1
|
Hanuman Singh D, Deeksha W, Rajakumara E. Characterization of PARP1 binding to c-KIT1 G-quadruplex DNA: Insights into domain-specific interactions. Biophys Chem 2024; 315:107330. [PMID: 39342702 DOI: 10.1016/j.bpc.2024.107330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme involved in catalyzing Poly-(ADP-ribosyl)ation. PARP1 binds to different forms of DNA and DNA breaks and thus plays important roles in several cellular processes, including DNA damage repair, cell cycle regulation, chromatin remodeling, and maintaining genomic stability. In this study, we conducted biochemical and biophysical characterization of PARP1 binding to G-quadruplex DNA (G4-DNA). Our investigation identified ZnF1, ZnF3, and WGR as the critical domains to mediate PARP1 binding to G4-c-KIT1. Also, our results show that these domains together show cooperativity for G4-c-KIT1 recognition. Further, we establish that the presence of an oxidized (5-carboxylcytosine) base in the loop region of G4-c-KIT1 (G4-5caC-cKIT1) does not affect its recognition by PARP1. Both G4-c-KIT1 and G4-5caC-cKIT1 are potent stimulators of PARP1's catalytic activity. Our study advances the understanding of PARP1's versatile DNA binding capabilities for G4-c-KIT1 DNA irrespective of the oxidation/ modification in the DNA base. These insights into PARP1's domain-specific contributions to G4-c-KIT1 DNA recognition and catalysis expand our knowledge of its multifaceted roles in DNA repair and genome maintenance.
Collapse
Affiliation(s)
- Dagur Hanuman Singh
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Waghela Deeksha
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| |
Collapse
|
2
|
Fu J, Zhang J, Yang L, Ding N, Yue L, Zhang X, Lu D, Jia X, Li C, Guo C, Yin Z, Jiang X, Zhao Y, Chen F, Zhou D. Precision Methylome and In Vivo Methylation Kinetics Characterization of Klebsiella pneumoniae. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:418-434. [PMID: 34214662 PMCID: PMC9684165 DOI: 10.1016/j.gpb.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 06/11/2021] [Indexed: 01/05/2023]
Abstract
Klebsiella pneumoniae (K. pneumoniae) is an important pathogen that can cause severe hospital- and community-acquired infections. To systematically investigate its methylation features, we determined the whole-genome sequences of 14 K. pneumoniae strains covering varying serotypes, multilocus sequence types, clonal groups, viscosity/virulence, and drug resistance. Their methylomes were further characterized using Pacific Biosciences single-molecule real-time and bisulfite technologies. We identified 15 methylation motifs [13 N6-methyladenine (6mA) and two 5-methylcytosine (5mC) motifs], among which eight were novel. Their corresponding DNA methyltransferases were also validated. Additionally, we analyzed the genomic distribution of GATC and CCWGG methylation motifs shared by all strains, and identified differential distribution patterns of some hemi-/un-methylated GATC motifs, which tend to be located within intergenic regions (IGRs). Specifically, we characterized the in vivo methylation kinetics at single-base resolution on a genome-wide scale by simulating the dynamic processes of replication-mediated passive demethylation and MTase-catalyzed re-methylation. The slow methylation of the GATC motifs in the replication origin (oriC) regions and IGRs implicates the epigenetic regulation of replication initiation and transcription. Our findings illustrate the first comprehensive dynamic methylome map of K. pneumoniae at single-base resolution, and provide a useful reference to better understand epigenetic regulation in this and other bacterial species.
Collapse
Affiliation(s)
- Jing Fu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,Department of Oncology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou 450001, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ju Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Li Yang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Ding
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Liya Yue
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Xiangli Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Lu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinmiao Jia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Cuidan Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Chongye Guo
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaoyuan Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yongliang Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding authors.
