1
|
Wang H, Wang F, Li Y, Zhou P, Cai S, Wu Q, Ding T, Wu C, Zhu Q. Exosomal miR-205-5p contributes to the immune liver injury induced by trichloroethylene: Pivotal role of RORα mediating M1 Kupffer cell polarization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117050. [PMID: 39278002 DOI: 10.1016/j.ecoenv.2024.117050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Trichloroethylene (TCE) is a common environmental contaminant that can induce occupational dermatitis medicamentosa-like TCE (ODMLT), where the liver damage is the most common complication. The study aims to uncover the underlying mechanism of TCE-sensitization-induced liver damage by targeting specific exosomal microRNAs (miRNAs). Among the enriched serum exosomal miRNAs of ODMLT patients, miR-205-5p had a significant correlation coefficient with the liver function damage indicators. Moreover, retinoic acid receptor-related orphan receptor α (RORα) was identified as a direct target of miR-205-5p via specific binding. Further experiments showed that kupffer cells (KCs) underwent M1 phenotypic and functional changes in liver injury induced by TCE which were alleviated by reducing the expression of miR-205-5p. However, this alleviation was reversed by the RORα antagonist SR1001. In vitro experiments showed that miR-205-5p promoted M1 polarization of macrophages and enhanced the secretion of inflammatory factors by regulating RORα. An increase in RORα reversed the polarization direction of M1-type macrophages and reduced the secretion of proinflammatory factors. In addition, pretreatment of mice with SR1078, a specific RORα agonist, effectively blocked M1 polarization of KCs and reduced the severity of TCE-induced liver injury. Our study uncovers that miR-205-5p regulates KC M1 polarization by targeting RORα in immune liver injury induced by TCE sensitization, providing new insight into the molecular mechanisms and new therapeutic targets for ODMLT.
Collapse
Affiliation(s)
- Hui Wang
- Department of Prevention and Health Care, Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Feng Wang
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yu Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Pengcheng Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Shuyang Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Qifeng Wu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Tao Ding
- Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Changhao Wu
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | - Qixing Zhu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.
| |
Collapse
|
2
|
Zhou SF, Xu QY, Yang Y, Xie HB, Zhang JX, Zhu QX. The role of Kupffer cell activation in immune liver damage induced by trichloroethylene associated with the IFN-γ/STAT1 signaling pathway. Toxicol Ind Health 2023:7482337231189605. [PMID: 37449946 DOI: 10.1177/07482337231189605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Trichloroethylene (TCE) is a metal detergent commonly used in industry that can enter the human body through the respiratory tract and skin, causing occupational medicamentosa-like dermatitis due to TCE (OMDT) and multiple organ damage, including liver failure. However, the pathogenesis of liver injury remains unclear. Kupffer cells (KCs) are important tissue macrophages in the body because the polarization of KCs plays a crucial role in immune-mediated liver injury. However, the mechanism of KCs polarization in TCE-induced immune liver injury has not been thoroughly elucidated. In this study, we investigated the effect of TCE-induced KCs polarization on liver function and signal transduction pathways using the TCE sensitization model developed by our group. BALB/c mouse skin was exposed to TCE for sensitization, and an increase in the expression of M1 macrophage-specific markers (CD16/CD32, iNOS), M1 macrophage-specific cytokines IL-1β, and IFN-γ, P-JAK-1 and P-STAT1 levels were also found to be dramatically increased. When using low doses of gadolinium trichloride (GdCl3), the expression of these proteins and mRNA was significantly reduced. This phenomenon indicates that GdCl3 blocks TCE-induced polarization of KCs and suggests that the IFN-γ/STAT1 signaling pathway may be involved in the polarization process of KCs. These findings clarify the relationship between the polarization of KCs and immune liver injury and highlight the importance of further study of immune-mediated liver injury in TCE-sensitized mice.
