1
|
Qvarlander S, Sundström N, Malm J, Eklund A. CSF formation rate-a potential glymphatic flow parameter in hydrocephalus? Fluids Barriers CNS 2024; 21:55. [PMID: 38987813 PMCID: PMC11234690 DOI: 10.1186/s12987-024-00560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Studies indicate that brain clearance via the glymphatic system is impaired in idiopathic normal pressure hydrocephalus (INPH). This has been suggested to result from reduced cerebrospinal fluid (CSF) turnover, which could be caused by a reduced CSF formation rate. The aim of this study was to determine the formation rate of CSF in a cohort of patients investigated for INPH and compare this to a historical control cohort. METHODS CSF formation rate was estimated in 135 (75 ± 6 years old, 64/71 men/women) patients undergoing investigation for INPH. A semiautomatic CSF infusion investigation (via lumbar puncture) was performed. CSF formation rate was assessed by downregulating and steadily maintaining CSF pressure at a zero level. During the last 10 min, the required outflow to maintain zero pressure, i.e., CSF formation rate, was continuously measured. The values were compared to those of a historical reference cohort from a study by Ekstedt in 1978. RESULTS Mean CSF formation rate was 0.45 ± 0.15 ml/min (N = 135), equivalent to 27 ± 9 ml/hour. There was no difference in the mean (p = 0.362) or variance (p = 0.498) of CSF formation rate between the subjects that were diagnosed as INPH (N = 86) and those who were not (N = 43). The CSF formation rate in INPH was statistically higher than in the reference cohort (0.46 ± 0.15 vs. 0.40 ± 0.08 ml/min, p = 0.005), but the small difference was probably not physiologically relevant. There was no correlation between CSF formation rate and baseline CSF pressure (r = 0.136, p = 0.115, N = 135) or age (-0.02, p = 0.803, N = 135). CONCLUSIONS The average CSF formation rate in INPH was not decreased compared to the healthy reference cohort, which does not support reduced CSF turnover. This emphasizes the need to further investigate the source and routes of the flow in the glymphatic system and the cause of the suggested impaired glymphatic clearance in INPH.
Collapse
Affiliation(s)
- Sara Qvarlander
- Department of Diagnostics and Intervention, Biomedical Engineering and Radiation Physics, Umeå University, Umeå, Sweden.
| | - Nina Sundström
- Department of Diagnostics and Intervention, Biomedical Engineering and Radiation Physics, Umeå University, Umeå, Sweden
| | - Jan Malm
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Anders Eklund
- Department of Diagnostics and Intervention, Biomedical Engineering and Radiation Physics, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Zhu KJ, Njoroge MW, Zimmermann SM, Tafrishi B, Watson J, Breitkopf T, Klassen AF, Mundy LR, Besmens IS, Lindenblatt N. German Translation and Linguistic Validation of the LIMB‑Q: A Patient-reported Outcome Measure for Lower Extremity Trauma. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6001. [PMID: 39036594 PMCID: PMC11259390 DOI: 10.1097/gox.0000000000006001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/31/2024] [Indexed: 07/23/2024]
Abstract
Background Lower extremity trauma can have a significant impact on a patient's quality of life. The LIMB-Q is a recently developed and validated patient-reported outcome measure that assesses patient-specific outcomes and experience of health care. The aim of this study was to translate and linguistically validate the LIMB-Q from English to German. Methods The translation was performed by combining World Health Organization and Professional Society for Health Economics and Outcomes Research guidelines. The process consisted of forward translations, a backward translation, expert panel meetings, cognitive debriefing interviews with patients, and several rounds of discussion and reconciliation with the creators of LIMB-Q. The goal was to obtain a culturally and conceptually accurate translation of LIMB-Q into German for use in Switzerland. Results From the two forward translations, there was one primary discrepancy between the two translators that was discussed to determine the most conceptually accurate translation. From the backward translations, there were 63 items that required discussion and re-translation. Nine patients participated in the cognitive debriefing interviews, which led to three items being modified. The translation process led to a linguistically validated and conceptually equivalent German version of the LIMB-Q. Conclusions The German (Switzerland) version of LIMB-Q is now available. This will offer a valuable tool for lower extremity trauma research and clinical care in German-speaking populations.
