1
|
Jeong I, Andreassen SN, Hoang L, Poulain M, Seo Y, Park HC, Fürthauer M, MacAulay N, Jurisch-Yaksi N. The evolutionarily conserved choroid plexus contributes to the homeostasis of brain ventricles in zebrafish. Cell Rep 2024; 43:114331. [PMID: 38843394 DOI: 10.1016/j.celrep.2024.114331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/24/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
The choroid plexus (ChP) produces cerebrospinal fluid (CSF). It also contributes to brain development and serves as the CSF-blood barrier. Prior studies have identified transporters on the epithelial cells that transport water and ions from the blood vasculature to the ventricles and tight junctions involved in the CSF-blood barrier. Yet, how the ChP epithelial cells control brain physiology remains unresolved. We use zebrafish to provide insights into the physiological roles of the ChP. Upon histological and transcriptomic analyses, we identify that the zebrafish ChP is conserved with mammals and expresses transporters involved in CSF secretion. Next, we show that the ChP epithelial cells secrete proteins into CSF. By ablating the ChP epithelial cells, we identify a reduction of the ventricular sizes without alterations of the CSF-blood barrier. Altogether, our findings reveal that the zebrafish ChP is conserved and contributes to the size and homeostasis of the brain ventricles.
Collapse
Affiliation(s)
- Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgsons Gate 1, 7491 Trondheim, Norway
| | - Søren N Andreassen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Linh Hoang
- Cellular and Molecular Imaging Core Facility (CMIC), Norwegian University of Science and Technology, Erling Skjalgsons Gate 1, 7491 Trondheim, Norway
| | - Morgane Poulain
- Université Côte d'Azur, CNRS, Inserm, iBV, 28 Avenue Valrose, 06108 Nice cedex 2, France
| | - Yongbo Seo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Maximilian Fürthauer
- Université Côte d'Azur, CNRS, Inserm, iBV, 28 Avenue Valrose, 06108 Nice cedex 2, France
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgsons Gate 1, 7491 Trondheim, Norway.
| |
Collapse
|
2
|
Aburto MR, Cryan JF. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota-gut-brain axis. Nat Rev Gastroenterol Hepatol 2024; 21:222-247. [PMID: 38355758 DOI: 10.1038/s41575-023-00890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Crosstalk between gut and brain has long been appreciated in health and disease, and the gut microbiota is a key player in communication between these two distant organs. Yet, the mechanisms through which the microbiota influences development and function of the gut-brain axis remain largely unknown. Barriers present in the gut and brain are specialized cellular interfaces that maintain strict homeostasis of different compartments across this axis. These barriers include the gut epithelial barrier, the blood-brain barrier and the blood-cerebrospinal fluid barrier. Barriers are ideally positioned to receive and communicate gut microbial signals constituting a gateway for gut-microbiota-brain communication. In this Review, we focus on how modulation of these barriers by the gut microbiota can constitute an important channel of communication across the gut-brain axis. Moreover, barrier malfunction upon alterations in gut microbial composition could form the basis of various conditions, including often comorbid neurological and gastrointestinal disorders. Thus, we should focus on unravelling the molecular and cellular basis of this communication and move from simplistic framing as 'leaky gut'. A mechanistic understanding of gut microbiota modulation of barriers, especially during critical windows of development, could be key to understanding the aetiology of gastrointestinal and neurological disorders.