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China,Corresponding authors.
| |
Collapse
|
3
|
Ahmed R, Erten C, Houdjedj A, Kazan H, Yalcin C. A Network-Centric Framework for the Evaluation of Mutual Exclusivity Tests on Cancer Drivers. Front Genet 2021; 12:746495. [PMID: 34899838 PMCID: PMC8664367 DOI: 10.3389/fgene.2021.746495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/27/2021] [Indexed: 12/03/2022] Open
Abstract
One of the key concepts employed in cancer driver gene identification is that of mutual exclusivity (ME); a driver mutation is less likely to occur in case of an earlier mutation that has common functionality in the same molecular pathway. Several ME tests have been proposed recently, however the current protocols to evaluate ME tests have two main limitations. Firstly the evaluations are mostly with respect to simulated data and secondly the evaluation metrics lack a network-centric view. The latter is especially crucial as the notion of common functionality can be achieved through searching for interaction patterns in relevant networks. We propose a network-centric framework to evaluate the pairwise significances found by statistical ME tests. It has three main components. The first component consists of metrics employed in the network-centric ME evaluations. Such metrics are designed so that network knowledge and the reference set of known cancer genes are incorporated in ME evaluations under a careful definition of proper control groups. The other two components are designed as further mechanisms to avoid confounders inherent in ME detection on top of the network-centric view. To this end, our second objective is to dissect the side effects caused by mutation load artifacts where mutations driving tumor subtypes with low mutation load might be incorrectly diagnosed as mutually exclusive. Finally, as part of the third main component, the confounding issue stemming from the use of nonspecific interaction networks generated as combinations of interactions from different tissues is resolved through the creation and use of tissue-specific networks in the proposed framework. The data, the source code and useful scripts are available at: https://github.com/abu-compbio/NetCentric.
Collapse
Affiliation(s)
- Rafsan Ahmed
- Electrical and Computer Engineering Graduate Program, Antalya Bilim University, Antalya, Turkey
| | - Cesim Erten
- Department of Computer Engineering, Antalya Bilim University, Antalya, Turkey
| | - Aissa Houdjedj
- Department of Computer Engineering, Antalya Bilim University, Antalya, Turkey
| | - Hilal Kazan
- Department of Computer Engineering, Antalya Bilim University, Antalya, Turkey
| | - Cansu Yalcin
- Department of Computer Engineering, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
4
|
KIT Expression Is Regulated by DNA Methylation in Uveal Melanoma Tumors. Int J Mol Sci 2021; 22:ijms221910748. [PMID: 34639089 PMCID: PMC8509522 DOI: 10.3390/ijms221910748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022] Open
Abstract
Uveal melanoma (UM) is an ocular tumor with a dismal prognosis. Despite the availability of precise molecular and cytogenetic techniques, clinicopathologic features with limited accuracy are widely used to predict metastatic potential. In 51 UM tissues, we assessed a correlation between the expression of nine proteins evaluated by immunohistochemistry (IHC) (Melan-A, S100, HMB45, Cyclin D1, Ki-67, p53, KIT, BCL2, and AIFM1) and the presence of UM-specific chromosomal rearrangements measured by multiplex ligation-dependent probe amplification (MLPA), to find IHC markers with increased prognostic information. Furthermore, mRNA expression and DNA methylation values were extracted from the whole-genome data, achieved by analyzing 22 fresh frozen UM tissues. KIT positivity was associated with monosomy 3, increasing the risk of poor prognosis more than 17-fold (95% CI 1.53–198.69, p = 0.021). A strong negative correlation was identified between mRNA expression and DNA methylation values for 12 of 20 analyzed positions, five located in regulatory regions of the KIT gene (r = −0.658, p = 0.001; r = −0.662, p = 0.001; r = −0.816; p < 0.001; r = −0.689, p = 0.001; r = −0.809, p < 0.001, respectively). DNA methylation β values were also inversely associated with KIT protein expression (p = 0.001; p = 0.001; p = 0.015; p = 0.025; p = 0.002). Our findings, showing epigenetic deregulation of KIT expression, may contribute to understanding the past failure to therapeutically target KIT in UM.
