1
|
Ballon Romero SS, Fuh LJ, Hung SY, Lee YC, Huang YC, Chien SY, Chen YH. Electroacupuncture exerts prolonged analgesic and neuroprotective effects in a persistent dental pain model induced by multiple dental pulp injuries: GABAergic interneurons-astrocytes interaction. Front Immunol 2023; 14:1213710. [PMID: 37954604 PMCID: PMC10639134 DOI: 10.3389/fimmu.2023.1213710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Pain within the trigeminal system, particularly dental pain, is poorly understood. This study aimed to determine whether single or multiple dental pulp injuries induce persistent pain, its association with trigeminal central nociceptive pathways and whether electroacupuncture (EA) provides prolonged analgesic and neuroprotective effects in a persistent dental pain model. Models of single dental pulp injury (SDPI) and multiple dental pulp injuries (MDPI) were used to induce trigeminal neuropathic pain. The signs of dental pain-related behavior were assessed using the mechanical head withdrawal threshold (HWT). Immunofluorescence and western blot protocols were used to monitor astrocyte activation, changes in apoptosis-related proteins, and GABAergic interneuron plasticity. SDPI mice exhibited an initial marked decrease in HWT from days one to 14, followed by progressive recovery from days 21 to 42. From days 49 to 70, the HWT increased and returned to the control values. In contrast, MDPI mice showed a persistent decrease in HWT from days one to 70. MDPI increased glial fibrillary acidic protein (GFAP) and decreased glutamine synthetase (GS) and glutamate transporter-1 (GLT1) expression in the Vi/Vc transition zone of the brainstem on day 70, whereas no changes in astrocytic markers were observed on day 70 after SDPI. Increased expression of cleaved cysteine-aspartic protease-3 (cleaved caspase-3) and Bcl-2-associated X protein (Bax), along with decreased B-cell lymphoma/leukemia 2 (Bcl-2), were observed at day 70 after MDPI but not after SDPI. The downregulation of glutamic acid decarboxylase (GAD65) expression was observed on day 70 only after MDPI. The effects of MDPI-induced lower HWT from days one to 70 were attenuated by 12 sessions of EA treatment (days one to 21 after MDPI). Changes in astrocytic GFAP, GS, and GLT-1, along with cleaved caspase-3, Bax, Bcl-2, and GAD65 expression observed 70 days after MDPI, were reversed by EA treatment. The results suggest that persistent dental pain in mice was induced by MDPI but not by SDPI. This effect was associated with trigeminal GABAergic interneuron plasticity along with morphological and functional changes in astrocytes. EA exerts prolonged analgesic and neuroprotective effects that might be associated with the modulation of neuron-glia crosstalk mechanisms.
Collapse
Affiliation(s)
| | - Lih-Jyh Fuh
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Shih-Ya Hung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Division of Surgery, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chen Lee
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Department of Acupuncture, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chuen Huang
- Department of Medical Research, China Medical University Hospital, School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Szu-Yu Chien
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
2
|
Farhad-Mollashahi N, Moghadam MF, Aslani SMJ, Mollashahi F. Pulp sensibility tests responses in patients with anxiety and depression. J Clin Exp Dent 2022; 14:e380-e384. [PMID: 35582351 PMCID: PMC9094724 DOI: 10.4317/jced.59242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background In view of the importance of pulp sensibility tests in clinical decision-making and the impact of psychological factors on test results, we evaluated in this study dental pulp responses to pulp sensibility tests (ie, cold and electric) in patients with anxiety and depression. Material and Methods A number of 90 people age 20 to 30 participated in the study, including 30 healthy and 60 with anxiety and depression, whose disorder was approved by a psychiatrist based on the Symptom Checklist 90-R questionnaire. Pulp sensibility tests included electric and cold ones were performed on lateral mandibular teeth. The cold test results were recorded based on the visual analogue scale (VAS) pain scoring (0 no response, 10 worst pain). Electric pulp test was performed using a digital pulp tester. The lowest current that stimulated a pulp response was recorded. The data were analyzed using the Mann-Whitney and Kruskal-Wallis tests. Results The cold test pain intensity was significantly higher in patients than in healthy subjects and was significantly associated with the severity of anxiety and depression. In addition, the electric pulp test current to evoke a response was significantly lower in patients than in healthy subjects and was also significantly associated with the severity of anxiety and depression. Conclusions Given the limitations of this study, anxiety and depression significantly affect the results of pulp sensibility tests. Key words:Anxiety, Cold pulp test, depression, electric pulp testing.