Collapse
Affiliation(s)
- María R Aburto
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Vázquez-Liébanas E, Mocci G, Li W, Laviña B, Reddy A, O'Connor C, Hudson N, Elbeck Z, Nikoloudis I, Gaengel K, Vanlandewijck M, Campbell M, Betsholtz C, Mäe MA. Mosaic deletion of claudin-5 reveals rapid non-cell-autonomous consequences of blood-brain barrier leakage. Cell Rep 2024; 43:113911. [PMID: 38446668 DOI: 10.1016/j.celrep.2024.113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/19/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Claudin-5 (CLDN5) is an endothelial tight junction protein essential for blood-brain barrier (BBB) formation. Abnormal CLDN5 expression is common in brain disease, and knockdown of Cldn5 at the BBB has been proposed to facilitate drug delivery to the brain. To study the consequences of CLDN5 loss in the mature brain, we induced mosaic endothelial-specific Cldn5 gene ablation in adult mice (Cldn5iECKO). These mice displayed increased BBB permeability to tracers up to 10 kDa in size from 6 days post induction (dpi) and ensuing lethality from 10 dpi. Single-cell RNA sequencing at 11 dpi revealed profound transcriptomic differences in brain endothelial cells regardless of their Cldn5 status in mosaic mice, suggesting major non-cell-autonomous responses. Reactive microglia and astrocytes suggested rapid cellular responses to BBB leakage. Our study demonstrates a critical role for CLDN5 in the adult BBB and provides molecular insight into the consequences and risks associated with CLDN5 inhibition.
Collapse
Affiliation(s)
- Elisa Vázquez-Liébanas
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Giuseppe Mocci
- Single Cell Core Facility of Flemingsberg Campus (SICOF), Karolinska Institute, 14157 Huddinge, Sweden
| | - Weihan Li
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Bàrbara Laviña
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Avril Reddy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Claire O'Connor
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Natalie Hudson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Zaher Elbeck
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Ioannis Nikoloudis
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Konstantin Gaengel
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden; Single Cell Core Facility of Flemingsberg Campus (SICOF), Karolinska Institute, 14157 Huddinge, Sweden; Department of Medicine, Karolinska Institute, 14157 Huddinge, Sweden
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Christer Betsholtz
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden; Department of Medicine, Karolinska Institute, 14157 Huddinge, Sweden
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden.
| |
Collapse
|
4
|
Chen Y, Li Y, Luo J, Li Z, Huang Y, Cai J, Jiang D, Zhang D, Jian J, Qiang J, Wang B. A novel study of brain microvascular endothelial cells induced by astrocyte conditioned medium for constructing blood brain barrier model in vitro: A promising tool for meningitis of teleost. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109401. [PMID: 38266792 DOI: 10.1016/j.fsi.2024.109401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
The blood-brain barrier (BBB) is mainly composed of specialized endothelial cells, which can resist harmful substances, transport nutrients, and maintain the stability of the brain environment. In this study, an endothelial cell line from tilapia (Oreochromis niloticus) named TVEC-01 was successfully established. During the earlier establishment phase of the cell line, the TVEC-01 cells were persistently exposed to an astrocyte-conditioned medium (ACM). TVEC-01 cells were identified as an endothelial cell line. TVEC-01 cells retained the multiple functions of endothelial cells and were capable of performing various experiments in vitro. Furthermore, TVEC-01 cells efficiently expressed BBB-related tight junctions and key efflux transporters. From the results of the qRT-PCR, we found that the TVEC-01 cell line did not gradually lose BBB characteristics after persistent and repetitive passages, which was different from the vast majority of immortalized endothelial cells. The results showed that ACM induced up-regulation of the expression levels of multiple BBB-related genes in TVEC-01 cells. We confirmed that Streptococcus agalactiae was capable of invading the TVEC-01 cells and initiating a series of immune responses, which provided a theoretical basis for S. agalactiae to break through the BBB of teleost through the transcellular traversal pathway. In summary, we have successfully constructed an endothelial cell line of teleost, named TVEC-01, which can be used in many experiments in vitro and even for constructing BBB in vitro. Moreover, it was confirmed that S. agalactiae broke through the BBB of teleost through the transcellular traversal pathway and caused meningitis.