Collapse
|
5
|
Pham DDM, Guhan S, Tsao H. KIT and Melanoma: Biological Insights and Clinical Implications. Yonsei Med J 2020; 61:562-571. [PMID: 32608199 PMCID: PMC7329741 DOI: 10.3349/ymj.2020.61.7.562] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/15/2023] Open
Abstract
Melanoma, originating from epidermal melanocytes, is a heterogeneous disease that has the highest mortality rate among all types of skin cancers. Numerous studies have revealed the cause of this cancer as related to various somatic driver mutations, including alterations in KIT-a proto-oncogene encoding for a transmembrane receptor tyrosine kinase. Although accounting for only 3% of all melanomas, mutations in c-KIT are mostly derived from acral, mucosal, and chronically sun-damaged melanomas. As an important factor for cell differentiation, proliferation, and survival, inhibition of c-KIT has been exploited for clinical trials in advanced melanoma. Here, apart from the molecular background of c-KIT and its cellular functions, we will review the wide distribution of alterations in KIT with a catalogue of more than 40 mutations reported in various articles and case studies. Additionally, we will summarize the association of KIT mutations with clinicopathologic features (age, sex, melanoma subtypes, anatomic location, etc.), and the differences of mutation rate among subgroups. Finally, several therapeutic trials of c-KIT inhibitors, including imatinib, dasatinib, nilotinib, and sunitinib, will be analyzed for their success rates and limitations in advanced melanoma treatment. These not only emphasize c-KIT as an attractive target for personalized melanoma therapy but also propose the requirement for additional investigational studies to develop novel therapeutic trials co-targeting c-KIT and other cytokines such as members of signaling pathways and immune systems.
Collapse
Affiliation(s)
- Duc Daniel M Pham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | - Hensin Tsao
- Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Vozdova M, Kubickova S, Fictum P, Cernohorska H, Fröhlich J, Rubes J. Mutation and methylation status of KIT and TP 53 in canine cutaneous and subcutaneous mast cell tumours. Vet Comp Oncol 2019; 18:438-444. [PMID: 31574575 DOI: 10.1111/vco.12543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 01/08/2023]
Abstract
Cutaneous and subcutaneous mast cell tumours (MCTs) are counted among the most frequent cancers in dogs. However, the genetic aetiology of their development is still mostly unknown, with the exception of KIT and tumor protein p53 (TP53 ) mutations reported in less than a half of cutaneous MCTs. In subcutaneous MCTs, no gene alterations were previously detected. We analysed KIT and TP53 mutations in cutaneous and subcutaneous MCTs, and identified methylated CpG sites in KIT and TP53 promoters and adjacent exon 1 regions. The mutation analysis focused on KIT exons 8, 9 and 11, and TP53 exons 5-8, and revealed mutations in 26% and 7% cutaneous MCT cases, respectively. Moreover, we report a first case of KIT mutation ever detected in subcutaneous MCTs. KIT exon 11 mutations and high Kiupel and Patnaik grades were associated with reduced survival in this study. Both KIT and TP53 gene were generally unmethylated in canine cutaneous MCTs. A sporadic methylation of the CpG positions in KIT promoter and adjacent exon 1 was detected in 70.4% of cutaneous and 82% of subcutaneous MCTs. A sporadic methylation of the CpG positions in the TP53 promoter and exon 1 was observed in 36.8% of the analysed cutaneous MCT samples. Only in two subcutaneous MCTs, we observed more than 30% of clones showing KIT methylation at the CpG positions 13 or 14. The CpG position 14 is involved in a predicted binding site for Sp1 transcription factor. However, the significance of KIT promoter methylation at this specific position needs further evaluation.