Collapse
Affiliation(s)
- Katherine J. Zhu
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Moreen W. Njoroge
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Stefan M. Zimmermann
- Department of Orthopedic Surgery, Balgrist University Hospital, Zurich, Switzerland
| | - Bita Tafrishi
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Jennifer Watson
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Trisia Breitkopf
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Anne F. Klassen
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Lily R. Mundy
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Inga S. Besmens
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Eide PK. Neurosurgery and the glymphatic system. Acta Neurochir (Wien) 2024; 166:274. [PMID: 38904802 PMCID: PMC11192689 DOI: 10.1007/s00701-024-06161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
The discovery of the glymphatic system has fundamentally altered our comprehension of cerebrospinal fluid transport and the removal of waste from brain metabolism. In the past decade, since its initial characterization, research on the glymphatic system has surged exponentially. Its potential implications for central nervous system disorders have sparked significant interest in the field of neurosurgery. Nonetheless, ongoing discussions and debates persist regarding the concept of the glymphatic system, and our current understanding largely relies on findings from experimental animal studies. This review aims to address several key inquiries: What methodologies exist for evaluating glymphatic function in humans today? What is the current evidence supporting the existence of a human glymphatic system? Can the glymphatic system be considered distinct from the meningeal-lymphatic system? What is the human evidence for glymphatic-meningeal lymphatic system failure in neurosurgical diseases? Existing literature indicates a paucity of techniques available for assessing glymphatic function in humans. Thus far, intrathecal contrast-enhanced magnetic resonance imaging (MRI) has shown the most promising results and have provided evidence for the presence of a glymphatic system in humans, albeit with limitations. It is, however, essential to recognize the interconnection between the glymphatic and meningeal lymphatic systems, as they operate in tandem. There are some human studies demonstrating deteriorations in glymphatic function associated with neurosurgical disorders, enriching our understanding of their pathophysiology. However, the translation of this knowledge into clinical practice is hindered by the constraints of current glymphatic imaging modalities.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Nydalen, Pb 4950 N-0424, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Brain Fluid Research, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Ringstad G, Eide PK. Glymphatic-lymphatic coupling: assessment of the evidence from magnetic resonance imaging of humans. Cell Mol Life Sci 2024; 81:131. [PMID: 38472405 PMCID: PMC10933166 DOI: 10.1007/s00018-024-05141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 03/14/2024]
Abstract
The discoveries that cerebrospinal fluid participates in metabolic perivascular exchange with the brain and further drains solutes to meningeal lymphatic vessels have sparked a tremendous interest in translating these seminal findings from animals to humans. A potential two-way coupling between the brain extra-vascular compartment and the peripheral immune system has implications that exceed those concerning neurodegenerative diseases, but also imply that the central nervous system has pushed its immunological borders toward the periphery, where cross-talk mediated by cerebrospinal fluid may play a role in a range of neoplastic and immunological diseases. Due to its non-invasive approach, magnetic resonance imaging has typically been the preferred methodology in attempts to image the glymphatic system and meningeal lymphatics in humans. Even if flourishing, the research field is still in its cradle, and interpretations of imaging findings that topographically associate with reports from animals have yet seemed to downplay the presence of previously described anatomical constituents, particularly in the dura. In this brief review, we illuminate these challenges and assess the evidence for a glymphatic-lymphatic coupling. Finally, we provide a new perspective on how human brain and meningeal clearance function may possibly be measured in future.
Collapse
Affiliation(s)
- Geir Ringstad
- Department of Radiology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
- Department of Geriatrics and Internal Medicine, Sorlandet Hospital, Arendal, Norway.
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Agarwal N, Lewis LD, Hirschler L, Rivera LR, Naganawa S, Levendovszky SR, Ringstad G, Klarica M, Wardlaw J, Iadecola C, Hawkes C, Octavia Carare R, Wells J, Bakker EN, Kurtcuoglu V, Bilston L, Nedergaard M, Mori Y, Stoodley M, Alperin N, de Leon M, van Osch MJ. Current Understanding of the Anatomy, Physiology, and Magnetic Resonance Imaging of Neurofluids: Update From the 2022 "ISMRM Imaging Neurofluids Study group" Workshop in Rome. J Magn Reson Imaging 2024; 59:431-449. [PMID: 37141288 PMCID: PMC10624651 DOI: 10.1002/jmri.28759] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Neurofluids is a term introduced to define all fluids in the brain and spine such as blood, cerebrospinal fluid, and interstitial fluid. Neuroscientists in the past millennium have steadily identified the several different fluid environments in the brain and spine that interact in a synchronized harmonious manner to assure a healthy microenvironment required for optimal neuroglial function. Neuroanatomists and biochemists have provided an incredible wealth of evidence revealing the anatomy of perivascular spaces, meninges and glia and their role in drainage of neuronal waste products. Human studies have been limited due to the restricted availability of noninvasive imaging modalities that can provide a high spatiotemporal depiction of the brain neurofluids. Therefore, animal studies have been key in advancing our knowledge of the temporal and spatial dynamics of fluids, for example, by injecting tracers with different molecular weights. Such studies have sparked interest to identify possible disruptions to neurofluids dynamics in human diseases such as small vessel disease, cerebral amyloid angiopathy, and dementia. However, key differences between rodent and human physiology should be considered when extrapolating these findings to understand the human brain. An increasing armamentarium of noninvasive MRI techniques is being built to identify markers of altered drainage pathways. During the three-day workshop organized by the International Society of Magnetic Resonance in Medicine that was held in Rome in September 2022, several of these concepts were discussed by a distinguished international faculty to lay the basis of what is known and where we still lack evidence. We envision that in the next decade, MRI will allow imaging of the physiology of neurofluid dynamics and drainage pathways in the human brain to identify true pathological processes underlying disease and to discover new avenues for early diagnoses and treatments including drug delivery. Evidence level: 1 Technical Efficacy: Stage 3.