Collapse
Affiliation(s)
- Narges Farhad-Mollashahi
- Associate Professor, Oral and Dental Disease Research Center, Department of Endodontics, school of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahboubeh-Firouzkouhi Moghadam
- Department of Psychiatry, Research Center for Children and Adolescents Health (RCCAH), Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyed-Mohammad-Javad Aslani
- Resident of Endodontics, School of Dentistry, Zahedan University of Medical Sciences and Health Services, Zahedan, Iran
| | | |
Collapse
|
3
|
Yu F, Li M, Wang Q, Wang J, Wu S, Zhou R, Jiang H, Li X, Zhou Y, Yang X, He X, Cheng Y, Ren X, Zhang H, Tian M. Spatiotemporal dynamics of brain function during the natural course in a dental pulp injury model. Eur J Nucl Med Mol Imaging 2022; 49:2716-2722. [PMID: 35304628 PMCID: PMC9206688 DOI: 10.1007/s00259-022-05764-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/11/2022] [Indexed: 12/01/2022]
Abstract
Purpose Toothache, a common disorder afflicting most people, shows distinct features at different clinical stages. This study aimed to depict metabolic changes in brain and investigate the potential mechanism involved in the aberrant affective behaviors during the natural process of toothache. Methods We investigated the spatiotemporal patterns of brain function during the natural course of toothache in a rat model of dental pulp injury (DPI) by using positron emission tomography (PET). Results Glucose metabolism peaked on the 3rd day and gradually decreased in several brain regions after DPI, which was in line with the behavioral and histological results. PET imaging showed that visual pathway was involved in the regulation of toothache. Meanwhile, the process of emotional regulation underlying toothache was mediated by N-methyl-D-aspartic receptor subunit 2B (NR2B) in the caudal anterior cingulate cortex (cACC). Conclusion Our results revealed the spatiotemporal neurofunctional patterns during toothache process and preliminarily elucidated the role of NR2B in cACC in the regulation of toothache-related affective behaviors. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05764-2.
Collapse
Affiliation(s)
- Feiyan Yu
- Department of Periodontology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Miao Li
- Department of Periodontology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Qianqian Wang
- Department of Periodontology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Xiaoyi Li
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yu Zhou
- Department of Periodontology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Xi Yang
- Department of Periodontology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China
| | - Xiao He
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
| | - Yan Cheng
- First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiuyun Ren
- Department of Periodontology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, No. 63, New South Road, Yingze District, Taiyuan, 030001, Shanxi, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, Zhejiang, China. .,Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
4
|
Bo T, Wen J, Gao W, Tang L, Liu M, Wang D. Influence of HFD-induced precocious puberty on neurodevelopment in mice. Nutr Metab (Lond) 2021; 18:86. [PMID: 34530850 PMCID: PMC8447761 DOI: 10.1186/s12986-021-00604-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Precocious puberty is frequently associated with obesity, which will lead to long-term effects, especially on growth and reproduction. However, the effect of precocious puberty on children's neurodevelopment is still unknown. OBJECTIVES Here we evaluated the effect of High fat diet (HFD)-induced precocious puberty on neurodevelopment and behaviors of animals. METHODS Ovaries sections were stained with hematoxylin-eosin (H&E) using standard techniques. Behavioral tests included elevated plus maze (EPM), open field exploration, Y-Maze, marble burying test, and novelty- suppressed feeding. The expression of genes related to puberty and neural development was detected by immunohistochemistry and Western blot. RESULTS Our results showed HFD-induced precocious puberty increased the risk-taking behavior and decreased memory of mice. The content of Tyrosine hydroxylase (TH) and Arginine vasopressin (AVP) in hypothalamus were higher in HFD group than control group. Although the recovery of normal diet will gradually restore the body fat and other physiological index of mice, the anxiety increases in adult mice, and the memory is also damaged. CONCLUSIONS These findings describe the sensitivity of mice brain to HFD-induced precocious puberty and the irrecoverability of neural damage caused by precocious puberty. Therefore, avoiding HFD in childhood is important to prevent precocious puberty and neurodevelopmental impairment in mice.
