1
|
Rao D, Yang L, Enxi X, Siyuan L, Yu Q, Zheng L, Zhou Z, Yerong C, Bo C, Xiuhong S, Eryi S. A predictive model in patients with chronic hydrocephalus following aneurysmal subarachnoid hemorrhage: a retrospective cohort study. Front Neurol 2024; 15:1366306. [PMID: 38817542 PMCID: PMC11137279 DOI: 10.3389/fneur.2024.1366306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
Objective Our aim was to develop a nomogram that integrates clinical and radiological data obtained from computed tomography (CT) scans, enabling the prediction of chronic hydrocephalus in patients with aneurysmal subarachnoid hemorrhage (aSAH). Method A total of 318 patients diagnosed with subarachnoid hemorrhage (SAH) and admitted to the Department of Neurosurgery at the Affiliated People's Hospital of Jiangsu University between January 2020 and December 2022 were enrolled in our study. We collected clinical characteristics from the hospital's medical record system. To identify risk factors associated with chronic hydrocephalus, we conducted both univariate and LASSO regression models on these clinical characteristics and radiological features, accompanied with penalty parameter adjustments conducted through tenfold cross-validation. All features were then incorporated into multivariate logistic regression analyses. Based on these findings, we developed a clinical-radiological nomogram. To evaluate its discrimination performance, we conducted Receiver Operating Characteristic (ROC) curve analysis and calculated the Area Under the Curve (AUC). Additionally, we employed calibration curves, and utilized Brier scores as an indicator of concordance. Additionally, Decision Curve Analysis (DCA) was performed to determine the clinical utility of our models by estimating net benefits at various threshold probabilities for both training and testing groups. Results The study included 181 patients, with a determined chronic hydrocephalus prevalence of 17.7%. Univariate logistic regression analysis identified 11 potential risk factors, while LASSO regression identified 7 significant risk factors associated with chronic hydrocephalus. Multivariate logistic regression analysis revealed three independent predictors for chronic hydrocephalus following aSAH: Periventricular white matter changes, External lumbar drainage, and Modified Fisher Grade. A nomogram incorporating these factors accurately predicted the risk of chronic hydrocephalus in both the training and testing cohorts. The AUC values were calculated as 0.810 and 0.811 for each cohort respectively, indicating good discriminative ability of the nomogram model. Calibration curves along with Hosmer-Lemeshow tests demonstrated excellent agreement between predicted probabilities and observed outcomes in both cohorts. Furthermore, Brier scores (0.127 for the training and 0.09 for testing groups) further validated the predictive performance of our nomogram model. The DCA confirmed that this nomogram provides superior net benefit across various risk thresholds when predicting chronic hydrocephalus. The decision curve demonstrated that when an individual's threshold probability ranged from 5 to 62%, this model is more effective in predicting the occurrence of chronic hydrocephalus after aSAH. Conclusion A clinical-radiological nomogram was developed to combine clinical characteristics and radiological features from CT scans, aiming to enhance the accuracy of predicting chronic hydrocephalus in patients with aSAH. This innovative nomogram shows promising potential in assisting clinicians to create personalized and optimal treatment plans by providing precise predictions of chronic hydrocephalus among aSAH patients.
Collapse
Affiliation(s)
- Dai Rao
- Department of Radiology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li Yang
- Department of Radiology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xu Enxi
- Department of Neurosurgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lu Siyuan
- Department of Radiology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qian Yu
- Department of Neurosurgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li Zheng
- Department of Neurosurgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhou Zhou
- Department of Neurosurgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chen Yerong
- Department of Radiology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chen Bo
- Department of Neurosurgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shan Xiuhong
- Department of Radiology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Sun Eryi
- Department of Neurosurgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
2
|
Yang L, Yang F, Deng Y, Yan A, Wei W, Fang X. White matter hyperintensity mediating gait disorders in iNPH patients via neurofilament light chain. Front Aging Neurosci 2023; 15:1117675. [PMID: 37032824 PMCID: PMC10081026 DOI: 10.3389/fnagi.2023.1117675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
PurposeThis study aimed to analyze the differences in regional white matter hyperintensities (WMH) volume and cerebrospinal fluid biomarker levels between idiopathic normal pressure hydrocephalus (iNPH) patients with or without gait disorder.MethodsForty-eight iNPH patients undergoing bypass surgery and 20 normal senile individuals were included. The LST toolkit was used to segment all MRI fluid attenuation inversion images and quantify the WMH volume in each brain region. Cerebrospinal fluid was collected from all individuals and measured for concentrations of Aβ, t-tau, p-tau, and neurofilament light chain (NfL). Patients with iNPH were followed up for 1 year and divided categorized into a gait disorder improvement group and no improvement group according to the 3 m round-trip test time parameter improvement by more than 10%.ResultsWe found that WMH in all areas of iNPH patients was higher than that in the control group. CSF levels of Aβ, t-tau, and p-tau were lower than those in the control group, while NfL levels were higher than those in the control group. The gait (+) group NfL level was higher than that in gait (−), and there were no statistical differences in Aβ, t-tau, and p-tau levels. The gait (+) group of frontal and parietal lobe WMH volume PVH above the gait (−) group. The mediating effect model analysis showed that PVH might affect the gait disorder of iNPH patients through NfL. A 1-year follow-up of the patients after the bypass surgery found that 24 of the 35 patients in the gait (+) group had improvements, while 11 had no significant improvements. The comparison of CSF marker levels between the two groups showed that the CSF NfL level in the improved group was lower than that in the non-improved group. The WMH volume and PVH in the frontal–parietal lobe of the improved group were lower than those of the non-improved group.ConclusioniNPH patients have more serious frontoparietal and periventricular white matter lesions, and WMH volume in the frontoparietal may mediate the occurrence of gait disorder in iNPH patients through the increase of NfL level.
Collapse
Affiliation(s)
- Lu Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Fuxia Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yao Deng
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Aijuan Yan
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- *Correspondence: Xuhao Fang
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- *Correspondence: Xuhao Fang
| | - Xuhao Fang
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- *Correspondence: Xuhao Fang
| |
Collapse
|
4
|
The "Cerebrospinal Fluid Sink Therapeutic Strategy" in Alzheimer's Disease-From Theory to Design of Applied Systems. Biomedicines 2022; 10:biomedicines10071509. [PMID: 35884814 PMCID: PMC9313192 DOI: 10.3390/biomedicines10071509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is a global health problem, with incidence and prevalence considered to increase during the next decades. However, no currently available effective treatment exists despite numerous clinical trials in progress. Moreover, although many hypotheses are accepted regarding the pathophysiological mechanisms of AD onset and evolution, there are still many unknowns about the disorder. A relatively new approach, based on the amyloid-beta dynamics among different biological compartments, is currently intensely discussed, as it seems to offer a promising solution with significant therapeutic impact. Known as the “cerebrospinal-fluid-sink therapeutic strategy”, part of the “three-sink therapeutic strategy”, this theoretical model focuses on the dynamics of amyloid-beta among the three main liquid compartments of the human body, namely blood, cerebrospinal fluid, and the (brain) interstitial fluid. In this context, this article aims to describe in detail the abovementioned hypothesis, by reviewing in the first part the most relevant anatomical and physiological aspects of amyloid-beta dynamics. Subsequently, explored therapeutic strategies based on the clearance of amyloid-beta from the cerebrospinal fluid level are presented, additionally highlighting their limitations. Finally, the originality and novelty of this work rely on the research experience of the authors, who focus on implantable devices and their utility in AD treatment.
Collapse
|