Collapse
Affiliation(s)
- Nivedita Agarwal
- Neuroradiology Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Laura D. Lewis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lydiane Hirschler
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Leonardo Rivera Rivera
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Geir Ringstad
- Department of Radiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal Medicine, Sorlandet Hospital, Arendal, Norway
| | - Marijan Klarica
- Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences and UK Dementia Research Institute Centre, University of Edinburgh, Edinburgh, UK
| | - Costantino Iadecola
- Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Cheryl Hawkes
- Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | | | - Jack Wells
- UCL Centre for Advanced Biomedical Imaging, University College of London, London, UK
| | - Erik N.T.P. Bakker
- Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | | | - Lynne Bilston
- Neuroscience Research Australia and UNSW Medicine, Sydney, Australia
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Yuki Mori
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Marcus Stoodley
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Department of Neurosurgery, Macquarie University Hospital, Sydney, Australia
| | - Noam Alperin
- Department of Radiology and Biomedical Engineering, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Mony de Leon
- Weil Cornell Medicine, Department of Radiology, Brain Health Imaging Institute, New York City, New York, USA
| | - Matthias J.P. van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Eide PK, Lashkarivand A, Pripp AH, Valnes LM, Hovd M, Ringstad G, Blennow K, Zetterberg H. Mechanisms behind changes of neurodegeneration biomarkers in plasma induced by sleep deprivation. Brain Commun 2023; 5:fcad343. [PMID: 38130841 PMCID: PMC10733810 DOI: 10.1093/braincomms/fcad343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/08/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Acute sleep deprivation has been shown to affect cerebrospinal fluid and plasma concentrations of biomarkers associated with neurodegeneration, though the mechanistic underpinnings remain unknown. This study compared individuals who, for one night, were either subject to total sleep deprivation or free sleep, (i) examining plasma concentrations of neurodegeneration biomarkers the morning after sleep deprivation or free sleep and (ii) determining how overnight changes in biomarkers plasma concentrations correlate with indices of meningeal lymphatic and glymphatic clearance functions. Plasma concentrations of amyloid-β 40 and 42, phosphorylated tau peptide 181, glial fibrillary acid protein and neurofilament light were measured longitudinally in subjects who from Day 1 to Day 2 either underwent total sleep deprivation (n = 7) or were allowed free sleep (n = 21). The magnetic resonance imaging contrast agent gadobutrol was injected intrathecally, serving as a cerebrospinal fluid tracer. Population pharmacokinetic model parameters of gadobutrol cerebrospinal fluid-to-blood clearance were utilized as a proxy of meningeal lymphatic clearance capacity and intrathecal contrast-enhanced magnetic resonance imaging as a proxy of glymphatic function. After one night of acute sleep deprivation, the plasma concentrations of amyloid-β 40 and 42 were reduced, but not the ratio, and concentrations of the other biomarkers were unchanged. The overnight change in amyloid-β 40 and 42 plasma concentrations in the sleep group correlated significantly with indices of meningeal lymphatic clearance capacity, while this was not seen for the other neurodegeneration biomarkers. However, overnight change in plasma concentrations of amyloid-β 40 and 42 did not correlate with the glymphatic marker. On the other hand, the overnight change in plasma concentration of phosphorylated tau peptide 181 correlated significantly with the marker of glymphatic function in the sleep deprivation group but not in the sleep group. The present data add to the evidence of the role of sleep and sleep deprivation on plasma neurodegeneration concentrations; however, the various neurodegeneration biomarkers respond differently with different mechanisms behind sleep-induced alterations in amyloid-β and tau plasma concentrations. Clearance capacity of meningeal lymphatics seems more important for sleep-induced changes in amyloid-β 40 and 42 plasma concentrations, while glymphatic function seems most important for change in plasma concentration of phosphorylated tau peptide 181 during sleep deprivation. Altogether, the present data highlight diverse mechanisms behind sleep-induced effects on concentrations of plasma neurodegeneration biomarkers.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital—Rikshospitalet, N-0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316 Oslo, Norway
| | - Aslan Lashkarivand
- Department of Neurosurgery, Oslo University Hospital—Rikshospitalet, N-0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316 Oslo, Norway
| | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, N-0424 Oslo, Norway
- Faculty of Health Sciences, Oslo Metropolitan University, N-0130 Oslo, Norway
| | - Lars Magnus Valnes
- Department of Neurosurgery, Oslo University Hospital—Rikshospitalet, N-0424 Oslo, Norway
| | - Markus Hovd
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, N-0424 Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital—Rikshospitalet, N-0424 Oslo, Norway
- Department of Geriatrics and Internal medicine, Sorlandet Hospital, N-4836 Arendal, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, S-405 30 Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-405 30 Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, S-405 30 Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-405 30 Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong 999077, China
- Department of Medicine, UW School of Medicine and Public Health, Madison, WI 53726, USA
| |
Collapse
|
7
|
Melin E, Pripp AH, Eide PK, Ringstad G. In vivo distribution of cerebrospinal fluid tracer in human upper spinal cord and brain stem. JCI Insight 2023; 8:e173276. [PMID: 38063195 PMCID: PMC10795833 DOI: 10.1172/jci.insight.173276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUNDIntrathecal injection is an attractive route through which drugs can be administered and directed to the spinal cord, restricted by the blood-spinal cord barrier. However, in vivo data on the distribution of cerebrospinal fluid (CSF) substances in the human spinal cord are lacking. We conducted this study to assess the enrichment of a CSF tracer in the upper cervical spinal cord and the brain stem.METHODSAfter lumbar intrathecal injection of a magnetic resonance imaging (MRI) contrast agent, gadobutrol, repeated blood samples and MRI of the upper cervical spinal cord, brain stem, and adjacent subarachnoid spaces (SAS) were obtained through 48 hours. The MRI scans were then analyzed for tracer distribution in the different regions and correlated to age, disease, and amounts of tracer in the blood to determine CSF-to-blood clearance.RESULTSThe study included 26 reference individuals and 35 patients with the dementia subtype idiopathic normal pressure hydrocephalus (iNPH). The tracer enriched all analyzed regions. Moreover, tracer enrichment in parenchyma was associated with tracer enrichment in the adjacent SAS and with CSF-to-blood clearance. Clearance from the CSF was delayed in patients with iNPH compared with younger reference patients.CONCLUSIONA CSF tracer substance administered to the lumbar thecal sac can access the parenchyma of the upper cervical spinal cord and brain stem. Since CSF-to-blood clearance is highly individual and is associated with tracer level in CSF, clearance assessment may be used to tailor intrathecal treatment regimes.FUNDINGSouth-Eastern Norway Regional Health and Østfold Hospital Trust supported the research and publication of this work.
