Hideki Ota
- Department of Radiology, Tohoku University, Sendai 980-8576, Miyagi, Japan;
| | - Koichi Oshio
- Department of Radiology, Juntendo University, Tokyo 113-8421, Japan;
| | - Marin A. McDonald
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA; (D.V.); (V.M.); (W.C.B.); (M.A.M.)
| | - Mitsue Miyazaki
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA; (D.V.); (V.M.); (W.C.B.); (M.A.M.)
| |
Collapse
|
7
|
El-Gendy RS, El-Hamid ASA, Galhom AESA, Hassan NA, Ghoneim EM. Diagnostic dilemma of papilledema and pseudopapilledema. Int Ophthalmol 2024; 44:272. [PMID: 38916684 DOI: 10.1007/s10792-024-03215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/16/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Papilledema is the optic disc swelling caused by increased intracranial pressure (ICP) that can damage the optic nerve and cause subsequent vision loss. Pseudopapilledema refers to optic disc elevation without peripapillary fluid that can arise from several optic disc disorders, with optic disc drusen (ODD) being the most frequent cause. Occasionally, pseudopapilledema patients are mistakenly diagnosed as papilledema, leading to the possibility of unneeded procedures. We aim to thoroughly examine the most current evidence on papilledema and pseudopapilledema causes and several methods for distinguishing between both conditions. METHODS An extensive literature search was conducted on electronic databases including PubMed and google scholar using keywords that were relevant to the assessed pathologies. Data were collected and then summarized in comprehensive form. RESULTS Various techniques are employed to distinguish between papilledema and pseudopapilledema. These techniques include Fundus fluorescein angiography, optical coherence tomography, ultrasonography, and magnetic resonance imaging. Lumbar puncture and other invasive procedures may be needed if results are suspicious. CONCLUSION Papilledema is a sight-threatening condition that may lead to visual affection. Many disc conditions may mimic papilledema. Accordingly, differentiation between papilledema and pseudopailledema is crucial and can be conducted through many modalities.
Collapse
Affiliation(s)
| | | | | | - Nihal Adel Hassan
- Department of Ophthalmology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ehab Mahmoud Ghoneim
- Department of Ophthalmology, Faculty of Medicine, PortSaid University, PortSaid, Egypt
| |
Collapse
|
8
|
Hong H, Tozer DJ, Markus HS. Relationship of Perivascular Space Markers With Incident Dementia in Cerebral Small Vessel Disease. Stroke 2024; 55:1032-1040. [PMID: 38465597 PMCID: PMC10962441 DOI: 10.1161/strokeaha.123.045857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Recent studies, using diffusion tensor image analysis along the perivascular space (DTI-ALPS), suggest impaired perivascular space (PVS) function in cerebral small vessel disease, but they were cross-sectional, making inferences on causality difficult. We determined associations between impaired PVS, measured using DTI-ALPS and PVS volume, and cognition and incident dementia. METHODS In patients with lacunar stroke and confluent white matter hyperintensities, without dementia at baseline, recruited prospectively in a single center, magnetic resonance imaging was performed annually for 3 years, and cognitive assessments, including global, memory, executive function, and processing speed, were performed annually for 5 years. We determined associations between DTI-ALPS and PVS volume with cerebral small vessel disease imaging markers (white matter hyperintensity volume, lacunes, and microbleeds) at baseline and with changes in imaging markers. We determined whether DTI-ALPS and PVS volume at baseline and change over 3 years predicted incident dementia. Analyses were controlled for conventional diffusion tensor image metrics using 2 markers (median mean diffusivity [MD] and peak width of skeletonized MD) and adjusted for age, sex, and vascular risk factors. RESULTS A total of 120 patients, mean age 70.0 years and 65.0% male, were included. DTI-ALPS declined over 3 years, while no change in PVS volume was found. Neither DTI-ALPS nor PVS volume was associated with cerebral small vessel disease imaging marker progression. Baseline DTI-ALPS was associated with changes in global cognition (β=0.142, P=0.032), executive function (β=0.287, P=0.027), and long-term memory (β=0.228, P=0.027). Higher DTI-ALPS at baseline predicted a lower risk of dementia (hazard ratio, 0.328 [0.183-0.588]; P<0.001), and this remained significant after including median MD as a covariate (hazard ratio, 0.290 [0.139-0.602]; P<0.001). Change in DTI-ALPS predicted dementia conversion (hazard ratio, 0.630 [0.428-0.964]; P=0.048), but when peak width of skeletonized MD and median MD were entered as covariates, the association was not significant. There was no association between baseline PVS volume, or PVS change over 3 years, and conversion to dementia. CONCLUSIONS DTI-ALPS predicts future dementia risk in patients with lacunar strokes and confluent white matter hyperintensities. However, the weakening of the association between change in DTI-ALPS and incident dementia after controlling for peak width of skeletonized MD and median MD suggests part of the signal may represent conventional diffusion tensor image metrics. PVS volume is not a predictor of future dementia risk.
Collapse
Affiliation(s)
- Hui Hong
- Department of Clinical Neurosciences, University of Cambridge, United Kingdom (H.H., D.J.T., H.S.M.)
- Department of Radiology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China (H.H.)
| | - Daniel J. Tozer
- Department of Clinical Neurosciences, University of Cambridge, United Kingdom (H.H., D.J.T., H.S.M.)
| | - Hugh S. Markus
- Department of Clinical Neurosciences, University of Cambridge, United Kingdom (H.H., D.J.T., H.S.M.)
| |
Collapse
|
9
|
Voss HU, Razlighi QR. Pulsatility analysis of the circle of Willis. AGING BRAIN 2024; 5:100111. [PMID: 38495808 PMCID: PMC10940807 DOI: 10.1016/j.nbas.2024.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Purpose To evaluate the phenomenological significance of cerebral blood pulsatility imaging in aging research. Methods N = 38 subjects from 20 to 72 years of age (24 females) were imaged with ultrafast MRI with a sampling rate of 100 ms and simultaneous acquisition of pulse oximetry data. Of these, 28 subjects had acceptable MRI and pulse data, with 16 subjects between 20 and 28 years of age, and 12 subjects between 61 and 72 years of age. Pulse amplitude in the circle of Willis was assessed with the recently developed method of analytic phase projection to extract blood volume waveforms. Results Arteries in the circle of Willis showed pulsatility in the MRI for both the young and old age groups. Pulse amplitude in the circle of Willis significantly increased with age (p = 0.01) but was independent of gender, heart rate, and head motion during MRI. Discussion and conclusion Increased pulse wave amplitude in the circle of Willis in the elderly suggests a phenomenological significance of cerebral blood pulsatility imaging in aging research. The physiologic origin of increased pulse amplitude (increased pulse pressure vs. change in arterial morphology vs. re-shaping of pulse waveforms caused by the heart, and possible interaction with cerebrospinal fluid pulsatility) requires further investigation.