Collapse
Affiliation(s)
- Si-Fan Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qiong-Ying Xu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yi Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hai-Bo Xie
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jia-Xiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qi-Xing Zhu
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Wang F, Hong Y, Jiang W, Wang Y, Chen M, Zang D, Zhu Q. ROS-mediated inflammatory response in liver damage via regulating the Nrf2/HO-1/NLRP3 pathway in mice with trichloroethylene hypersensitivity syndrome. J Immunotoxicol 2022; 19:100-108. [PMID: 36070617 DOI: 10.1080/1547691x.2022.2111003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Trichloroethylene hypersensitivity syndrome (THS), mainly caused by occupational exposure to trichloroethylene (TCE), can give rise to serious and fatal hepatic damage. To date, the precise mechanisms of hepatic damage in THS remain unclear. Recent studies showed that reactive oxygen species (ROS) play a core role in cell death and inflammatory response. Therefore, the present study sought to explore whether ROS-mediated inflammatory responses contribute to the hepatic damage in TCE sensitization. To this end, a mouse model of TCE sensitization was established; in some cases, hosts were pretreated with tempol, an ROS scavenger. The results showed that TCE sensitization caused hepatic pathological/functional changes, ROS generation, and oxidative stress, alterations of the anti-oxidant defense Nrf2/HO-1/NLRP3 pathway, and pro-inflammatory cytokine formation in the liver. ROS scavenging via pretreatment with tempol was found not only to inhibit the hepatic oxidative stress, but also to regulate Nrf2/HO-1/NLRP3 pathway activity. In all cases, tempol was able to mitigate the pathologic changes induced by TCE sensitization. In summary, the results here demonstrated a novel molecular mechanism wherein ROS-mediated inflammatory responses play a central role in TCE-induced liver damage. Therapies targeting ROS scavenging could help to protect against hepatic damage by regulating Nrf2/HO-1/NLRP3 pathway activities in TCE-sensitized hosts.
Collapse
Affiliation(s)
- Feng Wang
- Department of Dermatology, Second Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Ministry of Education, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yiting Hong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Wei Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Yican Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Muyue Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Dandan Zang
- Center for Scientific Research and Experiment, Anhui Medical University, Hefei, China
| | - Qixing Zhu
- Key Laboratory of Dermatology, Ministry of Education, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Banerjee N, Wang H, Wang G, Boor PJ, Khan MF. Differential Expression of miRNAs in Trichloroethene-Mediated Inflammatory/Autoimmune Response and Its Modulation by Sulforaphane: Delineating the Role of miRNA-21 and miRNA-690. Front Immunol 2022; 13:868539. [PMID: 35422807 PMCID: PMC9001960 DOI: 10.3389/fimmu.2022.868539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Trichloroethene (TCE), an occupational and ubiquitous environmental contaminant, is associated with the induction of autoimmune diseases (ADs). Although oxidative stress plays a major role in TCE-mediated autoimmunity, the underlying molecular mechanisms still need to be delineated. Altered non-coding RNAs, including the expression of microRNAs (miRNAs), can influence target genes, especially related to apoptosis and inflammation, and contribute to ADs. Therefore, the objective of this study was to delineate the contribution of miRNAs in TCE-mediated inflammatory and autoimmune response. To achieve this, we treated female MRL+/+ mice with TCE (10 mmol/kg in corn oil, i.p., every fourth day) with/without antioxidant sulforaphane (SFN; 8 mg/kg in corn oil, i.p., every other day) for 6 weeks. With the use of miRNA microarray, 293 miRNAs were analyzed, which included 35 miRNAs that were relevant to inflammation and ADs. Among those 35 miRNAs, 8 were modulated by TCE and/or TCE+SFN exposure. TCE treatment led to increased expression of 3 miRNAs and also decreased expression of 3 miRNAs. Interestingly, among the 35 differentially expressed miRNAs, antioxidant SFN modulated the expression of 6 miRNAs. Based on the microarray findings, we subsequently focused on two miRNAs (miRNA-21 and miRNA-690), which are known to be involved in inflammation and autoimmune response. The increases in miRNA-21 and miR-690 (observed using miRNA microarray) were further validated by RT-PCR, and the TCE-mediated increases in miR-21 and miR-690 were ameliorated by SFN treatment. Modulating miR-21 and miR-690 by respective inhibitors or mimics suppressed the expression of NF-κB (p65) and IL-12 in RAW 264.7 cells. Our findings suggest a contributory role of miR-21 and miR-690 in TCE-mediated and its metabolite dichloroacetyl chloride (DCAC)-mediated inflammation and autoimmune response and support that antioxidant SFN could be a potential therapeutic candidate for inflammatory responses and ADs.
Collapse
Affiliation(s)
- Nivedita Banerjee
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Hui Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Paul J Boor
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - M Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
5
|
Liu W, Zheng J, Ren X, Xie Y, Lin D, Li P, Lv Y, Hoi MPM, Zhang Y, Liu J. Correction to: Serum levels of miR-21-5p and miR-339-5p associate with occupational trichloroethylene hypersensitivity syndrome. J Occup Med Toxicol 2021; 16:31. [PMID: 34380505 PMCID: PMC8359055 DOI: 10.1186/s12995-021-00315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Wei Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jian Zheng
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.,Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuxuan Xie
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Dafeng Lin
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Peimao Li
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Yuan Lv
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yanfang Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China.
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China. .,Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|