Collapse
Affiliation(s)
- Erik Melin
- Department of Radiology, Østfold Hospital Trust, Grålum, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo, Norway
- Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Per Kristian Eide
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery and
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal medicine, Sorlandet Hospital, Arendal, Norway
| |
Collapse
|
8
|
Doudakmanis C, Dimeas G, Dimeas IE, Pitsilka MM, Daniil Z. Intrahepatic Gallbladder Rupture and Biloma Mimicking Pulmonary Embolism Following Orthopedic Surgery. Cureus 2023; 15:e46905. [PMID: 37954818 PMCID: PMC10638943 DOI: 10.7759/cureus.46905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
In this case report, a 75-year-old male with a history of coronary artery disease, type 2 diabetes, hypertension, and benign prostate hypertrophy developed postoperative fever and chest pain following left knee arthroplasty. Upon admission to the emergency department, pulmonary embolism was considered highly probable, and the patient was treated with anticoagulation and antibiotics due to diagnostic uncertainty. However, further investigations revealed a complex condition involving an intraparenchymal gallbladder rupture resulting in a biloma secondary to choledocholithiasis. The patient's history of receiving spinal anesthesia with intrathecal morphine was identified as a potential causative factor to the sphincter of Oddi constriction, leading to increased biliary pressure and gallbladder rupture. This case highlights the importance of having a broad differential diagnosis in postoperative patients, especially when the clinical presentation is atypical. With the diagnosis being confirmed, the patient underwent successful treatment, including biliary stenting, drainage of the biloma, and ultimately cholecystectomy. This case underlines the need for vigilance and a multidisciplinary approach in managing complex postoperative complications, emphasizing that clinical presentations may sometimes deviate significantly from the expected, requiring further investigation and individualized treatment.
Collapse
Affiliation(s)
- Christos Doudakmanis
- Department of Critical Care Medicine, University Hospital of Larissa, Larissa, GRC
- 2nd Propaedeutic Department of Surgery, Laiko General Hospital of Athens, Athens, GRC
| | - George Dimeas
- Department of Respiratory Medicine, University Hospital of Larissa, Larissa, GRC
| | - Ilias E Dimeas
- Department of Respiratory Medicine, University Hospital of Larissa, Larissa, GRC
| | - Maria M Pitsilka
- Department of Respiratory Medicine, University Hospital of Larissa, Larissa, GRC
| | - Zoe Daniil
- Department of Respiratory Medicine, University Hospital of Larissa, Larissa, GRC
| |
Collapse
|
9
|
Vinje V, Zapf B, Ringstad G, Eide PK, Rognes ME, Mardal KA. Human brain solute transport quantified by glymphatic MRI-informed biophysics during sleep and sleep deprivation. Fluids Barriers CNS 2023; 20:62. [PMID: 37596635 PMCID: PMC10439559 DOI: 10.1186/s12987-023-00459-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023] Open
Abstract
Whether you are reading, running or sleeping, your brain and its fluid environment continuously interacts to distribute nutrients and clear metabolic waste. Yet, the precise mechanisms for solute transport within the human brain have remained hard to quantify using imaging techniques alone. From multi-modal human brain MRI data sets in sleeping and sleep-deprived subjects, we identify and quantify CSF tracer transport parameters using forward and inverse subject-specific computational modelling. Our findings support the notion that extracellular diffusion alone is not sufficient as a brain-wide tracer transport mechanism. Instead, we show that human MRI observations align well with transport by either by an effective diffusion coefficent 3.5[Formula: see text] that of extracellular diffusion in combination with local clearance rates corresponding to a tracer half-life of up to 5 h, or by extracellular diffusion augmented by advection with brain-wide average flow speeds on the order of 1-9 [Formula: see text]m/min. Reduced advection fully explains reduced tracer clearance after sleep-deprivation, supporting the role of sleep and sleep deprivation on human brain clearance.
Collapse
Affiliation(s)
- Vegard Vinje
- Simula Research Laboratory, Kristian Augusts gate 23, 0164, Oslo, Norway
- Expert Analytics AS, Møllergata 8, 0179, Oslo, Norway
| | - Bastian Zapf
- Department of Mathematics, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal Medicine, Sørlandet Hospital, Arendal, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Marie E Rognes
- Simula Research Laboratory, Kristian Augusts gate 23, 0164, Oslo, Norway
| | - Kent-Andre Mardal
- Simula Research Laboratory, Kristian Augusts gate 23, 0164, Oslo, Norway.