Collapse
Affiliation(s)
- Tingbei Bo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Wenting Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liqiu Tang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dehua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,School of Life Science, Shandong University, Qingdao, 266237, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Ballon Romero SS, Lee YC, Fuh LJ, Chung HY, Hung SY, Chen YH. Analgesic and Neuroprotective Effects of Electroacupuncture in a Dental Pulp Injury Model-A Basic Research. Int J Mol Sci 2020; 21:E2628. [PMID: 32283868 PMCID: PMC7178196 DOI: 10.3390/ijms21072628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 12/18/2022] Open
Abstract
Irreversible pulpitis is an extremely painful condition and its consequence in the central nervous system (CNS) remains unclear. A mouse model of dental pulp injury (DPI) resembles the irreversible pulpitis profile in humans. This study sought to determine whether pain induced by DPI activates microglia and astrocytes in the trigeminal subnucleus caudalis (Vc), as well as increases levels of proinflammatory cytokines, and whether electroacupuncture (EA) can be a potential analgesic and neuroprotective therapy following DPI. Pain behavior was measured via head-withdrawal threshold (HWT) and burrowing behavior at days 1, 3, 7, 14 and 21 after DPI. A marked decrease in HWT and burrowing activity was observed from day 1 to 14 after DPI and no changes were seen on day 21. Microglial and astrocytes activation; along with high cytokine (TNFα, IL-1β, and IL-6) levels, were observed in the Vc at 21 days after DPI. These effects were attenuated by verum (local and distal) EA, as well as oral ibuprofen administration. The results suggest that DPI-induced pain and glial activations in the Vc and EA exert analgesic efficacy at both local and distal acupoints. Furthermore, verum (local and distal) EA might be associated with the modulations of microglial and astrocytes activation.
Collapse
Affiliation(s)
- Sharmely Sharon Ballon Romero
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan; (S.S.B.R.); (Y.-C.L.); (H.-Y.C.); (S.-Y.H.)
| | - Yu-Chen Lee
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan; (S.S.B.R.); (Y.-C.L.); (H.-Y.C.); (S.-Y.H.)
- Department of Acupuncture, China Medical University Hospital, Taichung 40447, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
| | - Lih-Jyh Fuh
- School of Dentistry, College of Dentistry, China Medical University; Taichung 40402, Taiwan;
| | - Hsin-Yi Chung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan; (S.S.B.R.); (Y.-C.L.); (H.-Y.C.); (S.-Y.H.)
| | - Shih-Ya Hung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan; (S.S.B.R.); (Y.-C.L.); (H.-Y.C.); (S.-Y.H.)
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan; (S.S.B.R.); (Y.-C.L.); (H.-Y.C.); (S.-Y.H.)
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan
- Brain Disease Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
6
|
Evoked and spontaneous pain assessment during tooth pulp injury. Sci Rep 2020; 10:2759. [PMID: 32066827 PMCID: PMC7026088 DOI: 10.1038/s41598-020-59742-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
Injury of the tooth pulp is excruciatingly painful and yet the receptors and neural circuit mechanisms that transmit this form of pain remain poorly defined in both the clinic and preclinical rodent models. Easily quantifiable behavioral assessment in the mouse orofacial area remains a major bottleneck in uncovering molecular mechanisms that govern inflammatory pain in the tooth. In this study we sought to address this problem using the Mouse Grimace Scale and a novel approach to the application of mechanical Von Frey hair stimuli. We use a dental pulp injury model that exposes the pulp to the outside environment, a procedure we have previously shown produces inflammation. Using RNAscope technology, we demonstrate an upregulation of genes that contribute to the pain state in the trigeminal ganglia of injured mice. We found that mice with dental pulp injury have greater Mouse Grimace Scores than sham within 24 hours of injury, suggestive of spontaneous pain. We developed a scoring system of mouse refusal to determine thresholds for mechanical stimulation of the face with Von Frey filaments. This method revealed that mice with a unilateral dental injury develop bilateral mechanical allodynia that is delayed relative to the onset of spontaneous pain. This work demonstrates that tooth pain can be quantified in freely behaving mice using approaches common for other types of pain assessment. Harnessing these assays in the orofacial area during gene manipulation should assist in uncovering mechanisms for tooth pulp inflammatory pain and other forms of trigeminal pain.
