1
|
Garcia-Bonilla M, Hariharan P, Gluski J, Ruiz-Cardozo MA, Otun A, Morales DM, Marupudi NI, Whitehead WE, Jea A, Rocque BG, McAllister JP, Limbrick DD, Harris CA. Ventricular catheter tissue obstruction and shunt malfunction in 9 hydrocephalus etiologies. J Neurosurg Pediatr 2024; 34:84-93. [PMID: 38608296 PMCID: PMC11656718 DOI: 10.3171/2024.2.peds23356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/07/2024] [Indexed: 04/14/2024]
Abstract
OBJECTIVE Hydrocephalus is a neurological disorder with an incidence of 80-125 per 100,000 births in the United States. The most common treatment, ventricular shunting, has a failure rate of up to 85% within 10 years of placement. The authors aimed to analyze the association between ventricular catheter (VC) tissue obstructions and shunt malfunction for each hydrocephalus etiology. METHODS Patient information was collected from 5 hospitals and entered into a REDCap (Research Electronic Data Capture) database by hydrocephalus etiology. The hardware samples were fixed, and each VC tip drainage hole was classified by tissue obstruction after macroscopic analysis. Shunt malfunction data, including shunt revision rate, time to failure, and age at surgery, were correlated with the degree of tissue obstruction in VCs for each etiology. RESULTS Posthemorrhagic hydrocephalus was the most common etiology (48.9% of total cases). Proximal catheter obstruction was the most frequent cause of hardware removal (90.4%). Myelomeningocele (44% ± 29%), other congenital etiologies (48% ± 40%), hydrocephalus with brain tumors (45% ± 35%), and posthemorrhagic hydrocephalus (41% ± 35%) showed tissue aggregates in more than 40% of the VC holes. A total of 76.8% of samples removed because of symptoms of obstruction showed cellular or tissue aggregates. No conclusive etiological associations were detected when correlating the percentage of holes with tissue for each VC and age at surgery, shunt revision rates, or time between shunt implantation and removal. CONCLUSIONS The proximal VC obstruction was accompanied by tissue aggregates in 76.8% of cases. However, the presence of tissue in the VC did not seem to be associated with hydrocephalus etiology.
Collapse
Affiliation(s)
- Maria Garcia-Bonilla
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia
| | - Prashant Hariharan
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
| | - Jacob Gluski
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan
| | - Miguel A. Ruiz-Cardozo
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Ayodamola Otun
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Diego M. Morales
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Neena I. Marupudi
- Department of Neurosurgery, Children’s Hospital of Michigan, Detroit, Michigan
| | | | - Andrew Jea
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Brandon G. Rocque
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - James P. McAllister
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - David D. Limbrick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia
| | - Carolyn A. Harris
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan
| |
Collapse
|
2
|
Das N, Sharma A, Mann M, Gordillo A, Desai A, Serletis D, Moosa AN, Rammo R, Bingaman W. Postoperative shunt failure following hemispherectomy in pediatric patients with pre-existing hydrocephalus. Childs Nerv Syst 2024; 40:1507-1514. [PMID: 38273143 PMCID: PMC11026181 DOI: 10.1007/s00381-024-06295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
OBJECTIVE The risk of hydrocephalus following hemispherectomy for drug resistant epilepsy (DRE) remains high. Patients with pre-existing hydrocephalus pose a postoperative challenge, as maintaining existing shunt patency is necessary but lacks a clearly defined strategy. This study examines the incidence and predictors of shunt failure in pediatric hemispherectomy patients with pre-existing ventricular shunts. METHODS We performed a retrospective chart review at our center to identify pediatric patients diagnosed with DRE who were treated with ventricular shunt prior to their first hemispherectomy surgery. Demographic and perioperative data were obtained including shunt history, hydrocephalus etiology, epilepsy duration, surgical technique, and postoperative outcomes. Univariate analysis was performed using Fisher's exact test and Pearson correlation, with Bonferroni correction to a = 0.00625 and a = 0.01, respectively. RESULTS Five of nineteen (26.3%) patients identified with ventriculoperitoneal shunting prior to hemispherectomy experienced postoperative shunt malfunction. All 5 of these patients underwent at least 1 shunt revision prior to hemispherectomy, with a significant association between pre- and post-hemispherectomy shunt revisions. There was no significant association between post-hemispherectomy shunt failure and valve type, intraoperative shunt alteration, postoperative external ventricular drain placement, hemispherectomy revision, lateralization of shunt relative to resection, postoperative complications, or postoperative aseptic meningitis. There was no significant correlation between number of post-hemispherectomy shunt revisions and age at shunt placement, age at hemispherectomy, epilepsy duration, or shunt duration prior to hemispherectomy. CONCLUSIONS Earlier shunt revision surgery may portend a subsequent need for shunt revision following hemispherectomy. These findings may guide neurosurgeons in counseling patients with pre-existing ventricular shunts prior to hemispherectomy surgery.