Collapse
Affiliation(s)
- Henning U. Voss
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Cornell MRI Facility, College of Human Ecology, Cornell University, Ithaca, NY, USA
| | - Qolamreza R. Razlighi
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
10
|
Liu P, Owashi K, Monnier H, Metanbou S, Capel C, Balédent O. Validating the accuracy of real-time phase-contrast MRI and quantifying the effects of free breathing on cerebrospinal fluid dynamics. Fluids Barriers CNS 2024; 21:25. [PMID: 38454518 PMCID: PMC10921772 DOI: 10.1186/s12987-024-00520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Understanding of the cerebrospinal fluid (CSF) circulation is essential for physiological studies and clinical diagnosis. Real-time phase contrast sequences (RT-PC) can quantify beat-to-beat CSF flow signals. However, the detailed effects of free-breathing on CSF parameters are not fully understood. This study aims to validate RT-PC's accuracy by comparing it with the conventional phase-contrast sequence (CINE-PC) and quantify the effect of free-breathing on CSF parameters at the intracranial and extracranial levels using a time-domain multiparametric analysis method. METHODS Thirty-six healthy participants underwent MRI in a 3T scanner for CSF oscillations quantification at the cervical spine (C2-C3) and Sylvian aqueduct, using CINE-PC and RT-PC. CINE-PC uses 32 velocity maps to represent dynamic CSF flow over an average cardiac cycle, while RT-PC continuously quantifies CSF flow over 45-seconds. Free-breathing signals were recorded from 25 participants. RT-PC signal was segmented into independent cardiac cycle flow curves (Qt) and reconstructed into an averaged Qt. To assess RT-PC's accuracy, parameters such as segmented area, flow amplitude, and stroke volume (SV) of the reconstructed Qt from RT-PC were compared with those derived from the averaged Qt generated by CINE-PC. The breathing signal was used to categorize the Qt into expiratory or inspiratory phases, enabling the reconstruction of two Qt for inspiration and expiration. The breathing effects on various CSF parameters can be quantified by comparing these two reconstructed Qt. RESULTS RT-PC overestimated CSF area (82.7% at aqueduct, 11.5% at C2-C3) compared to CINE-PC. Stroke volumes for CINE-PC were 615 mm³ (aqueduct) and 43 mm³ (spinal), and 581 mm³ (aqueduct) and 46 mm³ (spinal) for RT-PC. During thoracic pressure increase, spinal CSF net flow, flow amplitude, SV, and cardiac period increased by 6.3%, 6.8%, 14%, and 6%, respectively. Breathing effects on net flow showed a significant phase difference compared to the other parameters. Aqueduct-CSF flows were more affected by breathing than spinal-CSF. CONCLUSIONS RT-PC accurately quantifies CSF oscillations in real-time and eliminates the need for cardiac synchronization, enabling the quantification of the cardiac and breathing components of CSF flow. This study quantifies the impact of free-breathing on CSF parameters, offering valuable physiological references for understanding the effects of breathing on CSF dynamics.
Collapse
Affiliation(s)
- Pan Liu
- CHIMERE UR 7516, Jules Verne University of Picardy, Amiens, 80000, France.
- Medical Image Processing Department, Amiens Picardy University Medical Center, Amiens, 80000, France.
| | - Kimi Owashi
- CHIMERE UR 7516, Jules Verne University of Picardy, Amiens, 80000, France
- Medical Image Processing Department, Amiens Picardy University Medical Center, Amiens, 80000, France
| | - Heimiri Monnier
- CHIMERE UR 7516, Jules Verne University of Picardy, Amiens, 80000, France
| | - Serge Metanbou
- Radiology Department, Amiens Picardy University Medical Center, Amiens, 80000, France
| | - Cyrille Capel
- CHIMERE UR 7516, Jules Verne University of Picardy, Amiens, 80000, France
- Neurosurgery Department, Amiens Picardy University Medical Center, Amiens, 8000, France
| | - Olivier Balédent
- CHIMERE UR 7516, Jules Verne University of Picardy, Amiens, 80000, France
- Medical Image Processing Department, Amiens Picardy University Medical Center, Amiens, 80000, France
| |
Collapse
|
11
|
Boraschi A, Hafner M, Spiegelberg A, Kurtcuoglu V. Influence of age on the relation between body position and noninvasively acquired intracranial pulse waves. Sci Rep 2024; 14:5493. [PMID: 38448614 PMCID: PMC10918064 DOI: 10.1038/s41598-024-55860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
The capacitive measurement of the head's dielectric properties has been recently proposed as a noninvasive method for deriving surrogates of craniospinal compliance (CC), a parameter used in the evaluation of space-occupying neurological disorders. With the higher prevalence of such disorders in the older compared to the younger population, data on the head's dielectric properties of older healthy individuals would be of particularly high value before assessing pathologic changes. However, so far only measurements on young volunteers (< 30 years) were reported. In the present study, we have investigated the capacitively obtained electric signal known as W in older healthy individuals. Thirteen healthy subjects aged > 60 years were included in the study. W was acquired in the resting state (supine horizontal position), and during head-up and head-down tilting. AMP, the peak-to-valley amplitude of W related to cardiac action, was extracted from W. AMP was higher in this older cohort compared to the previously investigated younger one (0°: 5965 ± 1677 arbitrary units (au)). During head-up tilting, AMP decreased (+ 60°: 4446 ± 1620 au, P < 0.001), whereas it increased during head-down tilting (- 30°: 7600 ± 2123 au, P < 0.001), as also observed in the younger cohort. Our observation that AMP, a metric potentially reflective of CC, is higher in the older compared to the younger cohort aligns with the expected decrease of CC with age. Furthermore, the robustness of AMP is reinforced by the consistent relative changes observed during tilt testing in both cohorts.