- Department of Mathematics, University of Oslo, Oslo, Norway.
| |
Collapse
|
10
|
Galea I, Bandyopadhyay S, Bulters D, Humar R, Hugelshofer M, Schaer DJ. Haptoglobin Treatment for Aneurysmal Subarachnoid Hemorrhage: Review and Expert Consensus on Clinical Translation. Stroke 2023; 54:1930-1942. [PMID: 37232189 PMCID: PMC10289236 DOI: 10.1161/strokeaha.123.040205] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating form of stroke frequently affecting young to middle-aged adults, with an unmet need to improve outcome. This special report focusses on the development of intrathecal haptoglobin supplementation as a treatment by reviewing current knowledge and progress, arriving at a Delphi-based global consensus regarding the pathophysiological role of extracellular hemoglobin and research priorities for clinical translation of hemoglobin-scavenging therapeutics. After aneurysmal subarachnoid hemorrhage, erythrocyte lysis generates cell-free hemoglobin in the cerebrospinal fluid, which is a strong determinant of secondary brain injury and long-term clinical outcome. Haptoglobin is the body's first-line defense against cell-free hemoglobin by binding it irreversibly, preventing translocation of hemoglobin into the brain parenchyma and nitric oxide-sensitive functional compartments of cerebral arteries. In mouse and sheep models, intraventricular administration of haptoglobin reversed hemoglobin-induced clinical, histological, and biochemical features of human aneurysmal subarachnoid hemorrhage. Clinical translation of this strategy imposes unique challenges set by the novel mode of action and the anticipated need for intrathecal drug administration, necessitating early input from stakeholders. Practising clinicians (n=72) and scientific experts (n=28) from 5 continents participated in the Delphi study. Inflammation, microvascular spasm, initial intracranial pressure increase, and disruption of nitric oxide signaling were deemed the most important pathophysiological pathways determining outcome. Cell-free hemoglobin was thought to play an important role mostly in pathways related to iron toxicity, oxidative stress, nitric oxide, and inflammation. While useful, there was consensus that further preclinical work was not a priority, with most believing the field was ready for an early phase trial. The highest research priorities were related to confirming haptoglobin's anticipated safety, individualized versus standard dosing, timing of treatment, pharmacokinetics, pharmacodynamics, and outcome measure selection. These results highlight the need for early phase trials of intracranial haptoglobin for aneurysmal subarachnoid hemorrhage, and the value of early input from clinical disciplines on a global scale during the early stages of clinical translation.
Collapse
Affiliation(s)
- Ian Galea
- Department of Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom (I.G., S.B., D.B.)
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom (I.G., S.B., D.B.)
| | - Soham Bandyopadhyay
- Department of Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom (I.G., S.B., D.B.)
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom (I.G., S.B., D.B.)
| | - Diederik Bulters
- Department of Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom (I.G., S.B., D.B.)
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom (I.G., S.B., D.B.)
| | - Rok Humar
- Division of Internal Medicine (R.H., D.J.S.), Universitätsspital and University of Zurich, Switzerland
| | - Michael Hugelshofer
- Department of Neurosurgery, Clinical Neuroscience Center (M.H.), Universitätsspital and University of Zurich, Switzerland
| | - Dominik J. Schaer
- Division of Internal Medicine (R.H., D.J.S.), Universitätsspital and University of Zurich, Switzerland
| |
Collapse
|
11
|
Liu H, Barthélemy NR, Ovod V, Bollinger JG, He Y, Chahin SL, Androff B, Bateman RJ, Lucey BP. Acute sleep loss decreases CSF-to-blood clearance of Alzheimer's disease biomarkers. Alzheimers Dement 2023; 19:3055-3064. [PMID: 36695437 PMCID: PMC10366339 DOI: 10.1002/alz.12930] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Sleep deprivation increases cerebrospinal fluid (CSF) amyloid beta (Aβ) and tau levels; however, sleep's effect on Aβ and tau in plasma is unknown. METHODS In a cross-over design, CSF Aβ and tau concentrations were measured in five cognitively normal individuals who had blood and CSF collected every 2 hours for 36 hours during sleep-deprived and normal sleep control conditions. RESULTS Aβ40, Aβ42, unphosphorylated tau threonine181 (T181), unphosphorylated tau threonine-217 (T217), and phosphorylated T181 (pT181) concentrations increased ∼35% to 55% in CSF and decreased ∼5% to 15% in plasma during sleep deprivation. CSF/plasma ratios of all Alzheimer's disease (AD) biomarkers increased during sleep deprivation while the CSF/plasma albumin ratio, a measure of blood-CSF barrier permeability, decreased. CSF and plasma Aβ42/40, pT181/T181, and pT181/Aβ42 ratios were stable longitudinally in both groups. DISCUSSION These findings show that sleep loss alters some plasma AD biomarkers by lowering brain clearance mechanisms and needs to be taken into account when interpreting individual plasma AD biomarkers but not ratios.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Neurology, Washington University School of Medicine, St Louis, MO
| | - Nicolas R. Barthélemy
- Department of Neurology, Washington University School of Medicine, St Louis, MO
- Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO
| | - Vitaliy Ovod
- Department of Neurology, Washington University School of Medicine, St Louis, MO
- Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO
| | - James G. Bollinger
- Department of Neurology, Washington University School of Medicine, St Louis, MO
- Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO
| | - Yingxin He
- Department of Neurology, Washington University School of Medicine, St Louis, MO
- Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO
| | - Samir L. Chahin
- Department of Neurology, Washington University School of Medicine, St Louis, MO
- Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO
| | - Brendan Androff
- Department of Neurology, Washington University School of Medicine, St Louis, MO
- Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, St Louis, MO
- Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO
| | - Brendan P. Lucey
- Department of Neurology, Washington University School of Medicine, St Louis, MO
- Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO
- Center On Biological Rhythms and Sleep, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
12
|
Ciurea AV, Mohan AG, Covache-Busuioc RA, Costin HP, Saceleanu VM. The Brain's Glymphatic System: Drawing New Perspectives in Neuroscience. Brain Sci 2023; 13:1005. [PMID: 37508938 PMCID: PMC10377460 DOI: 10.3390/brainsci13071005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
This paper delves into the intricate structure and functionality of the brain's glymphatic system, bringing forth new dimensions in its neuroscientific understanding. This paper commences by exploring the cerebrospinal fluid (CSF)-its localization, production, and pivotal role within the central nervous system, acting as a cushion and vehicle for nutrient distribution and waste elimination. We then transition into an in-depth study of the morphophysiological aspects of the glymphatic system, a recent discovery revolutionizing the perception of waste clearance from the brain, highlighting its lymphatic-like characteristics and remarkable operations. This paper subsequently emphasizes the glymphatic system's potential implications in Alzheimer's disease (AD), discussing the connection between inefficient glymphatic clearance and AD pathogenesis. This review also elucidates the intriguing interplay between the glymphatic system and the circadian rhythm, illustrating the optimal functioning of glymphatic clearance during sleep. Lastly, we underscore the hitherto underappreciated involvement of the glymphatic system in the tumoral microenvironment, potentially impacting tumor growth and progression. This comprehensive paper accentuates the glymphatic system's pivotal role in multiple domains, fostering an understanding of the brain's waste clearance mechanisms and offering avenues for further research into neuropathological conditions.
Collapse
Affiliation(s)
- Alexandru Vlad Ciurea
- Neurosurgery Department, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| | - Aurel George Mohan
- Department of Neurosurgery, Bihor County Emergency Clinical Hospital, 410167 Oradea, Romania
- Department of Neurosurgery, Faculty of Medicine, Oradea University, 410610 Oradea, Romania
| | | | - Horia Petre Costin
- Neurosurgery Department, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Vicentiu Mircea Saceleanu
- Neurosurgery Department, Sibiu County Emergency Hospital, 550245 Sibiu, Romania
- Department of Neurosurgery, "Lucian Blaga" University of Medicine, 550024 Sibiu, Romania
| |
Collapse
|
13
|
Sperre A, Karsrud I, Rodum AHS, Lashkarivand A, Valnes LM, Ringstad G, Eide PK. Prospective Safety Study of Intrathecal Gadobutrol in Different Doses. AJNR Am J Neuroradiol 2023; 44:511-516. [PMID: 37024308 PMCID: PMC10171383 DOI: 10.3174/ajnr.a7841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND AND PURPOSE In our clinical practice, we increasingly use intrathecal contrast-enhanced glymphatic MR imaging to assess CSF disturbances. However, because intrathecal MR imaging contrast agents such as gadobutrol (Gadovist; 1.0 mmol/mL) are used off-label, a thorough understanding of the safety profile is required. MATERIALS AND METHODS We performed a prospective safety study from August 2020 to June 2022 of intrathecal gadobutrol, including consecutive patients who received either 0.50, 0.25, or 0.10 mmol. Serious and nonserious adverse events were recorded systematically at 1-3 days, 4 weeks, and >6 months after the intrathecal administration. RESULTS The study included 196 patients who received intrathecal gadobutrol, including patients assessed for idiopathic normal pressure hydrocephalus (iNPH, n = 144) or patients examined for other CSF disorders (non-iNPH cohort; n = 52). The intrathecal gadobutrol doses were either 0.50 mmol (n = 56), 0.25 mmol (n = 111), or 0.10 mmol (n = 29). No serious adverse events were observed. Nonserious adverse events on days 1-3 after intrathecal gadobutrol were, to some degree, dose-dependent but mild-to-moderate, including severe headache, nausea, and/or dizziness in 6/196 (6.3%) patients, and they were more common in the non-iNPH than in the iNPH cohort. At 4 weeks, none reported severe nonserious adverse events, and 9/179 (5.0%) patients had mild-to-moderate symptoms. After >6 months, 2 patients reported mild headache. CONCLUSIONS The present study adds to the accumulating evidence that intrathecal gadobutrol in doses up to 0.50 is safe.
Collapse
Affiliation(s)
- A Sperre
- From the Departments of Neurosurgery (A.S., I.K., A.H.S.R., A.L., L.M.V., P.K.E.)
| | - I Karsrud
- From the Departments of Neurosurgery (A.S., I.K., A.H.S.R., A.L., L.M.V., P.K.E.)
| | - A H S Rodum
- From the Departments of Neurosurgery (A.S., I.K., A.H.S.R., A.L., L.M.V., P.K.E.)
| | - A Lashkarivand
- From the Departments of Neurosurgery (A.S., I.K., A.H.S.R., A.L., L.M.V., P.K.E.)
- Institute of Clinical Medicine (A.L., P.K.E.), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - L M Valnes
- From the Departments of Neurosurgery (A.S., I.K., A.H.S.R., A.L., L.M.V., P.K.E.)
| | - G Ringstad
- Department of Radiology and Nuclear Medicine (G.R.)
- Department of Geriatrics and Internal Medicine (G.R.), Sorlandet Hospital, Arendal, Norway
| | - P K Eide
- From the Departments of Neurosurgery (A.S., I.K., A.H.S.R., A.L., L.M.V., P.K.E.)