Collapse
Affiliation(s)
- Nikita Das
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Akshay Sharma
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland, OH, USA.
- Department of Neurological Surgery, Cleveland Clinic, Cleveland, OH, USA.
| | - Michael Mann
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alan Gordillo
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ansh Desai
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Demitre Serletis
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
- Department of Neurological Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Ahsan N Moosa
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
| | - Richard Rammo
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
- Department of Neurological Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - William Bingaman
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
- Department of Neurological Surgery, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
3
|
de Macêdo Filho LJM, Mansouri A, Otamendi-Lopez A, Sarigul B, Diógenes AVG, Carate CK, Torquato GCP, de Andrade PP, Rizk E. Congenital Pediatric Hydrocephalus in the Brazilian Public Health System: The Reality of a Middle-Income Country in the Past 13 Years. World Neurosurg 2024; 181:e801-e808. [PMID: 37923015 DOI: 10.1016/j.wneu.2023.10.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Congenital hydrocephalus is a significant challenge in neurosurgery, particularly in resource-limited settings. This study focuses on the congenital hydrocephalus in Brazil, a developing country, over the past 13 years. METHODS This study is a retrospective analysis of congenital hydrocephalus treatment and outcomes using data records on DATASUS from January 2008 to July 2021. Demographics, cost of hospitalizations, amount paid to professionals, mortality, and mean length of stay (LOS) were analyzed. Statistical analysis was conducted to determine significant associations between these indicators and pediatric hydrocephalus. RESULTS DATASUS recorded 8493 cases of congenital hydrocephalus in the studied period, with a prevalence of 24.28 per 100,000 newborns, mostly linked to spina bifida. Congenital hydrocephalus caused 60.83 ± 13.98 neonatal deaths per year, with the highest rate among 32-36 weeks gestational age. Acquired hydrocephalus led to 1063 infant deaths, whereas congenital hydrocephalus resulted in 3122 deaths, with no clear trend by the years. White infants had the highest mortality. A total of 33,184 shunt procedures were performed, with an average cost of $715.37 per procedure. The mortality model showed no significant effects of cost or professionals' salary, but a significant effect of LOS on hospitalization costs was observed. CONCLUSIONS Pediatric hydrocephalus in Brazil's public health system is a significant burden. Congenital hydrocephalus prevalence and mortality emphasize the need for early diagnosis and treatment. Early diagnosis, prenatal care, and adequate resources are crucial. This study offers insights into congenital hydrocephalus, highlighting challenges and future directions for improved care.