Collapse
Affiliation(s)
- Andrea Boraschi
- The Interface Group, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matthias Hafner
- The Interface Group, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Andreas Spiegelberg
- The Interface Group, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Mamiya T, Araki Y, Taoka T, Fujita N, Yokoyama K, Uda K, Muraoka S, Kanamori F, Takayanagi K, Ishii K, Nishihori M, Izumi T, Kato K, Saito R. Characteristics of donor vessels and cerebral blood flow in the chronic phase after combined revascularization surgery for moyamoya disease. Clin Neurol Neurosurg 2024; 236:108110. [PMID: 38171051 DOI: 10.1016/j.clineuro.2023.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE This study aimed to analyze whether the development of donor vessels after combined revascularization surgery for moyamoya disease (MMD) is related to cerebral blood flow (CBF) changes. METHODS We retrospectively reviewed the charts of 11 adult (12 hemispheres) and 13 pediatric (19 hemispheres) patients who underwent combined revascularization in our department. The total vessel cross-sectional area (TVA) was the sum of the cross-sectional areas of the superficial temporal, middle meningeal, and deep temporal arteries imaged using time-of-flight magnetic resonance angiography. The ipsilateral relative CBF (RCBF) on the brain surface in the craniotomy area was calculated by single-photon emission computed tomography. ΔTVA and ΔRCBF were defined as the preoperative and postoperative ratios of TVA and RCBF, and their correlations were analyzed in adult and pediatric patients. RESULTS The TVA and RCBF showed a significant increase after surgery, regardless of the age group. However, there was no significant correlation between ΔTVA and ΔRCBF in either the adult or pediatric groups. While the adult group exhibited significantly higher ΔRCBF values compared to the pediatric group (p < 0.01, r = -0.44), the ΔTVA values were higher in the pediatric group compared to the adult group (p = 0.06). CONCLUSIONS In the chronic phase after combined revascularization surgery for MMD, the development of measurable TVA of donor vessels does not necessarily correlate with an increase in CBF around the craniotomy area.
Collapse
Affiliation(s)
- Takashi Mamiya
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya City, Aichi, Japan.
| | - Yoshio Araki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya City, Aichi, Japan
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya City, Aichi, Japan
| | - Naotoshi Fujita
- Department of Radiological Technology, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Kinya Yokoyama
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya City, Aichi, Japan
| | - Kenji Uda
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya City, Aichi, Japan
| | - Shinsuke Muraoka
- Department of Neurosurgery, Tosei General Hospital, Seto, Aichi, Japan
| | - Fumiaki Kanamori
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya City, Aichi, Japan
| | - Kai Takayanagi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya City, Aichi, Japan
| | - Kazuki Ishii
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya City, Aichi, Japan
| | - Masahiro Nishihori
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya City, Aichi, Japan
| | - Takashi Izumi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya City, Aichi, Japan
| | - Katsuhiko Kato
- Functional Medical Imaging, Biomedical Imaging Sciences, Division of Advanced Information Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya City, Aichi, Japan
| |
Collapse
|
13
|
Capel C, Owashi K, Metanbou S, Peltier J, Balédent O. Impact of Shunt Placement on CSF Dynamics. Biomedicines 2023; 12:20. [PMID: 38275381 PMCID: PMC10813594 DOI: 10.3390/biomedicines12010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND CSF dynamics are disturbed in chronic hydrocephalus (NPH). We hypothesise that these alterations reflect a disturbance of intracranial compliance. The aim of our study is to investigate the variations in intracranial hydrodynamics in NPH after ventricular shunt surgery. PATIENTS AND METHOD We included 14 patients with definite NPH. All patients improved after ventriculoperitoneal shunting. The patients underwent an analysis of intracranial haemodynamics by phase-contrast MRI (pcMRI) preoperatively, at 6 months postoperatively, and at 1 year postoperatively. We analysed the dynamics of intraventricular CSF at the level of the aqueduct of Sylvius (SVAQU) and CSF at the level of the high cervical subarachnoid spaces (SVCERV). We calculated the ratio between SVAQU and SVCERV, called CSFRATIO, which reflects the participation of intraventricular pulsatility in overall intracranial CSF pulsatility. RESULTS SVAQU significantly (p = 0.003) decreased from 240 ± 114 μL/cc to 214 ± 157 μL/cc 6 months after shunt placement. Six months after shunt placement, SVCERV significantly (p = 0.007) decreased from 627 ± 229 μL/cc to 557 ± 234 μL/cc. Twelve months after shunt placement, SVCERV continued to significantly (p = 0.001) decrease to 496 ± 234 μL/cc. CSFRATIO was not changed by surgery. CONCLUSIONS CSF dynamics are altered by shunt placement and might be a useful marker of the shunt's effectiveness-especially if pressure values start to rise again. The detection of changes in CSF dynamics would require a reference postoperative pcMRI measurement for each patient.
Collapse
Affiliation(s)
- Cyrille Capel
- Department of Neurosurgery, Hospital University Center of Amiens-Picardie, 80054 Amiens, France;
- CHIMERE UR UPJV 7516, Jules Verne University, 80000 Amiens, France; (K.O.); (O.B.)
| | - Kimi Owashi
- CHIMERE UR UPJV 7516, Jules Verne University, 80000 Amiens, France; (K.O.); (O.B.)
- Image Processing Department, Hospital University Center of Amiens-Picardie, 80054 Amiens, France
| | - Serge Metanbou
- Radiology Department, Hospital University Center of Amiens-Picardie, 80054 Amiens, France;
| | - Johann Peltier
- Department of Neurosurgery, Hospital University Center of Amiens-Picardie, 80054 Amiens, France;
- CHIMERE UR UPJV 7516, Jules Verne University, 80000 Amiens, France; (K.O.); (O.B.)
| | - Olivier Balédent
- CHIMERE UR UPJV 7516, Jules Verne University, 80000 Amiens, France; (K.O.); (O.B.)