Collapse
Affiliation(s)
- Miluse Vozdova
- Department of Genetics and Reproduction, Central European Institute of Technology-Veterinary Research Institute, Brno, Czech Republic
| | - Svatava Kubickova
- Department of Genetics and Reproduction, Central European Institute of Technology-Veterinary Research Institute, Brno, Czech Republic
| | - Petr Fictum
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Halina Cernohorska
- Department of Genetics and Reproduction, Central European Institute of Technology-Veterinary Research Institute, Brno, Czech Republic
| | - Jan Fröhlich
- Department of Genetics and Reproduction, Central European Institute of Technology-Veterinary Research Institute, Brno, Czech Republic
| | - Jiri Rubes
- Department of Genetics and Reproduction, Central European Institute of Technology-Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
7
|
Fan J, Du W, Zhang H, Wang Y, Li K, Meng Y, Wang J. Transcriptional downregulation of miR-127-3p by CTCF promotes prostate cancer bone metastasis by targeting PSMB5. FEBS Lett 2019; 594:466-476. [PMID: 31562641 DOI: 10.1002/1873-3468.13624] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
Abstract
Prostate cancer (PCa) is one of the most common cancers in males and particularly tends to metastasize to bone. Currently, metastatic bone disease is incurable, and new therapies need to be developed. Our study aims to determine the role of miR-127-3p in PCa metastasis to bone. The results demonstrate that miR-127-3p is markedly reduced in bone metastasis-positive PCa tissues relative to that in bone metastasis-negative PCa tissues. Furthermore, overexpressing miR-127-3p inhibits PCa cell invasion and migration in vitro by targeting the proteasome β-subunit PSMB5. Moreover, CCCTC-binding factor (CTCF) transcriptionally inhibits miR-127-3p by interacting with the miR-127-3p promoter. Collectively, this study uncovers a novel mechanism of the CTCF/miR-127-3p/PSMB5 axis in promoting PCa bone metastasis, indicating that miR-127-3p could function as a promising therapeutic target against bone metastasis.
Collapse
Affiliation(s)
- Jiaxing Fan
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,School of Medicine, Shandong University, Jinan, China
| | - Wenzhi Du
- Graduate School, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China.,Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Hui Zhang
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,School of Medicine, Shandong University, Jinan, China
| | - Yunchao Wang
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Kai Li
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yong Meng
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jianning Wang
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
8
|
Chen F, Yuan H, Wu W, Chen S, Yang Q, Wang J, Zhang Q, Gui B, Fan X, Chen R, Shen Y. Three additional de novo CTCF mutations in Chinese patients help to define an emerging neurodevelopmental disorder. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:218-225. [PMID: 30893510 DOI: 10.1002/ajmg.c.31698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 01/24/2023]
Abstract
CCCTC-binding factor (CTCF) is an important regulator for global genomic organization and gene expression. CTCF gene had been implicated in a novel disorder characterized by intellectual disability, feeding difficulty, developmental delay and microcephaly. So far, four patients have been reported with de novo CTCF mutations. We reported three additional Chinese patients with de novo variants in CTCF. The new evidence helped to establish the clinical validity between CTCF and the emerging disorder. We described the consistent phenotypes shared by all patients and revealed additional clinical features such as delayed or abnormal teeth development and a unique pattern of the eyebrow that may help to define a potential recognizable neurodevelopmental disorder. We also reported the first CTCF patient treated with recombinant human growth hormone. Follow-up and more case studies will further our understanding to the clinical presentations of this novel disorder and the prognosis of patients with this disorder.
Collapse
Affiliation(s)
- Fei Chen
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Haiming Yuan
- Department of Medical Genetics, Dongguan Maternal and Child Health Care Hospital, Dongguan, China
| | - Wenyong Wu
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, Fuzhou, China
| | - Shaoke Chen
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qi Yang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jin Wang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Baohen Gui
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xin Fan
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ruimin Chen
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, Fuzhou, China
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|