Collapse
Affiliation(s)
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | | | - Buse Sarigul
- Department of Neurosurgery, Tuzla Public Hospital, Istanbul, Turkey
| | | | - Caio K Carate
- Health Science Centre, University of Fortaleza, Fortaleza, Ceará, Brazil
| | | | | | - Elias Rizk
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
4
|
Gopalakrishnan P, Faryami A, Harris CA. A novel, benchtop model for quantitative analysis of resistance in ventricular catheters. PLoS One 2023; 18:e0294811. [PMID: 38032895 PMCID: PMC10688624 DOI: 10.1371/journal.pone.0294811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
INTRODUCTION The mechanisms of catheter obstruction are still poorly understood, but the literature suggests that resistance to fluid flow plays a significant role. We developed and assessed a gravity-driven device that measures flow through ventricular catheters. We used this device to quantitatively analyze the resistances of unused ventricular catheters used in the treatment of hydrocephalus; failed hydrocephalus catheters from our catheter biorepository were also evaluated quantitatively. METHODS Catheters of three manufacturing companies were inserted into the benchtop model, which records time, flow rate, and pressure data using sensors. The relative resistances of catheters across six design models were evaluated. Experiments were performed to evaluate changes in the relative resistance of a catheter when the catheter's holes were progressively closed. The relative resistance of explanted catheters from our catheter biorepository was also measured. RESULTS Experimental results showed significant differences (P<0.05) between the relative resistances of different catheter models just after being removed from their packaging. A non-linear trend of increasing resistance was observed in experiments on catheters with artificially obstructed holes. Data from five individual benchtop models were compared, and the differences in measured data between the models were found to be negligible. A significant increase (P < 0.05) in relative resistance was observed in explanted catheters. CONCLUSION The current study sought to propose a novel in-vitro model and use it to examine data on differences in relative resistance among catheter models. From these experiments, we can rapidly correlate clinical patient cohorts to identify mechanisms of luminal shunt obstruction.
Collapse
Affiliation(s)
- Pranav Gopalakrishnan
- Department of Medical Education, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Ahmad Faryami
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States of America
| | - Carolyn A. Harris
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, United States of America
| |
Collapse
|
5
|
Hariharan P, Gluski J, Sondheimer J, Petroj A, Jea A, Whitehead WE, Del Bigio MR, Marupudi NI, McAllister JP, Limbrick DD, Rocque BG, Harris CA. Exploration of clinical predictors of the degree of ventricular catheter obstruction: a multicenter retrospective study. J Neurosurg Pediatr 2023; 32:447-454. [PMID: 37503917 PMCID: PMC10416264 DOI: 10.3171/2023.5.peds22552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/30/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVE The aim of this study was to explore how clinical factors, including the number of lifetime revision surgeries and the duration of implantation, affect the degree of obstruction and failure rates of ventricular catheters (VCs) used to manage hydrocephalus. METHODS A total of 343 VCs and their associated clinical data, including patient demographics, medical history, and surgical details, were collected from 5 centers and used for this analysis. Each VC was classified by the degree of obstruction after macroscopic analysis. Univariate, multivariate, and binned analyses were conducted to test for associations between clinical data and degree of VC obstruction. RESULTS VCs from patients with 0 to 2 lifetime revisions had a larger proportion of VC holes obstructed than VCs from patients with 10 or more revisions (p = 0.0484). VCs implanted for less than 3 months had fewer obstructed holes with protruding tissue aggregates than VCs implanted for 13 months or longer (p = 0.0225). Neither duration of implantation nor the number of lifetime revisions was a significant predictor of the degree of VC obstruction in the regression models. In the multinomial regression model, contact of the VCs with the ventricular wall robustly predicted the overall obstruction status of a VC (p = 0.005). In the mixed-effects model, the age of the patient at their first surgery emerged as a significant predictor of obstruction by protruding tissue aggregates (p = 0.002). VCs implanted through the parietal entry site were associated with more holes with nonobstructive growth and fewer empty holes than VCs implanted via other approaches (p = 0.001). CONCLUSIONS The number of lifetime revisions and duration of implantation are correlated with the degree of VC obstruction but do not predict it. Contact of the VC with the ventricular wall and the age of the patient at their first surgery are predictors of the degree of VC obstruction, while the entry site of the VC correlates with it.