- Image Processing Department, Hospital University Center of Amiens-Picardie, 80054 Amiens, France
| |
Collapse
|
14
|
Lin R, Lei M, Ding S, Cheng Q, Ma Z, Wang L, Tang Z, Zhou B, Zhou Y. Applications of flexible electronics related to cardiocerebral vascular system. Mater Today Bio 2023; 23:100787. [PMID: 37766895 PMCID: PMC10519834 DOI: 10.1016/j.mtbio.2023.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Ensuring accessible and high-quality healthcare worldwide requires field-deployable and affordable clinical diagnostic tools with high performance. In recent years, flexible electronics with wearable and implantable capabilities have garnered significant attention from researchers, which functioned as vital clinical diagnostic-assisted tools by real-time signal transmission from interested targets in vivo. As the most crucial and complex system of human body, cardiocerebral vascular system together with heart-brain network attracts researchers inputting profuse and indefatigable efforts on proper flexible electronics design and materials selection, trying to overcome the impassable gulf between vivid organisms and rigid inorganic units. This article reviews recent breakthroughs in flexible electronics specifically applied to cardiocerebral vascular system and heart-brain network. Relevant sensor types and working principles, electronics materials selection and treatment methods are expounded. Applications of flexible electronics related to these interested organs and systems are specially highlighted. Through precedent great working studies, we conclude their merits and point out some limitations in this emerging field, thus will help to pave the way for revolutionary flexible electronics and diagnosis assisted tools development.
Collapse
Affiliation(s)
- Runxing Lin
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ming Lei
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Sen Ding
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Quansheng Cheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Liping Wang
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| |
Collapse
|
15
|
Capel C, Owashi K, Peltier J, Balédent O. Hydrodynamic and Hemodynamic Interactions in Chronic Hydrocephalus. Biomedicines 2023; 11:2931. [PMID: 38001933 PMCID: PMC10669187 DOI: 10.3390/biomedicines11112931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND During a cardiac cycle, intracranial pressure is related to arterial entry into the cranium and its interaction with intracranial compliance. The arterial inflow is compensated by intracranial compliance and, initially, the flushing of cerebrospinal fluid (CSF) into the cervical subarachnoid spaces. Our objective is to analyze the interactions between intracranial arteriovenous exchange and cerebrospinal fluid oscillations. METHOD A total of 23 patients (73 ± 8 years) with suspected chronic hydrocephalus (CH) underwent an infusion test and phase-contrast MRI. Rout is an important factor in the diagnosis of CH. Patients were divided into 2 populations: probableCH (Rout: resistance to CSF outflow) (Rout > 12 mmHg/mL/min, 13 patients) and unlikelyCH (Rout < 12 mmHg/mL/min, 10 patients). We measured the intracranial vascular volume (arteriovenous stroke volume: SVvasc) and CSF (CSF stroke volume at upper cervical level: SVCSF) volume variations during the cardiac cycle. RESULTS In the whole population, we observed a significant correlation between SVvasc and SVCSF (R2 = 0.43; p = 0.0007). In the population unlikelyCH, this correlation was significant (R2 = 0.76; p = 0.001). In the population probableCH, this correlation was not significant (R2 = 0.17, p = 0.16). CONCLUSIONS These results show that the link between the compliance of the oscillating CSF and the abrupt arterial inflow seems to be altered in CH. CSF oscillations between intracranial and cervical fluid spaces limit the impact of the abrupt arterial inflow.
Collapse
Affiliation(s)
- Cyrille Capel
- Department of Neurosurgery, Hospital University Center of Amiens-Picardie, 80054 Amiens, France;
- CHIMERE UR UPJV 7516, Jules Verne University, 80000 Amiens, France; (K.O.); (O.B.)
| | - Kimi Owashi
- CHIMERE UR UPJV 7516, Jules Verne University, 80000 Amiens, France; (K.O.); (O.B.)
- Image Processing Department, Hospital University Center of Amiens-Picardie, 80054 Amiens, France
| | - Johann Peltier
- Department of Neurosurgery, Hospital University Center of Amiens-Picardie, 80054 Amiens, France;
- CHIMERE UR UPJV 7516, Jules Verne University, 80000 Amiens, France; (K.O.); (O.B.)
| | - Olivier Balédent
- CHIMERE UR UPJV 7516, Jules Verne University, 80000 Amiens, France; (K.O.); (O.B.)
- Image Processing Department, Hospital University Center of Amiens-Picardie, 80054 Amiens, France
| |
Collapse
|
16
|
Owashi KP, Capel C, Balédent O. Cerebral arterial flow dynamics during systole and diastole phases in young and older healthy adults. Fluids Barriers CNS 2023; 20:65. [PMID: 37705096 PMCID: PMC10500860 DOI: 10.1186/s12987-023-00467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Since arterial flow is the leading actor in neuro-fluids flow dynamics, it might be interesting to assess whether it is meaningful to study the arterial flow waveform in more detail and whether this provides new important information. Few studies have focused on determining the influence of heart rate variation over time on the arterial flow curve. Therefore, this study aimed to evaluate cerebral arterial flow waveforms at extracranial and intracranial compartments in young and elderly healthy adults, also considering systole and diastole phases. METHODS Cine phase-contrast magnetic resonance imaging (CINE-PC MRI) was performed on twenty-eight healthy young volunteers (HYV) and twenty healthy elderly volunteers (HEV) to measure arterial blood flows at the extracranial and intracranial planes. A semi-automated protocol using MATLAB scripts was implemented to identify the main representative points in the arterial flow waveforms. Representative arterial profiles were estimated for each group. Moreover, the effects of age and sex on flow times, amplitude-related parameters, and parameters related to systole and diastole phases were evaluated at the extracranial and intracranial compartments. Student's t-test or Wilcoxon's test (depending on the normality of the distribution) was used to detect significant differences. RESULTS In HYVs, significant differences were observed between extracranial and intracranial levels in parameters related to the AP1 amplitude. Besides the detected differences in pulsatility index (extracranial: 0.92 ± 0.20 vs. 1.28 ± 0.33; intracranial: 0.79 ± 0.15 vs. 1.14 ± 0.18, p < .001) and average flow (715 ± 136 vs. 607 ± 125 ml/min, p = .008) between HYV and HEV, differences in the amplitude value of the arterial flow profile feature points were also noted. Contrary to systole duration (HYV: 360 ± 29 ms; HEV: 364 ± 47 ms), diastole duration presented higher inter-individual variability in both populations (HYV: 472 ± 145 ms; HEV: 456 ± 106 ms). Our results also showed that, with age, it is mainly the diastolic phase that changes. Although no significant differences in duration were observed between the two populations, the mean flow value in the diastolic phase was significantly lower in HEV (extracranial: 628 ± 128 vs. 457 ± 111 ml/min; intracranial: 599 ± 121 vs. 473 ± 100 ml/min, p < .001). No significant differences were observed in the arterial flow parameters evaluated between females and males in either HYV or HEV. CONCLUSION Our study provides a novel contribution on the influence of the cardiac cycle phases on cerebral arterial flow. The main contribution in this study concerns the identification of age-related alterations in cerebral blood flow, which occur mainly during the diastolic phase. Specifically, we observed that mean flow significantly decreases with age during diastole, whereas mean flow during systole is consistent.
