1
|
Sandström T, Bosson JA, Muala A, Kabéle M, Pourazar J, Boman C, Rankin G, Mudway IS, Blomberg A, Friberg M. Acute airway inflammation following controlled biodiesel exhaust exposure in healthy subjects. Part Fibre Toxicol 2024; 21:53. [PMID: 39639357 PMCID: PMC11619701 DOI: 10.1186/s12989-024-00614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Exposure to standard petrodiesel exhaust is linked to adverse health effects. Moreover, there is a mounting request to replace fossil-based fuels with renewable and sustainable alternatives and, therefore, rapeseed methyl ester (RME) and other biofuels have been introduced. However, recent toxicological research has indicated that biodiesel exhaust may also induce adverse health-related events. AIM To determine whether exposure to 100% RME biodiesel (BD100) exhaust would cause an acute airway neutrophilic recruitment in humans. METHODS Fourteen healthy subjects underwent exposure to diluted BD100 exhaust and filtered air for 1-h, in a blinded, random fashion. Bronchoscopy with endobronchial mucosal biopsies, bronchial wash (BW) and bronchoalveolar lavage (BAL) was performed six hours after exposure. Differential cell counts and inflammatory markers were determined in the supernatant and biopsies were stained immunohistochemically. RESULTS Compared with filtered air, BD100 exhaust exposure increased bronchial mucosal endothelial P-selectin adhesion molecule expression, as well as neutrophil, mast cell and CD68 + macrophage numbers. An increased influx of neutrophils and machrophages was also seen in BW. CONCLUSION Exposure to biodiesel exhaust was associated with an acute airway inflammation that appeared similar to preceding petrodiesel exposure studies. The present findings, together with the recently reported adverse cardiovascular effects after similar biodiesel exposure, indicate that biodiesel is not free of toxicity and may affect human health.
Collapse
Affiliation(s)
- Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Jenny A Bosson
- Department of Public Health and Clinical Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Ala Muala
- Department of Public Health and Clinical Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Mikael Kabéle
- Department of Public Health and Clinical Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Jamshid Pourazar
- Department of Public Health and Clinical Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Christoffer Boman
- Thermochemical Energy Conversion Laboratory, Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
| | - Gregory Rankin
- Department of Public Health and Clinical Medicine, Umeå University, SE-901 87, Umeå, Sweden
- Swedish Defence Research Agency, Umeå, Sweden
| | - Ian S Mudway
- NIHR Health Protection Research Unit in Environmental Exposures and Health, MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Maria Friberg
- Department of Public Health and Clinical Medicine, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
2
|
Uski OJ, Rankin G, Wingfors H, Magnusson R, Boman C, Lindgren R, Muala A, Blomberg A, Bosson JA, Sandström T. The Toxic Effects of Petroleum Diesel, Biodiesel, and Renewable Diesel Exhaust Particles on Human Alveolar Epithelial Cells. J Xenobiot 2024; 14:1432-1449. [PMID: 39449421 PMCID: PMC11503417 DOI: 10.3390/jox14040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
The use of alternative diesel fuels has increased due to the demand for renewable energy sources. There is limited knowledge regarding the potential health effects caused by exhaust emissions from biodiesel- and renewable diesel-fueled engines. This study investigates the toxic effects of particulate matter (PM) emissions from a diesel engine powered by conventional petroleum diesel fuel (SD10) and two biodiesel and renewable diesel fuels in vitro. The fuels used were rapeseed methyl ester (RME), soy methyl ester (SME), and Hydrogenated Vegetable Oil (HVO), either pure or as 50% blends with SD10. Additionally, a 5% RME blend was also used. The highest concentration of polycyclic aromatic hydrocarbon emissions and elemental carbon (EC) was found in conventional diesel and the 5% RME blend. HVO PM samples also exhibited a high amount of EC. A dose-dependent genotoxic response was detected with PM from SD10, pure SME, and RME as well as their blends. Reactive oxygen species levels were several times higher in cells exposed to PM from SD10, pure HVO, and especially the 5% RME blend. Apoptotic cell death was observed in cells exposed to PM from SD10, 5% RME blend, the 50% SME blend, and HVO samples. In conclusion, all diesel PM samples, including biodiesel and renewable diesel fuels, exhibited toxicity.