- Institute of Clinical Medicine (A.L., P.K.E.), Faculty of Medicine, University of Oslo, Oslo, Norway
- Neurosurgery (P.K.E.), Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
14
|
Eide PK, Lashkarivand A, Pripp A, Valnes LM, Hovd MH, Ringstad G, Blennow K, Zetterberg H. Plasma neurodegeneration biomarker concentrations associate with glymphatic and meningeal lymphatic measures in neurological disorders. Nat Commun 2023; 14:2084. [PMID: 37045847 PMCID: PMC10097687 DOI: 10.1038/s41467-023-37685-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Clearance of neurotoxic brain proteins via cerebrospinal fluid (CSF) to blood has recently emerged to be crucial, and plasma biomarkers of neurodegeneration were newly introduced to predict neurological disease. This study examines in 106 individuals with neurological disorders associations between plasma biomarkers [40 and 42 amino acid-long amyloid-β (Aβ40 and Aβ42), total-tau, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL)] and magnetic resonance imaging measures of CSF-mediated clearance from brain via extra-vascular pathways (proxy of glymphatic function) and CSF-to-blood clearance variables from pharmacokinetic modeling (proxy of meningeal lymphatic egress). We also examine how biomarkers vary during daytime and associate with subjective sleep quality. Plasma concentrations of neurodegeneration markers associate with indices of glymphatic and meningeal lymphatic functions in individual- and disease-specific manners, vary during daytime, but are unaffected by sleep quality. The results suggest that plasma concentrations of neurodegeneration biomarkers associate with measures of glymphatic and meningeal lymphatic function.
Collapse
Affiliation(s)
- Per Kristian Eide
- Dept. of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Aslan Lashkarivand
- Dept. of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Are Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Lars Magnus Valnes
- Dept. of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Markus Herberg Hovd
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Dept. of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal medicine, Sorlandet Hospital, Arendal, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
15
|
Vera Quesada CL, Rao SB, Torp R, Eide PK. Immunohistochemical visualization of lymphatic vessels in human dura mater: methodological perspectives. Fluids Barriers CNS 2023; 20:23. [PMID: 36978127 PMCID: PMC10044429 DOI: 10.1186/s12987-023-00426-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Despite greatly renewed interest concerning meningeal lymphatic function over recent years, the lymphatic structures of human dura mater have been less characterized. The available information derives exclusively from autopsy specimens. This study addressed methodological aspects of immunohistochemistry for visualization and characterization of lymphatic vessels in the dura of patients. METHODS Dura biopsies were obtained from the right frontal region of the patients with idiopathic normal pressure hydrocephalus (iNPH) who underwent shunt surgery as part of treatment. The dura specimens were prepared using three different methods: Paraformaldehyde (PFA) 4% (Method #1), paraformaldehyde (PFA) 0.5% (Method #2), and freeze-fixation (Method #3). They were further examined with immunohistochemistry using the lymphatic cell marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and as validation marker we used podoplanin (PDPN). RESULTS The study included 30 iNPH patients who underwent shunt surgery. The dura specimens were obtained average 16.1 ± 4.5 mm lateral to the superior sagittal sinus in the right frontal region (about 12 cm posterior to glabella). While lymphatic structures were seen in 0/7 patients using Method #1, it was found in 4/6 subjects (67%) with Method #2, while in 16/17 subjects (94%) using Method #3. To this end, we characterized three types of meningeal lymphatic vessels: (1) Lymphatic vessels in intimate contact with blood vessels. (2) Lymphatic vessels without nearby blood vessels. (3) Clusters of LYVE-1-expressing cells interspersed with blood vessels. In general, highest density of lymphatic vessels were observed towards the arachnoid membrane rather than towards the skull. CONCLUSIONS The visualization of meningeal lymphatic vessels in humans seems to be highly sensitive to the tissue processing method. Our observations disclosed most abundant lymphatic vessels towards the arachnoid membrane, and were seen either in close association with blood vessels or remote from blood vessels.
