1
|
Sapalidis K, Zarogoulidis P, Pavlidis E, Laskou S, Katsaounis A, Koulouris C, Giannakidis D, Mantalovas S, Huang H, Bai C, Wen Y, Wang L, Sardeli C, Amaniti A, Karapantzos I, Karapantzou C, Hohenforst-Schmidt W, Konstantinou F, Kesisoglou I, Benhanseen N. Aerosol Immunotherapy with or without Cisplatin for metastatic lung cancer non-small cell lung cancer disease: In vivo Study. A more efficient combination. J Cancer 2018; 9:1973-1977. [PMID: 29896282 PMCID: PMC5995940 DOI: 10.7150/jca.24782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/07/2018] [Indexed: 12/30/2022] Open
Abstract
Lung cancer is the leading cause of cancer death after prostate cancer for males and breast cancer for females. There are novel therapies in the past five years such as; tyrosine kinase inhibitors and most recently in the last two years immunotherapy. Immunotherapy is currently being investigated if it can be administered alone or in combination. Previously we have investigated whether immunotherapy compounds can be produced as aerosols, and in the current study we investigated the safety and efficiency independently of the programmed death-ligand 1. The aerosol administration of both cisplatin and nivolumab is possible. The combination of the two drugs has a synergistic effect and therefore should be considered an option. Time of administration for immunotherapy is also very important.
Collapse
Affiliation(s)
- Konstantinos Sapalidis
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, "Theageneio" Cancer Hospital, Thessaloniki, Greece
| | - Efstathios Pavlidis
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Stella Laskou
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Athanasios Katsaounis
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Charilaos Koulouris
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Dimitrios Giannakidis
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Stylianos Mantalovas
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Haidong Huang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuting Wen
- Department of Respiratory Diseases, The Affiliated Jiangning hospital of Nanjing Medical University, Nanjing, China
| | - Li Wang
- Department of Respiratory Diseases, The Affiliated Jiangning hospital of Nanjing Medical University, Nanjing, China
| | - Chrysanthi Sardeli
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini Amaniti
- Anesthesiology Department, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Ilias Karapantzos
- Ear, Nose and Throat Department, "Saint Luke" Private Hospital, Panorama, Thessaloniki, Greece
| | - Chrysanthi Karapantzou
- Ear, Nose and Throat Department, "Saint Luke" Private Hospital, Panorama, Thessaloniki, Greece
| | - Wolfgang Hohenforst-Schmidt
- Sana Clinic Group Franken, Department of Cardiology / Pulmonology / Intensive Care / Nephrology, ''Hof'' Clinics, University of Erlangen, Hof, Germany
| | - Fotis Konstantinou
- Thoracic Surgery Department, University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Isaak Kesisoglou
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Naim Benhanseen
- Sana Clinic Group Franken, Department of Cardiology / Pulmonology / Intensive Care / Nephrology, ''Hof'' Clinics, University of Erlangen, Hof, Germany
| |
Collapse
|
2
|
Janczewski AM, Wojtkiewicz J, Malinowska E, Doboszyńska A. Can Youthful Mesenchymal Stem Cells from Wharton's Jelly Bring a Breath of Fresh Air for COPD? Int J Mol Sci 2017; 18:ijms18112449. [PMID: 29156550 PMCID: PMC5713416 DOI: 10.3390/ijms18112449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major global cause of morbidity and mortality, projected to become the 3rd cause of disease mortality worldwide by 2020. COPD is characterized by persistent and not fully reversible airflow limitation that is usually progressive and is associated with an abnormal chronic inflammatory response of the lung to noxious agents including cigarette smoke. Currently available therapeutic strategies aim to ease COPD symptoms but cannot prevent its progress or regenerate physiological lung structure or function. The urgently needed new approaches for the treatment of COPD include stem cell therapies among which transplantation of mesenchymal stem cells derived from Wharton’s jelly (WJ-MSCs) emerges as a promising therapeutic strategy because of the unique properties of these cells. The present review discusses the main biological properties of WJ-MSCs pertinent to their potential application for the treatment of COPD in the context of COPD pathomechanisms with emphasis on chronic immune inflammatory processes that play key roles in the development and progression of COPD.
Collapse
Affiliation(s)
- Andrzej M Janczewski
- Department of Pulmonology, Faculty of Heath Sciences, University of Warmia and Mazury in Olsztyn, Jagiellońska 78, 10-357 Olsztyn, Poland.
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
- Laboratory for Regenerative Medicine, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
- Foundation for the Nerve Cells Regeneration, Warszawska 30, 10-082 Olsztyn, Poland.
| | - Ewa Malinowska
- Department of Pulmonology, Faculty of Heath Sciences, University of Warmia and Mazury in Olsztyn, Jagiellońska 78, 10-357 Olsztyn, Poland.
| | - Anna Doboszyńska
- Department of Pulmonology, Faculty of Heath Sciences, University of Warmia and Mazury in Olsztyn, Jagiellońska 78, 10-357 Olsztyn, Poland.
| |
Collapse
|
3
|
El-Badrawy MK, Shalabi NM, Mohamed MA, Ragab A, Abdelwahab HW, Anber N, Sobh MA, Khater Y, Hamid AAA. The Effect of Bone Marrow Mononuclear Cells on Lung Regeneration and Apoptosis in a Simple Model of Pulmonary Emphysema. Int J Stem Cells 2016; 9:145-51. [PMID: 27426096 PMCID: PMC4961114 DOI: 10.15283/ijsc.2016.9.1.145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2015] [Indexed: 12/15/2022] Open
Abstract
Background In severe chronic stages of emphysema the only treatment is lung transplantation. SO, an urgent need exists for the development of effective treatments. Stem cells therapy arises as a new therapeutic approach. Aim of the Work To investigate whether bone marrow mononuclar cells (BMMNCs) can promote lung regeneration and decrease apoptosis in lipopolysaccharide (LPS) induced pulmonary emphysema in C57Bl/6 mice. Material and Methods 14 weeks old female mice (C57Bl/6), weighing around 25 g were used in this study. The mice were divided into 4 groups (10 in each group): group A: mice received no treatment, group B: mice received intranasal instillation of LPS with no further treatment, group C: mice received intranasal instillation of LPS then given a dose of BMMNCs and evaluated 21 days later and group D: the mice that received intranasal instillation of LPS then given a dose of Dulbecco’s Modified Eagle’s Medium (DMEM) and evaluated 21 days later. Imaging analysis was done using imagej program. To measure apoptotic index, Anti–caspase 3 polyclonal antibody staining was done. Results Analysis of the mean of airspace equivalent diameters (D0) and its statistical distribution (D1) for the different groups allowed to observe that group treated with BMMNCs (group C) showed the significant improvement in D0 and D1 than the group received LPS only (group B). Analysis of apoptotic index showed significant difference between BMMNCs treated group (group C) and that received LPS only (group B). Conclusions BMMNCs effectively promote lung regeneration and reduction of apoptosis in pulmonary emphysema.
Collapse
Affiliation(s)
| | | | - Mie A Mohamed
- Department of Pathology, Mansoura University, Mansoura, Egypt
| | - Amany Ragab
- Department of Chest Medicine, Mansoura University, Egypt
| | | | - Nahla Anber
- Fellow of Biochemistry, Emergency Hospital, Mansoura University, Egypt
| | - Mohamed A Sobh
- Department of Zoology, faculty of Science, Mansoura University, Egypt
| | - Yomna Khater
- Medical Experimental Research Center, Mansoura University, Egypt
| | | |
Collapse
|