Collapse
Affiliation(s)
- Oskari J. Uski
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Gregory Rankin
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Håkan Wingfors
- CBRN Defence and Security, Swedish Defence Research Agency, 90182 Umeå, Sweden
| | - Roger Magnusson
- CBRN Defence and Security, Swedish Defence Research Agency, 90182 Umeå, Sweden
| | - Christoffer Boman
- Department of Applied Physics and Electronics, Thermochemical Energy Conversion Laboratory, Umeå University, 90187 Umeå, Sweden
| | - Robert Lindgren
- Department of Applied Physics and Electronics, Thermochemical Energy Conversion Laboratory, Umeå University, 90187 Umeå, Sweden
| | - Ala Muala
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Jenny A. Bosson
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| |
Collapse
|
3
|
Srivastava S, Pandey VK, Singh K, Dar AH, Dash KK, Shams R, Mukarram Shaikh A, Kovács B. Advances in detection technology for authentication of vegetable oils: A comprehensive review. Heliyon 2024; 10:e34759. [PMID: 39170539 PMCID: PMC11336277 DOI: 10.1016/j.heliyon.2024.e34759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
Biomarkers are specific indicators that can be used to authenticate vegetable oils by reflecting unique characteristics such as variety or geographical origin. Biomarkers can originate from the primary components of the vegetable oil itself or from contaminants and trace substances linked to processing methods or adulterants. The review highlights the key findings in the identification of novel biomarkers for vegetable oil authentication. Various analytical techniques have proven effective in distinguishing unique biomarkers associated with specific vegetable oil varieties or geographical origins. The use of biomarkers of vegetable oils and associated contaminants or trace substances offers a comprehensive approach to authentication. However, the identification of novel biomarkers holds immense potential for enhancing food safety, preventing fraud, and safeguarding consumer health in the vegetable oil industry. The ongoing research and advancements in biomarker identification represent a promising avenue for addressing authenticity concerns in vegetable oils.
Collapse
Affiliation(s)
- Shivangi Srivastava
- Department of Food Technology, Harcourt Butler Technical University, Nawabganj, Kanpur, Uttar Pradesh, India
| | - Vinay Kumar Pandey
- Research & Development Cell, Biotechnology Department, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad, 121004, Haryana, India
| | - Kunal Singh
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road Barabanki, Uttar Pradesh, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Ayaz Mukarram Shaikh
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| |
Collapse
|
4
|
Landwehr KR, Mead-Hunter R, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. The respiratory health effects of acute in vivo diesel and biodiesel exhaust in a mouse model. CHEMOSPHERE 2024; 362:142621. [PMID: 38880256 DOI: 10.1016/j.chemosphere.2024.142621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Biodiesel, a renewable diesel fuel that can be created from almost any natural fat or oil, is promoted as a greener and healthier alternative to commercial mineral diesel without the supporting experimental data to back these claims. The aim of this research was to assess the health effects of acute exposure to two types of biodiesel exhaust, or mineral diesel exhaust or air as a control in mice. Male BALB/c mice were exposed for 2-hrs to diluted exhaust obtained from a diesel engine running on mineral diesel, Tallow biodiesel or Canola biodiesel. A room air exposure group was used as a control. Twenty-four hours after exposure, a variety of respiratory related end point measurements were assessed, including lung function, responsiveness to methacholine and airway and systemic immune responses. RESULTS Tallow biodiesel exhaust exposure resulted in the greatest number of significant effects compared to Air controls, including increased airway hyperresponsiveness (178.1 ± 31.3% increase from saline for Tallow biodiesel exhaust exposed mice compared to 155.8 ± 19.1 for Air control), increased airway inflammation (63463 ± 13497 cells/mL in the bronchoalveolar lavage of Tallow biodiesel exhaust exposed mice compared to 40561 ± 11800 for Air exposed controls) and indications of immune dysregulation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer significant effects compared to Air controls with a slight increase in airway resistance at functional residual capacity and indications of immune dysregulation. Exposure to mineral diesel exhaust resulted in significant effects between that of the two biodiesels with increased airway hyperresponsiveness and indications of immune dysregulation. CONCLUSION These data show that a single, brief exposure to biodiesel exhaust can result in negative health impacts in a mouse model, and that the biological effects of exposure change depending on the feedstock used to make the biodiesel.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia.