Collapse
Affiliation(s)
| | - Jacob Gluski
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| | - Jeffrey Sondheimer
- Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan
| | - Alexandra Petroj
- Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan
| | - Andrew Jea
- Department of Neurosurgery, The University of Oklahoma College of Medicine and Oklahoma Children’s Hospital, Oklahoma City, Oklahoma
| | - William E. Whitehead
- Department of Neurosurgery, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Marc R. Del Bigio
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Neena I. Marupudi
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
- Department of Neurosurgery, Children’s Hospital of Michigan, Detroit, Michigan
| | - James P. McAllister
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri; and
| | - David D. Limbrick
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri; and
| | - Brandon G. Rocque
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Carolyn A. Harris
- Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan
| |
Collapse
|
6
|
Rashid R, Copelli S, Silverstein JC, Becich MJ. REDCap and the National Mesothelioma Virtual Bank-a scalable and sustainable model for rare disease biorepositories. J Am Med Inform Assoc 2023; 30:1634-1644. [PMID: 37487555 PMCID: PMC10531116 DOI: 10.1093/jamia/ocad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/16/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
OBJECTIVE Rare disease research requires data sharing networks to power translational studies. We describe novel use of Research Electronic Data Capture (REDCap), a web application for managing clinical data, by the National Mesothelioma Virtual Bank, a federated biospecimen, and data sharing network. MATERIALS AND METHODS National Mesothelioma Virtual Bank (NMVB) uses REDCap to integrate honest broker activities, enabling biospecimen and associated clinical data provisioning to investigators. A Web Portal Query tool was developed to source and visualize REDCap data in interactive, faceted search, enabling cohort discovery by public users. An AWS Lambda function behind an API calculates the counts visually presented, while protecting record level data. The user-friendly interface, quick responsiveness, automatic generation from REDCap, and flexibility to new data, was engineered to sustain the NMVB research community. RESULTS NMVB implementations enabled a network of 8 research institutions with over 2000 mesothelioma cases, including clinical annotations and biospecimens, and public users' cohort discovery and summary statistics. NMVB usage and impact is demonstrated by high website visits (>150 unique queries per month), resource use requests (>50 letter of interests), and citations (>900) to papers published using NMVB resources. DISCUSSION NMVB's REDCap implementation and query tool is a framework for implementing federated and integrated rare disease biobanks and registries. Advantages of this framework include being low-cost, modular, scalable, and efficient. Future advances to NVMB's implementations will include incorporation of -omics data and development of downstream analysis tools to advance mesothelioma and rare disease research. CONCLUSION NVMB presents a framework for integrating biobanks and patient registries to enable translational research for rare diseases.
Collapse
Affiliation(s)
- Rumana Rashid
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Medical Scientist Training Program, University of Pittsburgh-Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Susan Copelli
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michael J Becich
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Khodadadei F, Arshad R, Morales DM, Gluski J, Marupudi NI, McAllister JP, Limbrick DD, Harris CA. The effect of A1 and A2 reactive astrocyte expression on hydrocephalus shunt failure. Fluids Barriers CNS 2022; 19:78. [PMID: 36171630 PMCID: PMC9516791 DOI: 10.1186/s12987-022-00367-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background The composition of tissue obstructing neuroprosthetic devices is largely composed of inflammatory cells with a significant astrocyte component. In a first-of-its-kind study, we profile the astrocyte phenotypes present on hydrocephalus shunts. Methods qPCR and RNA in-situ hybridization were used to quantify pro-inflammatory (A1) and anti-inflammatory (A2) reactive astrocyte phenotypes by analyzing C3 and EMP1 genes, respectively. Additionally, CSF cytokine levels were quantified using ELISA. In an in vitro model of astrocyte growth on shunts, different cytokines were used to prevent the activation of resting astrocytes into the A1 and A2 phenotypes. Obstructed and non-obstructed shunts were characterized based on the degree of actual tissue blockage on the shunt surface instead of clinical diagnosis. Results The results showed a heterogeneous population of A1 and A2 reactive astrocytes on the shunts with obstructed shunts having a significantly higher proportion of A2 astrocytes compared to non-obstructed shunts. In addition, the pro-A2 cytokine IL-6 inducing proliferation of astrocytes was found at higher concentrations among CSF from obstructed samples. Consequently, in the in vitro model of astrocyte growth on shunts, cytokine neutralizing antibodies were used to prevent activation of resting astrocytes into the A1 and A2 phenotypes which resulted in a significant reduction in both A1 and A2 growth. Conclusions Therefore, targeting cytokines involved with astrocyte A1 and A2 activation is a promising intervention aimed to prevent shunt obstruction. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00367-3.