Collapse
Affiliation(s)
| | - Cyrille Capel
- CHIMERE UR 7516, Jules Verne University of Picardy, Amiens, France
- Neurosurgery Department, Amiens Picardy University Medical Center, Amiens, France
| | - Olivier Balédent
- CHIMERE UR 7516, Jules Verne University of Picardy, Amiens, France
- Medical Image Processing Department, Amiens Picardy University Medical Center, Amiens, France
| |
Collapse
|
17
|
Capel C, Lantonkpode R, Metanbou S, Peltier J, Balédent O. Hemodynamic and Hydrodynamic Pathophysiology in Chiari Type 1 Malformations: Towards Understanding the Genesis of Syrinx. J Clin Med 2023; 12:5954. [PMID: 37762895 PMCID: PMC10532137 DOI: 10.3390/jcm12185954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The pathophysiology of this association of type 1 Chiari malformation (CM1) and syrinxes is still unknown. There is an alteration in the dynamics of neurofluids (cerebrospinal fluid, arterial and venous blood) during the cardiac cycle in CM1. Our objective is to quantify CSF or arterial blood or venous blood flow in patients with Chiari syndrome (CS) with and without syrinxes using phase-contrast MRI (PCMRI). METHODS We included 28 patients with CM1 (9 with syrinxes, 19 without). Morphological MRI with complementary PCMRI sequences was performed. We analyzed intraventricular CSF, subarachnoid spaces CSF, blood, and tonsillar pulsatility. RESULTS There is a highly significant correlation (p < 0.001) between cerebral blood flow, cerebral vascular expansion volume and venous drainage distribution. Venous drainage distribution is significantly inversely correlated with oscillatory CSF volume at the level of the foramen magnum plane [-0.37 (0.04)] and not significantly correlated at the C2C3 level [-0.37 (0.05)] over our entire population. This correlation maintained the same trend in patients with syrinxes [-0.80 (<0.01)] and disappeared in patients without a syrinx [-0.05 (0.81)]. CONCLUSION The distribution of venous drainage is an important factor in intracranial homeostasis. Impaired venous drainage would lead to greater involvement of the CSF in compensating for arterial blood influx, thus contributing to syrinx genesis.
Collapse
Affiliation(s)
- Cyrille Capel
- Department of Neurosurgery, Hospital University Center of Amiens-Picardie, 80054 Amiens, France (J.P.)
- Chimère UR 7516, Jules Verne University, 80000 Amiens, France;
| | - Romaric Lantonkpode
- Department of Neurosurgery, Hospital University Center of Amiens-Picardie, 80054 Amiens, France (J.P.)
| | - Serge Metanbou
- Radiology Department, Hospital University Center of Amiens-Picardie, 80054 Amiens, France
| | - Johann Peltier
- Department of Neurosurgery, Hospital University Center of Amiens-Picardie, 80054 Amiens, France (J.P.)
- Chimère UR 7516, Jules Verne University, 80000 Amiens, France;
| | - Olivier Balédent
- Chimère UR 7516, Jules Verne University, 80000 Amiens, France;
- Image Processing Department, Hospital University Center of Amiens-Picardie, 80054 Amiens, France
| |
Collapse
|
18
|
Jezierski A, Huang J, Haqqani AS, Haukenfrers J, Liu Z, Baumann E, Sodja C, Charlebois C, Delaney CE, Star AT, Liu Q, Stanimirovic DB. Mouse embryonic stem cell-derived blood-brain barrier model: applicability to studying antibody triggered receptor mediated transcytosis. Fluids Barriers CNS 2023; 20:36. [PMID: 37237379 DOI: 10.1186/s12987-023-00437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Blood brain barrier (BBB) models in vitro are an important tool to aid in the pre-clinical evaluation and selection of BBB-crossing therapeutics. Stem cell derived BBB models have recently demonstrated a substantial advantage over primary and immortalized brain endothelial cells (BECs) for BBB modeling. Coupled with recent discoveries highlighting significant species differences in the expression and function of key BBB transporters, the field is in need of robust, species-specific BBB models for improved translational predictability. We have developed a mouse BBB model, composed of mouse embryonic stem cell (mESC-D3)-derived brain endothelial-like cells (mBECs), employing a directed monolayer differentiation strategy. Although the mBECs showed a mixed endothelial-epithelial phenotype, they exhibited high transendothelial electrical resistance, inducible by retinoic acid treatment up to 400 Ω cm2. This tight cell barrier resulted in restricted sodium fluorescein permeability (1.7 × 10-5 cm/min), significantly lower than that of bEnd.3 cells (1.02 × 10-3 cm/min) and comparable to human induced pluripotent stem cell (iPSC)-derived BECs (2.0 × 10-5 cm/min). The mBECs expressed tight junction proteins, polarized and functional P-gp efflux transporter and receptor mediated transcytosis (RMT) receptors; collectively important criteria for studying barrier regulation and drug delivery applications in the CNS. In this study, we compared transport of a panel of antibodies binding species selective or cross-reactive epitopes on BBB RMT receptors in both the mBEC and human iPSC-derived BEC model, to demonstrate discrimination of species-specific BBB transport mechanisms.