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth, WA, 6151, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia; Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, 6009, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia
| |
Collapse
|
5
|
Faherty T, Badri H, Hu D, Voliotis A, Pope FD, Mudway I, Smith J, McFiggans G. HIPTox-Hazard Identification Platform to Assess the Health Impacts from Indoor and Outdoor Air Pollutant Exposures, through Mechanistic Toxicology: A Single-Centre Double-Blind Human Exposure Trial Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:284. [PMID: 38541284 PMCID: PMC11154498 DOI: 10.3390/ijerph21030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/14/2024] [Accepted: 02/24/2024] [Indexed: 06/09/2024]
Abstract
Over the past decade, our understanding of the impact of air pollution on short- and long-term population health has advanced considerably, focusing on adverse effects on cardiovascular and respiratory systems. There is, however, increasing evidence that air pollution exposures affect cognitive function, particularly in susceptible groups. Our study seeks to assess and hazard rank the cognitive effects of prevalent indoor and outdoor pollutants through a single-centre investigation on the cognitive functioning of healthy human volunteers aged 50 and above with a familial predisposition to dementia. Participants will all undertake five sequential controlled exposures. The sources of the air pollution exposures are wood smoke, diesel exhaust, cleaning products, and cooking emissions, with clean air serving as the control. Pre- and post-exposure spirometry, nasal lavage, blood sampling, and cognitive assessments will be performed. Repeated testing pre and post exposure to controlled levels of pollutants will allow for the identification of acute changes in functioning as well as the detection of peripheral markers of neuroinflammation and neuronal toxicity. This comprehensive approach enables the identification of the most hazardous components in indoor and outdoor air pollutants and further understanding of the pathways contributing to neurodegenerative diseases. The results of this project have the potential to facilitate greater refinement in policy, emphasizing health-relevant pollutants and providing details to aid mitigation against pollutant-associated health risks.
Collapse
Affiliation(s)
- Thomas Faherty
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Huda Badri
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, 2nd Floor Education and Research Centre, Wythenshawe Hospital, Southmoor Rd., Manchester M23 9LT, UK; (H.B.); (J.S.)
- Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Dawei Hu
- Centre for Atmospheric Sciences, Department of Earth and Environmental Science, School of Natural Sciences, University of Manchester, Manchester M13 9PL, UK; (D.H.); (A.V.); (G.M.)
| | - Aristeidis Voliotis
- Centre for Atmospheric Sciences, Department of Earth and Environmental Science, School of Natural Sciences, University of Manchester, Manchester M13 9PL, UK; (D.H.); (A.V.); (G.M.)
- National Centre for Atmospheric Science, Department of Earth and Environmental Science, University of Manchester, Manchester M13 9PL, UK
| | - Francis D. Pope
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Ian Mudway
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK;
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
- NIHR Health Protection Research Unit in Chemical and Radiation Threats and Hazards, Imperial College London, London W12 0BZ, UK
| | - Jacky Smith
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, 2nd Floor Education and Research Centre, Wythenshawe Hospital, Southmoor Rd., Manchester M23 9LT, UK; (H.B.); (J.S.)
- Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Gordon McFiggans
- Centre for Atmospheric Sciences, Department of Earth and Environmental Science, School of Natural Sciences, University of Manchester, Manchester M13 9PL, UK; (D.H.); (A.V.); (G.M.)
| |
Collapse
|
6
|
Vallabani NVS, Gruzieva O, Elihn K, Juárez-Facio AT, Steimer SS, Kuhn J, Silvergren S, Portugal J, Piña B, Olofsson U, Johansson C, Karlsson HL. Toxicity and health effects of ultrafine particles: Towards an understanding of the relative impacts of different transport modes. ENVIRONMENTAL RESEARCH 2023; 231:116186. [PMID: 37224945 DOI: 10.1016/j.envres.2023.116186] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a wide range of adverse health effects, but it is still unclear how particles from various transport modes differ in terms of toxicity and associations with different human health outcomes. This literature review aims to summarize toxicological and epidemiological studies of the effect of ultrafine particles (UFPs), also called nanoparticles (NPs, <100 nm), from different transport modes with a focus on vehicle exhaust (particularly comparing diesel and biodiesel) and non-exhaust as well as particles from shipping (harbor), aviation (airport) and rail (mainly subway/underground). The review includes both particles collected in laboratory tests and the field (intense traffic environments or collected close to harbor, airport, and in subway). In addition, epidemiological studies on UFPs are reviewed with special attention to studies aimed at distinguishing the effects of different transport modes. Results from toxicological studies indicate that both fossil and biodiesel NPs show toxic effects. Several in vivo studies show that inhalation of NPs collected in traffic environments not only impacts the lung, but also triggers cardiovascular effects as well as negative impacts on the brain, although few studies compared NPs from different sources. Few studies were found on aviation (airport) NPs, but the available results suggest similar toxic effects as traffic-related particles. There is still little data related to the toxic effects linked to several sources (shipping, road and tire wear, subway NPs), but in vitro results highlighted the role of metals in the toxicity of subway and brake wear particles. Finally, the epidemiological studies emphasized the current limited knowledge of the health impacts of source-specific UFPs related to different transport modes. This review discusses the necessity of future research for a better understanding of the relative potencies of NPs from different transport modes and their use in health risk assessment.