Collapse
Affiliation(s)
- Fatemeh Khodadadei
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA.
| | - Rooshan Arshad
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Diego M Morales
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacob Gluski
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Neena I Marupudi
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - James P McAllister
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Carolyn A Harris
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA. .,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
8
|
Zaranek M, Arshad R, Zheng K, Harris CA. Response of Astrocytes to Blood Exposure due to Shunt Insertion in vitro. AIChE J 2021; 67. [PMID: 35497642 DOI: 10.1002/aic.17485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The breakdown of the ventricular zone (VZ) with the presence of blood in cerebrospinal fluid (CSF) has been shown to increase shunt catheter obstruction in the treatment of hydrocephalus, but the mechanisms by which this occurs are generally unknown. Using a custom-built incubation chamber, we immunofluorescently assayed cell attachment and morphology on shunt catheters with and without blood after 14 days. Samples exposed to blood showed significantly increased cell attachment (average total cell count 392.0±317.1 versus control of 94.7±44.5, P<0.0001). Analysis of the glial fibrillary acidic protein (GFAP) expression showed similar trends (854.4±450.7 versus control of 174.3±116.5, P<0.0001). An in vitro model was developed to represent the exposure of astrocytes to blood following an increase in BBB permeability. Exposure of astrocytes to blood increases the number of cells and their spread on the shunt.
Collapse
Affiliation(s)
- Mira Zaranek
- Wayne State University Dept. of Chemical Engineering and Materials Science, 6135 Woodward Avenue, Detroit, MI 48202
| | - Rooshan Arshad
- Wayne State University Dept. of Chemical Engineering and Materials Science, 6135 Woodward Avenue, Detroit, MI 48202
| | - Kevin Zheng
- Wayne State University Dept. of Chemical Engineering and Materials Science, 6135 Woodward Avenue, Detroit, MI 48202
| | - Carolyn A Harris
- Wayne State University Dept. of Chemical Engineering and Materials Science, 6135 Woodward Avenue, Detroit, MI 48202
| |
Collapse
|
9
|
Hariharan P, Sondheimer J, Petroj A, Gluski J, Jea A, Whitehead WE, Sood S, Ham SD, Rocque BG, Marupudi NI, McAllister JP, Limbrick D, Del Bigio MR, Harris CA. A multicenter retrospective study of heterogeneous tissue aggregates obstructing ventricular catheters explanted from patients with hydrocephalus. Fluids Barriers CNS 2021; 18:33. [PMID: 34289858 PMCID: PMC8293524 DOI: 10.1186/s12987-021-00262-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Implantation of ventricular catheters (VCs) to drain cerebrospinal fluid (CSF) is a standard approach to treat hydrocephalus. VCs fail frequently due to tissue obstructing the lumen via the drainage holes. Mechanisms driving obstruction are poorly understood. This study aimed to characterize the histological features of VC obstructions and identify links to clinical factors. METHODS 343 VCs with relevant clinical data were collected from five centers. Each hole on the VCs was classified by degree of tissue obstruction after macroscopic analysis. A subgroup of 54 samples was analyzed using immunofluorescent labelling, histology and immunohistochemistry. RESULTS 61.5% of the 343 VCs analyzed had tissue aggregates occluding at least one hole (n = 211) however the vast majority of the holes (70%) showed no tissue aggregates. Mean age at which patients with occluded VCs had their first surgeries (3.25 yrs) was lower than in patients with non-occluded VCs (5.29 yrs, p < 0.02). Mean length of time of implantation of occluded VCs, 33.22 months was greater than for non-occluded VCs, 23.8 months (p = 0.02). Patients with myelomeningocele had a greater probability of having an occluded VC (p = 0.0426). VCs with occlusions had greater numbers of macrophages and astrocytes in comparison to non-occluded VCs (p < 0.01). Microglia comprised only 2-6% of the VC-obstructing tissue aggregates. Histologic analysis showed choroid plexus occlusion in 24%, vascularized glial tissue occlusion in 24%, prevalent lymphocytic inflammation in 29%, and foreign body giant cell reactions in 5% and no ependyma. CONCLUSION Our data show that age of the first surgery and length of time a VC is implanted are factors that influence the degree of VC obstruction. The tissue aggregates obstructing VCs are composed predominantly of astrocytes and macrophages; microglia have a relatively small presence.