Collapse
|
7
|
Martínez-García MÁ, Migueláñez-Medrán BC, Goicoechea C. Animal models in the study and treatment of orofacial pain. J Clin Exp Dent 2019; 11:e382-e390. [PMID: 31110619 PMCID: PMC6522107 DOI: 10.4317/jced.55429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/06/2019] [Indexed: 12/22/2022] Open
Abstract
Background Pain is one of the first causes of medical consultation in the world and by extension of dental consultation too. Orofacial pain comprehends the oral and facial regions including teeth, oral mucosa, gingiva, tongue and lips, but also the muscles of the jaw and neck, the temporomandibular joint, face, head and neck. Despite its highly estimated prevalence, it appears controversial and hard to quantify given the lack of common criteria to select the population under study and the difficulties to classify the different types of pain. Although for many patients the problem eventually fades after tissue healing, certain sub-chronic and chronic pain conditions remain notoriously undertreated. In this respect, animal models can be of great help. Material and Methods A systematic search was conducted in PubMed-Medline with appropriate keywords: orofacial pain, prevalence and dentist. Seven groups were generated and a second search based on each of these groups and on animal models was made. Search was restricted to English and Spanish, but no time restriction was applied. Results There are as yet few experimental models of orofacial pain: there hardly exists no other than trigeminal nerve injury for neuropathic pain, a bunch of oral squamous cell carcinoma models (mainly referred to the tongue) for cancer pain and none for the painful swelling of salivary glands. Similarly occurs for the burning mouth syndrome. A few more exist for inflammatory odontalgiae, aphthae, joint, myofascial and muscle inflammatory pains, although scarcely diverse as regards the nature of the noxious stimulus. Conclusions Given the relevance of envisaging the mechanistic of the various types of orofacial pain, new experimental models are needed on the basis of the dentist's perspective for their correct management. Key words:Orofacial pain, neuralgia, odontalgia, oral cancer, animal models.
Collapse
Affiliation(s)
- Miguel-Ángel Martínez-García
- PhD, Visiting Professor. Area of Pharmacology, Nutrition and Bromatology. Department of Basic Health Sciences. School of Health Sciences. Universidad Rey Juan Carlos (URJC), Alcorcón, Madrid (Spain) - I+D+i Medicinal Chemistry Institute (IQM) associated unit, (CSIC)
| | - Blanca C Migueláñez-Medrán
- DDS, PhD. Adjunct Professor. Area of Stomatology. Department of Medicine and Surgery, Psychology, Preventive Medicine and Public Health, Immunology and Medical Microbiology, Nursing and Stomatology. School of Health Sciences. Universidad Rey Juan Carlos (URJC), Alcorcón, Madrid, Spain
| | - Carlos Goicoechea
- PhD, Professor. Area of Pharmacology, Nutrition and Bromatology. Department of Basic Health Sciences. School of Health Sciences. Universidad Rey Juan Carlos (URJC), Alcorcón, Madrid (Spain) - I+D+i Medicinal Chemistry Institute (IQM) associated unit, (CSIC)
| |
Collapse
|
8
|
Filippini HF, Scalzilli PA, Costa KM, Freitas RDS, Campos MM. Activation of trigeminal ganglion satellite glial cells in CFA-induced tooth pulp pain in rats. PLoS One 2018; 13:e0207411. [PMID: 30419075 PMCID: PMC6231674 DOI: 10.1371/journal.pone.0207411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
This study further investigated the mechanisms underlying the rat model of tooth pulp inflammatory pain elicited by complete Freund's adjuvant (CFA), in comparison to other pulpitis models. Pulps of the left maxillary first molars were accessed. In the CFA group, the pulps were exposed, and CFA application was followed by dental sealing. In the open group, the pulps were left exposed to the oral cavity. For the closed group, the pulps were exposed, and the teeth were immediately sealed. Naïve rats were used as negative controls. Several parameters were evaluated at 1, 2, 3 and 8 days. There was no statistical significant difference among the groups when body weight variation, food or water consumption were compared. Analysis of serum cytokines (IL-1β, TNF or IL-6) or differential blood cell counts did not reveal any evidence of systemic inflammation. The CFA group displayed a significant reduction in the locomotor activity (at 1 and 3 days), associated with an increased activation of satellite glial cells in the ipsilateral trigeminal ganglion (TG; for up to 8 days). Amygdala astrocyte activation was unaffected in any experimental groups. We provide novel evidence indicating that CFA-induced pulp inflammation impaired the locomotor activity, with persistent activation of ipsilateral TG satellite cells surrounding sensory neurons, without any evidence of systemic inflammation or amygdala astrogliosis.