Collapse
Affiliation(s)
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | | | - Sarah S Steimer
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Jana Kuhn
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sanna Silvergren
- Environment and Health Administration, 104 20, Stockholm, Sweden
| | - José Portugal
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Ulf Olofsson
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christer Johansson
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden; Environment and Health Administration, 104 20, Stockholm, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
7
|
Rahman M, Upadhyay S, Ganguly K, Introna M, Ji J, Boman C, Muala A, Blomberg A, Sandström T, Palmberg L. Comparable Response Following Exposure to Biodiesel and Diesel Exhaust Particles in Advanced Multicellular Human Lung Models. TOXICS 2023; 11:532. [PMID: 37368632 DOI: 10.3390/toxics11060532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Biodiesel is considered to be a sustainable alternative for fossil fuels such as petroleum-based diesel. However, we still lack knowledge about the impact of biodiesel emissions on humans, as airways and lungs are the primary target organs of inhaled toxicants. This study investigated the effect of exhaust particles from well-characterized rapeseed methyl ester (RME) biodiesel exhaust particles (BDEP) and petro-diesel exhaust particles (DEP) on primary bronchial epithelial cells (PBEC) and macrophages (MQ). The advanced multicellular physiologically relevant bronchial mucosa models were developed using human primary bronchial epithelial cells (PBEC) cultured at air-liquid interface (ALI) in the presence or absence of THP-1 cell-derived macrophages (MQ). The experimental set-up used for BDEP and DEP exposures (18 µg/cm2 and 36 µg/cm2) as well as the corresponding control exposures were PBEC-ALI, MQ-ALI, and PBEC co-cultured with MQ (PBEC-ALI/MQ). Following exposure to both BDEP and DEP, reactive oxygen species as well as the stress protein heat shock protein 60 were upregulated in PBEC-ALI and MQ-ALI. Expression of both pro-inflammatory (M1: CD86) and repair (M2: CD206) macrophage polarization markers was increased in MQ-ALI after both BDEP and DEP exposures. Phagocytosis activity of MQ and the phagocytosis receptors CD35 and CD64 were downregulated, whereas CD36 was upregulated in MQ-ALI. Increased transcript and secreted protein levels of CXCL8, as well as IL-6 and TNF-α, were detected following both BDEP and DEP exposure at both doses in PBEC-ALI. Furthermore, the cyclooxygenase-2 (COX-2) pathway, COX-2-mediated histone phosphorylation and DNA damage were all increased in PBEC-ALI following exposure to both doses of BDEP and DEP. Valdecoxib, a COX-2 inhibitor, reduced the level of prostaglandin E2, histone phosphorylation, and DNA damage in PBEC-ALI following exposure to both concentrations of BDEP and DEP. Using physiologically relevant multicellular human lung mucosa models with human primary bronchial epithelial cells and macrophages, we found BDEP and DEP to induce comparable levels of oxidative stress, inflammatory response, and impairment of phagocytosis. The use of a renewable carbon-neutral biodiesel fuel does not appear to be more favorable than conventional petroleum-based alternative, as regards of its potential for adverse health effects.