Collapse
Affiliation(s)
- Yanghui Chen
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Yuan Li
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Junliang Luo
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Zixin Li
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Yu Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Jia Cai
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Dongneng Jiang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Defeng Zhang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, Jiangsu, China
| | - Bei Wang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China.
| |
Collapse
|
5
|
Yao Y, Liu F, Gu Z, Wang J, Xu L, Yu Y, Cai J, Ren R. Emerging diagnostic markers and therapeutic targets in post-stroke hemorrhagic transformation and brain edema. Front Mol Neurosci 2023; 16:1286351. [PMID: 38178909 PMCID: PMC10764516 DOI: 10.3389/fnmol.2023.1286351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024] Open
Abstract
Stroke is a devastating condition that can lead to significant morbidity and mortality. The aftermath of a stroke, particularly hemorrhagic transformation (HT) and brain edema, can significantly impact the prognosis of patients. Early detection and effective management of these complications are crucial for improving outcomes in stroke patients. This review highlights the emerging diagnostic markers and therapeutic targets including claudin, occludin, zonula occluden, s100β, albumin, MMP-9, MMP-2, MMP-12, IL-1β, TNF-α, IL-6, IFN-γ, TGF-β, IL-10, IL-4, IL-13, MCP-1/CCL2, CXCL2, CXCL8, CXCL12, CCL5, CX3CL1, ICAM-1, VCAM-1, P-selectin, E-selectin, PECAM-1/CD31, JAMs, HMGB1, vWF, VEGF, ROS, NAC, and AQP4. The clinical significance and implications of these biomarkers were also discussed.
Collapse
Affiliation(s)
- Ying Yao
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Liu
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaowen Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lintao Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yue Yu
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Cai
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Reng Ren
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Davis G, Hameister B, Dunnum C, Vanderpas E, Carter B. Incorporating Primer Amplification Efficiencies in Quantitative Reverse Transcription Polymerase Chain Reaction Experiments; Considerations for Differential Gene Expression Analyses in Zebrafish. Zebrafish 2023; 20:189-199. [PMID: 37722027 DOI: 10.1089/zeb.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Quantitative reverse transcription polymerase chain reaction (RT-qPCR) is commonly used to measure the mRNA expression of target genes in zebrafish. Gene expression values from RT-qPCR are typically reported as relative fold-changes, and relative quantification of RT-qPCR data incorporates primer amplification efficiency values for each target gene. We describe the influence of the primer amplification efficiency analysis method on RT-qPCR gene expression fold-change calculations. This report describes (1) a sample analysis demonstrating incorporation of primer amplification efficiency into RT-qPCR analysis for comparing gene expression of a gene of interest between two groups when normalized to multiple reference genes, (2) the influence of differences in primer amplification efficiencies between measured genes on gene expression differences calculated from theoretical delta-Cq (dCq) values, and (3) an empirical comparison of the influence of three methods of defining primer amplification efficiency in gene expression analyses (delta-delta-Cq [ddCq], standard curve, LinRegPCR) using mRNA measurements of a set of genes in zebrafish embryonic development. Given the need to account for the influence of primer amplification efficiency along with the simplicity of using software programs (LinRegPCR) to measure primer amplification efficiency from RT-qPCR data, we encourage using empirical measurements of primer amplification efficiency for RT-qPCR analysis of differential gene expression in zebrafish.
Collapse
Affiliation(s)
- Gillian Davis
- Department of Biology, University of Wisconsin Eau Claire, Eau Claire, Wisconsin, USA
| | - Brianna Hameister
- Department of Biology, University of Wisconsin Eau Claire, Eau Claire, Wisconsin, USA
| | - Cora Dunnum
- Department of Biology, University of Wisconsin Eau Claire, Eau Claire, Wisconsin, USA
| | - Emily Vanderpas
- Department of Biology, University of Wisconsin Eau Claire, Eau Claire, Wisconsin, USA
| | - Brad Carter
- Department of Biology, University of Wisconsin Eau Claire, Eau Claire, Wisconsin, USA
| |
Collapse
|
7
|
Keep RF, Jones HC, Drewes LR. Genetic disorders and genetic manipulation at the blood-brain barriers. Fluids Barriers CNS 2023; 20:29. [PMID: 37081497 PMCID: PMC10120270 DOI: 10.1186/s12987-023-00428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 04/22/2023] Open
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| | | | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|