Collapse
Affiliation(s)
- Prashant Hariharan
- Wayne State University Dept. of Biomedical Engineering, 6135 Woodward Avenue, Detroit, MI, 48202, USA
| | - Jeffrey Sondheimer
- Wayne State University Dept. of Chemical Engineering and Materials Science, 6135 Woodward Avenue, Detroit, MI, 48202, USA
| | - Alexandra Petroj
- Wayne State University Dept. of Chemical Engineering and Materials Science, 6135 Woodward Avenue, Detroit, MI, 48202, USA
| | - Jacob Gluski
- Dept. of Neurosurgery, Wayne State University School of Medicine, 540 E. Canfield Avenue, Detroit, MI, 48201, USA
| | - Andrew Jea
- Riley Hospital for Children at IU Health, 705 Riley Hospital Drive, Indianapolis, IN, 46202, USA
| | | | - Sandeep Sood
- Departments of Neurosurgery and Pediatric Neurosurgery, Wayne State University School of Medicine and Children's Hospital of Michigan, 3901 Beaubien Boulevard, 2nd Floor Carl's Building, Detroit, MI, 48201, USA
| | - Steven D Ham
- Departments of Neurosurgery and Pediatric Neurosurgery, Wayne State University School of Medicine and Children's Hospital of Michigan, 3901 Beaubien Boulevard, 2nd Floor Carl's Building, Detroit, MI, 48201, USA
| | - Brandon G Rocque
- Department of Neurosurgery, University of Alabama At Birmingham, Birmingham, AL, USA
| | - Neena I Marupudi
- Children's Hospital of Michigan Dept. of Neurosurgery, 3901 Beaubien Boulevard, 2nd Floor Carl's Building, Detroit, MI, 48201, USA
| | - James P McAllister
- School of Medicine Dept. of Neurological Surgery, Washington University, 425 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - David Limbrick
- School of Medicine Dept. of Neurological Surgery, Washington University, 660 S. Euclid Avenue, St. Louis, MO, 6311, USA
| | - Marc R Del Bigio
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Carolyn A Harris
- Wayne State University Dept. of Chemical Engineering and Materials Science, 6135 Woodward Avenue, Detroit, MI, 48202, USA.
| |
Collapse
|
10
|
Keep RF, Jones HC, Drewes LR. Brain Barriers and brain fluids research in 2020 and the fluids and barriers of the CNS thematic series on advances in in vitro modeling of the blood-brain barrier and neurovascular unit. Fluids Barriers CNS 2021; 18:24. [PMID: 34020685 PMCID: PMC8138848 DOI: 10.1186/s12987-021-00258-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This editorial discusses advances in brain barrier and brain fluid research in 2020. Topics include: the cerebral endothelium and the neurovascular unit; the choroid plexus; the meninges; cerebrospinal fluid and the glymphatic system; disease states impacting the brain barriers and brain fluids; drug delivery to the brain. This editorial also highlights the recently completed Fluids Barriers CNS thematic series entitled, Advances in in vitro modeling of the bloodbrain barrier and neurovascular unit. Such in vitro modeling is progressing rapidly.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48105, USA. .,Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, R5018 BSRB, MI, 48109-2200, USA.
| | - Hazel C Jones
- Gagle Brook House, Chesterton, Bicester, OX26 1UF, UK
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|