Collapse
Affiliation(s)
- Mizanur Rahman
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Swapna Upadhyay
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Micol Introna
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jie Ji
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Christoffer Boman
- Thermochemical Energy Conversion Laboratory, Department of Applied Physics and Electronics, Umeå University, 901 87 Umeå, Sweden
| | - Ala Muala
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Lena Palmberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
8
|
Ogbunuzor C, Fransen LFH, Talibi M, Khan Z, Dalzell A, Laycock A, Southern D, Eveleigh A, Ladommatos N, Hellier P, Leonard MO. Biodiesel exhaust particle airway toxicity and the role of polycyclic aromatic hydrocarbons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115013. [PMID: 37182301 DOI: 10.1016/j.ecoenv.2023.115013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Renewable alternatives to fossil diesel (FD) including fatty acid methyl ester (FAME) biodiesel have become more prevalent. However, toxicity of exhaust material from their combustion, relative to the fuels they are displacing has not been fully characterised. This study was carried out to examine particle toxicity within the lung epithelium and the role for polycyclic aromatic hydrocarbons (PAHs). Exhaust particles from a 20% (v/v) blend of FAME biodiesel had little impact on primary airway epithelial toxicity compared to FD derived particles but did result in an altered profile of PAHs, including an increase in particle bound carcinogenic B[a]P. Higher blends of biodiesel had significantly increased levels of more carcinogenic PAHs, which was associated with a higher level of stress response gene expression including CYP1A1, NQO1 and IL1B. Removal of semi-volatile material from particulates abolished effects on airway cells. Particle size difference and toxic metals were discounted as causative for biological effects. Finally, combustion of a single component fuel (Methyl decanoate) containing the methyl ester molecular structure found in FAME mixtures, also produced more carcinogenic PAHs at the higher fuel blend levels. These results indicate the use of FAME biodiesel at higher blends may be associated with an increased particle associated carcinogenic and toxicity risk.
Collapse
Affiliation(s)
- Christopher Ogbunuzor
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | | | - Midhat Talibi
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | - Zuhaib Khan
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | - Abigail Dalzell
- Toxicology Department, UK Health Security Agency, Harwell Campus, OX11 0RQ, UK
| | - Adam Laycock
- Toxicology Department, UK Health Security Agency, Harwell Campus, OX11 0RQ, UK
| | - Daniel Southern
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | - Aaron Eveleigh
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | - Nicos Ladommatos
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | - Paul Hellier
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | | |
Collapse
|
9
|
Landwehr KR, Mead-Hunter R, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. Respiratory Health Effects of In Vivo Sub-Chronic Diesel and Biodiesel Exhaust Exposure. Int J Mol Sci 2023; 24:ijms24065130. [PMID: 36982203 PMCID: PMC10049281 DOI: 10.3390/ijms24065130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Biodiesel, which can be made from a variety of natural oils, is currently promoted as a sustainable, healthier replacement for commercial mineral diesel despite little experimental data supporting this. The aim of our research was to investigate the health impacts of exposure to exhaust generated by the combustion of diesel and two different biodiesels. Male BALB/c mice (n = 24 per group) were exposed for 2 h/day for 8 days to diluted exhaust from a diesel engine running on ultra-low sulfur diesel (ULSD) or Tallow or Canola biodiesel, with room air exposures used as control. A variety of respiratory-related end-point measurements were assessed, including lung function, responsiveness to methacholine, airway inflammation and cytokine response, and airway morphometry. Exposure to Tallow biodiesel exhaust resulted in the most significant health impacts compared to Air controls, including increased airway hyperresponsiveness and airway inflammation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer negative health effects. Exposure to ULSD resulted in health impacts between those of the two biodiesels. The health effects of biodiesel exhaust exposure vary depending on the feedstock used to make the fuel.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth, WA 6151, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
10
|
Effects of Particulate Matter on Inflammation and Thrombosis: Past Evidence for Future Prevention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148771. [PMID: 35886623 PMCID: PMC9317970 DOI: 10.3390/ijerph19148771] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 02/04/2023]
Abstract
Ambient air pollution has become a common problem worldwide. Exposure to pollutant particles causes many health conditions, having a particular impact on pulmonary and cardiovascular disease. Increased understanding of the pathological processes related to these conditions may facilitate the prevention of the adverse impact of air pollution on our physical health. Evidence from in vitro, in vivo, and clinical studies has consistently shown that exposure to particulate matter could induce the inflammatory responses such as IL-6, TNF-α, IL-1β, as well as enhancing the oxidative stress. These result in vascular injury, adhesion molecule release, platelet activation, and thrombin generation, ultimately leading to a prothrombotic state. In this review, evidence on the effects of particulate matter on inflammation, oxidative stress, adhesion molecules, and coagulation pathways in enhancing the risk of thrombosis is comprehensively summarized and discussed. The currently available outcomes of interventional studies at a cellular level and clinical reports are also presented and discussed.