Collapse
Affiliation(s)
- Anna Jezierski
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Jez Huang
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Julie Haukenfrers
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Ziying Liu
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Ewa Baumann
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Caroline Sodja
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Claudie Charlebois
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Christie E Delaney
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Alexandra T Star
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Qing Liu
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| |
Collapse
|
19
|
Ben-Shabat M, Awad-Igbaria Y, Sela S, Gross B, Yagil Y, Yagil C, Palzur E. Predisposition to cortical neurodegenerative changes in brains of hypertension prone rats. J Transl Med 2023; 21:51. [PMID: 36707861 PMCID: PMC9881299 DOI: 10.1186/s12967-023-03916-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Substantial evidence suggests that hypertension is a significant risk factor for cognitive decline. However, it is unclear whether the genetic predisposition to hypertension is also associated with cellular dysfunction that promotes neurodegeneration. METHODS Changes in blood pressure were evaluated following dietary salt-loading or administration of a regular diet in Sabra Normotensive (SBN/y) and Sabra Hypertension-prone rats (SBH/y). We performed quantitative RT-PCR and immunofluorescence staining in brain cortical tissues before salt loading and 6 and 9 months after salt loading. To examine the expression of brain cortical proteins involved in the gene regulation (Histone Deacetylase-HDAC2; Histone Acetyltransferase 1-HAT1), stress response (Activating Transcription Factor 4-ATF4; Eukaryotic Initiation Factor 2- eIF2α), autophagy (Autophagy related 4A cysteine peptidase- Atg4a; light-chain 3-LC3A/B; mammalian target of rapamycin complex 1- mTORC1) and apoptosis (caspase-3). RESULTS Prior to salt loading, SBH/y compared to SBN/y expressed a significantly higher level of cortical HAT1 (protein), Caspase-3 (mRNA/protein), LC3A, and ATF4 (mRNA), lower levels of ATG4A (mRNA/protein), LC3A/B, HDAC2 (protein), as well as a lower density of cortical neurons. Following dietary salt loading, SBH/y but not SBN/y developed high blood pressure. In hypertensive SBH/y, there was significant upregulation of cortical HAT1 (protein), Caspase-3 (protein), and eIF2α ~ P (protein) and downregulation of HDAC2 (protein) and mTORC1 (mRNA), and cortical neuronal loss. CONCLUSIONS The present findings suggest that genetic predisposition to hypertension is associated in the brain cortex with disruption in autophagy, gene regulation, an abnormal response to cellular stress, and a high level of cortical apoptosis, and could therefore exacerbate cellular dysfunction and thereby promote neurodegeneration.
Collapse
Affiliation(s)
- Moti Ben-Shabat
- grid.415839.2Research Institute of Galilee Medical Center, Nahariya, Israel ,grid.22098.310000 0004 1937 0503Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel ,grid.415839.2Neurology Department, Galilee Medical Center, Nahariya, Israel
| | - Yaseen Awad-Igbaria
- grid.415839.2Research Institute of Galilee Medical Center, Nahariya, Israel ,grid.22098.310000 0004 1937 0503Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Shifra Sela
- grid.415839.2Research Institute of Galilee Medical Center, Nahariya, Israel ,grid.415839.2Neurology Department, Galilee Medical Center, Nahariya, Israel
| | - Bella Gross
- grid.415839.2Research Institute of Galilee Medical Center, Nahariya, Israel ,grid.415839.2Neurology Department, Galilee Medical Center, Nahariya, Israel
| | - Yoram Yagil
- Laboratory for Molecular Medicine, Barzilai University Medical Center, Ashkelon, Israel ,grid.7489.20000 0004 1937 0511Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheba, Israel
| | - Chana Yagil
- Laboratory for Molecular Medicine, Barzilai University Medical Center, Ashkelon, Israel ,grid.7489.20000 0004 1937 0511Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheba, Israel
| | - Eilam Palzur
- grid.415839.2Research Institute of Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
20
|
Liu L, Wu Y, Zhang K, Meng R, Duan J, Zhou C, Ji X. Anatomy imaging and hemodynamics research on the cerebral vein and venous sinus among individuals without cranial sinus and jugular vein diseases. Front Neurosci 2022; 16:999134. [PMID: 36238084 PMCID: PMC9551167 DOI: 10.3389/fnins.2022.999134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
In recent years, imaging technology has allowed the visualization of intracranial and extracranial vascular systems. However, compared with the cerebral arterial system, the relative lack of image information, individual differences in the anatomy of the cerebral veins and venous sinuses, and several unique structures often cause neurologists and radiologists to miss or over-diagnose. This increases the difficulty of the clinical diagnosis and treatment of cerebral venous system diseases. This review focuses on applying different imaging methods to the normal anatomical morphology of the cerebral venous system and special structural and physiological parameters, such as hemodynamics, in people without cranial sinus and jugular vein diseases and explores its clinical significance. We hope this study will reinforce the importance of studying the cerebral venous system anatomy and imaging data and will help diagnose and treat systemic diseases.
Collapse
Affiliation(s)
- Lu Liu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Emergency, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Kaiyuan Zhang
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jiangang Duan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chen Zhou
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- *Correspondence: Chen Zhou,
| | - Xunming Ji
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
- Xunming Ji,
| |
Collapse
|
21
|
Lu Y, Shen R, Lin W, Zhou X, Hu J, Zhang Q. Association between blood pressure variability and clinical outcomes after successful recanalization in patients with large vessel occlusion stroke after mechanical thrombectomy. Front Neurol 2022; 13:967395. [PMID: 36034274 PMCID: PMC9399916 DOI: 10.3389/fneur.2022.967395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Nearly half of patients who undergo mechanical thrombectomy (MT) do not experience a favorable outcome. The association between blood pressure fluctuation and clinical outcomes after successful MT is controversial. We evaluated the influence of blood pressure variability (BPV) on the clinical outcomes of stroke patients with large vessel occlusion (LVO) who underwent successful recanalization after MT. Methods Patients with anterior circulation LVO stroke who underwent successful emergency MT (modified Thrombolysis in Cerebral Infarction, mTICI ≥ 2b) at the Shanghai Tenth People's Hospital of Tongji University from 2017 to 2021 were enrolled. Multivariate logistic models were used to investigate the association between BPV (mean arterial pressure [MAP] assessed using the standard deviation [SD]) and clinical outcomes. The primary outcome was 90-day modified Rankin Scale scores (mRS), and the secondary outcomes were 30-day mortality and symptomatic intracranial hemorrhage (sICH). Results A total of 458 patients (56.8% men), with a mean age of 72 ± 1 years, were enrolled. Among them, 207 (45.2%) patients had unfavorable functional outcomes (mRS score 3–6) at 90 days, 61 (13.3%) patients died within 30 days, and 20 (4.4%) patients had sICH. In a fully adjusted model, BPV was associated with a higher risk of a 90-day mRS score of 3–6 (P = 0.04), 30-day mortality (P < 0.01), and sICH (P < 0.01). A significant interaction between MAP SD and rescue futile recanalization treatment was observed (P < 0.01). Conclusions Among patients with LVO stroke who underwent successful recanalization, higher BPV was associated with worse functional outcomes, especially in those who underwent rescue treatment.