Collapse
Affiliation(s)
- Helena F. Filippini
- Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
| | - Paulo A. Scalzilli
- Laboratório de Patologia, Escola de Ciência da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
| | - Kesiane M. Costa
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre, RS, Brasil
| | - Raquel D. S. Freitas
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre, RS, Brasil
| | - Maria M. Campos
- Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Laboratório de Patologia, Escola de Ciência da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre, RS, Brasil
| |
Collapse
|
9
|
Viral-mediated overexpression of the Myelin Transcription Factor 1 (MyT1) in the dentate gyrus attenuates anxiety- and ethanol-related behaviors in rats. Psychopharmacology (Berl) 2017; 234:1829-1840. [PMID: 28303373 DOI: 10.1007/s00213-017-4588-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022]
Abstract
RATIONALE Myelin Transcription Factor 1 (MyT1), a member of the Zinc Finger gene family, plays a fundamental role in the nervous system. Recent research has suggested that this transcription factor is associated with the pathophysiology of psychiatric disorders including addiction, schizophrenia, and depression. However, the role of MyT1 in anxiety- and ethanol-related behaviors is still unknown. OBJECTIVES We evaluated the effects of lentiviral-mediated overexpression of MyT1 in the dentate gyrus (DG) on anxiety- and ethanol-related behaviors in rats. METHODS We used the elevated plus maze (EPM) and the open field (OF) tests to assess anxiety-like behavior and a two-bottle choice procedure to measure the effects of MyT1 on ethanol intake and preference. RESULTS MyT1 overexpression produced anxiolytic-like effects in the EPM test and decreased the number of fecal boli in the OF test, without affecting locomotor activity in both behavioral tests. Next, we demonstrated that ethanol intake and preference were decreased in the MyT1-overexpressing rats with no effect on saccharin and quinine, used to assess taste discrimination, and no effect on ethanol clearance suggesting specific alterations in the rewarding effects of ethanol. Most importantly, ectopic MyT1 overexpression increased both MyT1 and BDNF mRNA levels in the DG. Using Pearson's correlation, results showed a strong negative relationship between MyT1 mRNA and anxiety parameters and ethanol consumption and a positive correlation between MyT1 and BDNF mRNAs. CONCLUSION Taken together, MyT1 along with being a key component in anxiety may be a suitable candidate in the search of the molecular underpinnings of alcoholism.
Collapse
|
10
|
Lee B, Sur B, Yeom M, Shim I, Lee H, Hahm DH. Effects of systemic administration of ibuprofen on stress response in a rat model of post-traumatic stress disorder. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:357-66. [PMID: 27382352 PMCID: PMC4930904 DOI: 10.4196/kjpp.2016.20.4.357] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 03/11/2016] [Accepted: 04/09/2016] [Indexed: 01/16/2023]
Abstract
Pro-inflammatory cytokine and brain-derived neurotrophic factor (BDNF) are modulated in post-traumatic stress disorder (PTSD). This study investigated the effects of ibuprofen (IBU) on enhanced anxiety in a rat model of PTSD induced by a single prolonged stress (SPS) procedure. The effects of IBU on inflammation and BDNF modulation in the hippocampus and the mechanisms underlying for anxiolytic action of IBU were also investigated. Male Sprague-Dawley rats were given IBU (20 or 40 mg/kg, i.p., once daily) for 14 days. Daily IBU (40 mg/kg) administration signifi cantly increased the number and duration of open arm visits in the elevated plus maze (EPM) test, reduced the anxiety index in the EPM test, and increased the time spent in the center of an open fi eld after SPS. IBU administration signifi cantly decreased the expression of pro-inflammatory mediators, such as tumor necrosis factor-α, interleukin-1β, and BDNF, in the hippocampus, as assessed by reverse transcription-polymerase chain reaction analysis and immunohistochemistry. These fi ndings suggest that IBU exerts a therapeutic effect on PTSD that might be at least partially mediated by alleviation of anxiety symptoms due to its anti-inflammatory activity and BDNF expression in the rat brain.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Bongjun Sur
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Mijung Yeom
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.; The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.; The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|