Collapse
|
11
|
Maafa IM. Biodiesel Synthesis from High Free-Fatty-Acid Chicken Fat using a Scrap-Tire Derived Solid Acid Catalyst and KOH. Polymers (Basel) 2022; 14:643. [PMID: 35160632 PMCID: PMC8839443 DOI: 10.3390/polym14030643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/25/2022] Open
Abstract
A heterogeneous solid acid catalyst was synthesized using tire polymer waste (TPW) for the esterification of waste chicken fat (CF) enriched with fatty acids. The TPW was carbonized and functionalized with concentrated sulfuric acid under various sulfonation conditions to obtain a sulfonated tire polymer char (TPC-SO3H) catalyst. The TPC-SO3H catalyst was further characterized via acid-base titration (to ascertain the total concentration of acid), X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), and Brunauer-Emmett-Teller (BET) analysis. The esterification reaction conditions of extracted chicken fat with methanol and the viability of catalyst reuse were also investigated. The composition of the free fatty acid (FFA) decreased to below 1% under optimum reaction conditions of 5% TPC-SO3H catalyst, the methanol-to-CF molar-ratio of 15:1, and a reaction time of 120 min at 70 °C. The catalyst preserved its conversion efficiency above 90%, even after three cycles. The results demonstrate that the catalyst is applicable and efficient in the esterification of raw materials containing various fatty acid compositions since different carbonized materials have distinct abilities to combine acid groups. Furthermore, after de-acidification of CF-FFA by the as-prepared TPC-SO3H catalyst, the neutral CF was transesterified completely to biodiesel and characterized via Fourier Transform Infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy and physicochemical analysis. This work unveils a promising technique for utilizing tire waste generated in large quantities for the development of a novel heterogeneous acid catalyst for biodiesel production.
Collapse
Affiliation(s)
- Ibrahim M Maafa
- Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
12
|
Krais AM, Essig JY, Gren L, Vogs C, Assarsson E, Dierschke K, Nielsen J, Strandberg B, Pagels J, Broberg K, Lindh CH, Gudmundsson A, Wierzbicka A. Biomarkers after Controlled Inhalation Exposure to Exhaust from Hydrogenated Vegetable Oil (HVO). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6492. [PMID: 34208511 PMCID: PMC8296316 DOI: 10.3390/ijerph18126492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 01/23/2023]
Abstract
Hydrogenated vegetable oil (HVO) is a renewable diesel fuel used to replace petroleum diesel. The organic compounds in HVO are poorly characterized; therefore, toxicological properties could be different from petroleum diesel exhaust. The aim of this study was to evaluate the exposure and effective biomarkers in 18 individuals after short-term (3 h) exposure to HVO exhaust and petroleum diesel exhaust fumes. Liquid chromatography tandem mass spectrometry was used to analyze urinary biomarkers. A proximity extension assay was used for the measurement of inflammatory proteins in plasma samples. Short-term (3 h) exposure to HVO exhaust (PM1 ~1 µg/m3 and ~90 µg/m3 for vehicles with and without exhaust aftertreatment systems, respectively) did not increase any exposure biomarker, whereas petroleum diesel exhaust (PM1 ~300 µg/m3) increased urinary 4-MHA, a biomarker for p-xylene. HVO exhaust from the vehicle without exhaust aftertreatment system increased urinary 4-HNE-MA, a biomarker for lipid peroxidation, from 64 ng/mL urine (before exposure) to 141 ng/mL (24 h after exposure, p < 0.001). There was no differential expression of plasma inflammatory proteins between the HVO exhaust and control exposure group. In conclusion, short-term exposure to low concentrations of HVO exhaust did not increase urinary exposure biomarkers, but caused a slight increase in lipid peroxidation associated with the particle fraction.
Collapse
Affiliation(s)
- Annette M. Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Julie Y. Essig
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Louise Gren
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, SE-22100 Lund, Sweden; (L.G.); (J.P.); (A.G.); (A.W.)
- NanoLund, Center for Nanoscience, Lund University, SE-22100 Lund, Sweden
| | - Carolina Vogs
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden;
| | - Eva Assarsson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Katrin Dierschke
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Jörn Nielsen
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Bo Strandberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Joakim Pagels
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, SE-22100 Lund, Sweden; (L.G.); (J.P.); (A.G.); (A.W.)
- NanoLund, Center for Nanoscience, Lund University, SE-22100 Lund, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Christian H. Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Anders Gudmundsson
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, SE-22100 Lund, Sweden; (L.G.); (J.P.); (A.G.); (A.W.)
- NanoLund, Center for Nanoscience, Lund University, SE-22100 Lund, Sweden
| | - Aneta Wierzbicka
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, SE-22100 Lund, Sweden; (L.G.); (J.P.); (A.G.); (A.W.)
- NanoLund, Center for Nanoscience, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|