Collapse
Affiliation(s)
- You Lu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Shen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjian Lin
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyu Zhou
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Hu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Jian Hu
| | - Quanbin Zhang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Quanbin Zhang
| |
Collapse
|
22
|
Use of real-time phase-contrast MRI to quantify the effect of spontaneous breathing on the cerebral arteries. Neuroimage 2022; 258:119361. [PMID: 35688317 DOI: 10.1016/j.neuroimage.2022.119361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Quantification of the effect of breathing on the cerebral circulation provides a better mechanistic understanding of the brain's circulatory system and is important in the early diagnosis of certain neurological diseases. However, conventional cine phase-contrast (CINE-PC) MRI cannot be used in this field of study because it only provides an average cardiac cycle flow curve reconstructed from multiple cardiac cycles. Unlike CINE-PC, phase-contrast echo-planar imaging (EPI-PC) can be used to quantify the blood flow rate in "real-time" and thus assess the effect of breathing on blood flow. Here, we first used post-processing software (developed in-house) to determine the feasibility of quantifying cerebral arterial blood flow with EPI-PC (relative to CINE-PC) in 16 participants. In a second step, we developed a new time-domain method for quantifying the intensity and the phase shift of the effects of breathing on the mean flow rate, stroke volume, cardiac period and amplitude of cerebral blood flow (in 10 participants). Our results showed that EPI-PC can quantify cerebral arterial blood flow rate with much the same degree of accuracy as CINE-PC but is more strongly influenced by differences in magnetic susceptibility. We found that breathing affected the mean flow rate, stroke volume and cardiac period of cerebral arterial blood flow.
Collapse
|
23
|
Cazzaniga A, Fedele G, Castiglioni S, Maier JA. The Presence of Blood-Brain Barrier Modulates the Response to Magnesium Salts in Human Brain Organoids. Int J Mol Sci 2022; 23:ijms23095133. [PMID: 35563524 PMCID: PMC9104490 DOI: 10.3390/ijms23095133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/22/2022] Open
Abstract
Magnesium (Mg) is fundamental in the brain, where it regulates metabolism and neurotransmission and protects against neuroinflammation. To obtain insights into the molecular basis of Mg action in the brain, we investigated the effects of Mg in human brain organoids, a revolutionary 3D model to study neurobiology and neuropathology. In particular, brain organoids derived from human induced pluripotent stem cells were cultured in the presence or in the absence of an in vitro-generated blood–brain barrier (BBB), and then exposed to 1 or 5 mM concentrations of inorganic and organic Mg salts (Mg sulphate (MgSO4); Mg pidolate (MgPid)). We evaluated the modulation of NMDA and GABAergic receptors, and BDNF. Our data suggest that the presence of the BBB is essential for Mg to exert its effects on brain organoids, and that 5 mM of MgPid is more effective than MgSO4 in increasing the levels of GABA receptors and BDNF, and decreasing those of NMDA receptor. These results might illuminate novel pathways explaining the neuroprotective role of Mg.
Collapse
Affiliation(s)
- Alessandra Cazzaniga
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy; (G.F.); (S.C.); (J.A.M.)
- Correspondence:
| | - Giorgia Fedele
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy; (G.F.); (S.C.); (J.A.M.)
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy; (G.F.); (S.C.); (J.A.M.)
| | - Jeanette A. Maier
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy; (G.F.); (S.C.); (J.A.M.)
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Università di Milano, 20133 Milano, Italy
| |
Collapse
|
24
|
Motallebnejad P, Rajesh VV, Azarin SM. Evaluating the Role of IL-1β in Transmigration of Triple Negative Breast Cancer Cells Across the Brain Endothelium. Cell Mol Bioeng 2022; 15:99-114. [PMID: 35096187 PMCID: PMC8761198 DOI: 10.1007/s12195-021-00710-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION In vivo, breast cancer cells spend on average 3-7 days adhered to the endothelial cells inside the vascular lumen before entering the brain. IL-1β is one of the highly upregulated molecules in brain-seeking triple negative breast cancer (TNBC) cells. In this study, the effect of IL-1β on the blood-brain barrier (BBB) and astrocytes and its role in transmigration of TNBC cells were evaluated. METHODS The effect of IL-1β on transendothelial electrical resistance, gene and protein expression of human induced pluripotent stem cell-derived brain-specific microvascular endothelial-like cells (iBMECs) was studied. Transport of IL-1β across the iBMEC layer was investigated and the effect of IL-1β treatment of astrocytes on their cytokine and chemokine secretome was evaluated with a cytokine membrane array. Using BBB-on-a-chip devices, transmigration of MDA-MB-231 cells and their brain-seeking variant (231BR) across the iBMECs was studied, and the effect of an IL-1β neutralizing antibody on TNBC cell transmigration was investigated. RESULTS We showed that IL-1β reduces BBB integrity and induces endothelial-to-mesenchymal transition in iBMECs. IL-1β crosses the iBMEC layer and induces secretion of multiple chemokines by astrocytes, which can enhance TNBC cell transmigration across the BBB. Transmigration assays in a BBB-on-a-chip device showed that 231BR cells have a higher rate of transmigration across the iBMECs compared to MDA-MB-231 cells, and IL-1β pretreatment of BBB-on-a-chip devices increases the number of transmigrated MDA-MB-231 cells. Finally, we demonstrated that neutralizing IL-1β reduces the rate of 231BR cell transmigration. CONCLUSION IL-1β plays a significant role in transmigration of brain-seeking TNBC cells across the BBB. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12195-021-00710-y.
Collapse
Affiliation(s)
- Pedram Motallebnejad
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
| | - Vinayak V. Rajesh
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
| | - Samira M. Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
25
|
Zaranek M, Arshad R, Zheng K, Harris CA. Response of Astrocytes to Blood Exposure due to Shunt Insertion in vitro. AIChE J 2021; 67. [PMID: 35497642 DOI: 10.1002/aic.17485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The breakdown of the ventricular zone (VZ) with the presence of blood in cerebrospinal fluid (CSF) has been shown to increase shunt catheter obstruction in the treatment of hydrocephalus, but the mechanisms by which this occurs are generally unknown. Using a custom-built incubation chamber, we immunofluorescently assayed cell attachment and morphology on shunt catheters with and without blood after 14 days. Samples exposed to blood showed significantly increased cell attachment (average total cell count 392.0±317.1 versus control of 94.7±44.5, P<0.0001). Analysis of the glial fibrillary acidic protein (GFAP) expression showed similar trends (854.4±450.7 versus control of 174.3±116.5, P<0.0001). An in vitro model was developed to represent the exposure of astrocytes to blood following an increase in BBB permeability. Exposure of astrocytes to blood increases the number of cells and their spread on the shunt.