Collapse
Affiliation(s)
- César Luis Vera Quesada
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, PB 4950 Nydalen, Oslo, 0424, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Shreyas Balachandra Rao
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Reidun Torp
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, PB 4950 Nydalen, Oslo, 0424, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
16
|
Eide PK, Lindstrøm EK, Pripp AH, Valnes LM, Ringstad G. Physiological alterations of pineal recess crowding in symptomatic non-hydrocephalic pineal cysts. Brain Commun 2023; 5:fcad078. [PMID: 37501910 PMCID: PMC10371044 DOI: 10.1093/braincomms/fcad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/11/2023] [Accepted: 03/16/2023] [Indexed: 07/29/2023] Open
Abstract
Pineal cysts are prevalent in the population. Due to more widespread use of magnetic resonance imaging, an increasing number of symptomatic patients with non-hydrocephalic pineal cysts are referred to neurologists and neurosurgeons. Currently, there is no generally accepted theoretical framework for linking symptoms to a pineal cyst. We have previously suggested that cyst-induced crowding of the pineal recess may affect venous runoff from the deep cerebral veins crossing the cyst. However, evidence underpinning this hypothesis is sparse. In the present study, we asked whether crowding of the pineal recess without imaging signs of hydrocephalus may be accompanied with alterations in blood flow of the internal cerebral veins, cerebrospinal fluid flow in the Sylvian aqueduct and cerebrospinal fluid-mediated tracer clearance from the brain along extravascular pathways (referred to as glymphatic function). This prospective, observational study included symptomatic individuals with non-hydrocephalic pineal cysts who underwent a standardized magnetic resonance imaging protocol (n = 25): Eleven patients were treated surgically with craniotomy and cyst extirpation and 14 individuals were managed conservatively without surgery. Our findings suggest that cyst-induced crowding of the pineal recess may have brain-wide effects: (i) There was a significant negative correlation between degree of crowding within the pineal recess and change in maximum venous flow velocity at the cyst, and a significant positive correlation between maximum venous flow velocity change at the cyst and net cerebrospinal fluid flow in the Sylvian aqueduct; (ii) increased degree of crowding in the pineal recess was accompanied by significantly impaired glymphatic enrichment in the cerebral cortex and subcortical white matter, indicative of a brain-wide effect in this cohort who also reported markedly impaired subjective sleep quality; (iii) there was a significant negative correlation between the apparent diffusion coefficient (suggestive of interstitial water content) within the thalamus and glymphatic enrichment of tracer and (iv) pineal recess crowding associated with symptoms. Comparison of the surgical cases [in whom 10/11 (91%) reported marked clinical improvement at follow-up] and the conservatively managed cases [in whom 1/14 (7%) reported marked clinical improvement at follow-up] showed differences in pre-treatment glymphatic tracer enrichment as well as differences in tracer enrichment in subarachnoid cerebrospinal fluid spaces. Taken together, we interpret these observations to support the hypothesis that cyst-induced crowding of the pineal recess without hydrocephalus may alter blood flow of the internal cerebral veins and cerebrospinal fluid flow and even cause brain-wide impairment of glymphatic transport with possible implications for cerebrospinal fluid transport of trophic factors such as melatonin.
Collapse
Affiliation(s)
- Per Kristian Eide
- Correspondence to: Per Kristian Eide, MD, PhD Department of Neurosurgery Oslo University Hospital—Rikshospitalet Pb 4950 Nydalen, Sognvannsveien 20 N-0424 Oslo, Norway E-mail:
| | | | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, N-0424 Oslo, Norway
- Faculty of Health Sciences, Oslo Metropolitan University, N-0176 Oslo, Norway
| | - Lars Magnus Valnes
- Department of Neurosurgery, Oslo University Hospital—Rikshospitalet, N-0424 Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital- Rikshospitalet, N-0424 Oslo, Norway
- Department of Geriatrics and Internal Medicine, Sorlandet Hospital, N-4838 Arendal, Norway
| |
Collapse
|
17
|
Melin E, Ringstad G, Valnes LM, Eide PK. Human parasagittal dura is a potential neuroimmune interface. Commun Biol 2023; 6:260. [PMID: 36906686 PMCID: PMC10008553 DOI: 10.1038/s42003-023-04634-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023] Open
Abstract
Parasagittal dura (PSD) is located on both sides of the superior sagittal sinus and harbours arachnoid granulations and lymphatic vessels. Efflux of cerebrospinal fluid (CSF) to human PSD has recently been shown in vivo. Here we obtain PSD volumes from magnetic resonance images in 76 patients under evaluation for CSF disorders and correlate them to age, sex, intracranial volumes, disease category, sleep quality, and intracranial pressure. In two subgroups, we also analyze tracer dynamics and time to peak tracer level in PSD and blood. PSD volume is not explained by any single assessed variable, but tracer level in PSD is strongly associated with tracer in CSF and brain. Furthermore, peak tracer in PSD occurs far later than peak tracer in blood, implying that PSD is no major efflux route for CSF. These observations may indicate that PSD is more relevant as a neuroimmune interface than as a CSF efflux route.
Collapse
Affiliation(s)
- Erik Melin
- Department of Radiology, Østfold Hospital Trust, Grålum, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal medicine, Sorlandet Hospital, Arendal, Norway
| | - Lars Magnus Valnes
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Per Kristian Eide
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
| |
Collapse
|
18
|
The Role of Glymphatic System in Alzheimer’s and Parkinson’s Disease Pathogenesis. Biomedicines 2022; 10:biomedicines10092261. [PMID: 36140362 PMCID: PMC9496080 DOI: 10.3390/biomedicines10092261] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of neurodegenerative dementia, whilst Parkinson’s disease (PD) is a neurodegenerative movement disorder. These two neurodegenerative disorders share the accumulation of toxic proteins as a pathological hallmark. The lack of definitive disease-modifying treatments for these neurogenerative diseases has led to the hypothesis of new pathogenic mechanisms to target and design new potential therapeutic approaches. The recent observation that the glymphatic system is supposed to be responsible for the movement of cerebrospinal fluid into the brain and clearance of metabolic waste has led to study its involvement in the pathogenesis of these classic proteinopathies. Aquaporin-4 (AQP4), a water channel located in the endfeet of astrocyte membrane, is considered a primary driver of the glymphatic clearance system, and defective AQP4-mediated glymphatic drainage has been linked to proteinopathies. The objective of the present review is to present the recent body of knowledge that links the glymphatic system to the pathogenesis of AD and PD disease and other lifestyle factors such as sleep deprivation and exercise that may influence glymphatic system function. We will also focus on the potential neuroimaging approaches that could identify a neuroimaging marker to detect glymphatic system changes.
Collapse
|