Collapse
Affiliation(s)
- Mira Zaranek
- Wayne State University Dept. of Chemical Engineering and Materials Science, 6135 Woodward Avenue, Detroit, MI 48202
| | - Rooshan Arshad
- Wayne State University Dept. of Chemical Engineering and Materials Science, 6135 Woodward Avenue, Detroit, MI 48202
| | - Kevin Zheng
- Wayne State University Dept. of Chemical Engineering and Materials Science, 6135 Woodward Avenue, Detroit, MI 48202
| | - Carolyn A Harris
- Wayne State University Dept. of Chemical Engineering and Materials Science, 6135 Woodward Avenue, Detroit, MI 48202
| |
Collapse
|
26
|
Zahid AM, Martin B, Collins S, Oshinski JN, Ethier CR. Quantification of arterial, venous, and cerebrospinal fluid flow dynamics by magnetic resonance imaging under simulated micro-gravity conditions: a prospective cohort study. Fluids Barriers CNS 2021; 18:8. [PMID: 33579319 PMCID: PMC7879666 DOI: 10.1186/s12987-021-00238-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Astronauts undergoing long-duration spaceflight are exposed to numerous health risks, including Spaceflight-Associated Neuro-Ocular Syndrome (SANS), a spectrum of ophthalmic changes that can result in permanent loss of visual acuity. The etiology of SANS is not well understood but is thought to involve changes in cerebrovascular flow dynamics in response to microgravity. There is a paucity of knowledge in this area; in particular, cerebrospinal fluid (CSF) flow dynamics have not been well characterized under microgravity conditions. Our study was designed to determine the effect of simulated microgravity (head-down tilt [HDT]) on cerebrovascular flow dynamics. We hypothesized that microgravity conditions simulated by acute HDT would result in increases in CSF pulsatile flow. METHODS In a prospective cohort study, we measured flow in major cerebral arteries, veins, and CSF spaces in fifteen healthy volunteers using phase contrast magnetic resonance (PCMR) before and during 15° HDT. RESULTS We found a decrease in all CSF flow variables [systolic peak flow (p = 0.009), and peak-to-peak pulse amplitude (p = 0.001)]. Cerebral arterial average flow (p = 0.04), systolic peak flow (p = 0.04), and peak-to-peak pulse amplitude (p = 0.02) all also significantly decreased. We additionally found a decrease in average cerebral arterial flow (p = 0.040). Finally, a significant increase in cerebral venous cross-sectional area under HDT (p = 0.005) was also observed. CONCLUSIONS These results collectively demonstrate that acute application of -15° HDT caused a reduction in CSF flow variables (systolic peak flow and peak-to-peak pulse amplitude) which, when coupled with a decrease in average cerebral arterial flow, systolic peak flow, and peak-to-peak pulse amplitude, is consistent with a decrease in cardiac-related pulsatile CSF flow. These results suggest that decreases in cerebral arterial inflow were the principal drivers of decreases in CSF pulsatile flow.
Collapse
Affiliation(s)
- Arslan M Zahid
- Emory University School of Medicine, Atlanta, GA, USA. .,University of Chicago, 900 S Clark Street, Apt 1001, Chicago, IL, 60605, USA.
| | - Bryn Martin
- Department of Biological Engineering, University of Idaho, Moscow, Idaho, USA.,Alycone Therapeutics, Lowell, MA, USA
| | - Stephanie Collins
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - John N Oshinski
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.,Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - C Ross Ethier
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
27
|
Bateman AR, Bateman GA, Barber T. The relationship between cerebral blood flow and venous sinus pressure: can hyperemia induce idiopathic intracranial hypertension? Fluids Barriers CNS 2021; 18:5. [PMID: 33541388 PMCID: PMC7860203 DOI: 10.1186/s12987-021-00239-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/16/2021] [Indexed: 01/06/2023] Open
Abstract
Background It has been shown that idiopathic intracranial hypertension (IIH) in children is associated with cerebral hyperemia, which induces an increase in cerebral venous pressure. The current literature suggests venous pressure scales with blood flow in a linear fashion, however, a linear relationship would not raise the pressure high enough to induce IIH. There is, however, some evidence to suggest that this relationship could be quadratic in nature. The purpose of this paper is to characterize the relationship between cerebral blood flow and the pressure drop across the cerebral venous system. Methods 10 CT venogram data sets were collected for this study, with 5 useable geometries created. Computational fluid dynamics (CFD) models were generated using these geometries, with 10 simulations conducted per patient. The flow rates tested ranged from 200 mL/min to 2000 mL/min. 3D pressure and velocity streamline distributions were created and analyzed for each CFD model, with pressure drops across the cerebral venous system determined. The effective and hydraulic diameters were determined at the superior sagittal sinus, transverse sinus and both proximal and distal sigmoid sinuses. Results A quadratic relationship between blood flow and sinus pressure was found, with correlations of 0.99 or above in all five patients. The presence of vortical blood flow was found to explain this trend, with fluid curl and pressure drop correlations being above 0.97. This suggests that the presence of high blood flow should be considered in the diagnostic workup of IIH. Conclusions The cerebral venous sinus blood flow and pressure response relationship are quadratic in nature, with the major cause of this being the degree of rotation induced in the flow. The elevated blood flow found in children with IIH can explain the increased ICP that is found, secondary to the increase in venous pressure that develops.
Collapse
Affiliation(s)
- Alexander Robert Bateman
- School of Mechanical Engineering, University of New South Wales, Library Rd, Kensington, NSW, 2052, Australia.
| | - Grant Alexander Bateman
- Department of Medical Imaging, John Hunter Hospital, Newcastle, NSW, Australia.,Newcastle University Faculty of Health, Callaghan Campus, Newcastle, NSW, Australia
| | - Tracie Barber
- School of Mechanical Engineering, University of New South Wales, Library Rd, Kensington, NSW, 2052, Australia
| |
Collapse
|