1
|
Meng X, Li W, Qian Y, Cai X, Wei J, Zhang L. Mechanisms of colon toxicity induced by long-term perfluorooctanoic acid exposure in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116762. [PMID: 39047366 DOI: 10.1016/j.ecoenv.2024.116762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Perfluorooctanoic acid (PFOA), a persistent organic pollutant known for its chemical stability, is widely dispersed in the environment, posing significant health risks to mammals through various exposure routes such as ingestion, inhalation, and dermal contact. In this study, mice were exposed to PFOA (0, 0.2, 2 mg/L) through drinking water for 180 days to investigate its toxic effects on the colon. We identified differentially expressed genes through RNA sequencing and validated the impact of PFOA on the expression of these genes in colon tissue. Our findings revealed that long-term exposure to PFOA caused inflammatory bowel disease (IBD)-like damage to the mouse colon. We found PFOA could induce damage to the intestinal barrier. Inhibition of the Wnt signaling pathway following PFOA exposure results in impaired stem cell function in the colon of mice. Furthermore, PFOA activated the PPAR signaling pathway, disrupting cellular lipid metabolism in colon tissues. Additionally, PFOA induced inflammatory responses in colon tissue, facilitating NLR family, pyrin domain containing 3 (NLRP3) inflammasome activation and cell apoptosis. This study offers a thorough understanding of the mechanisms responsible for the damage to mouse colon tissue resulting from long-term exposure to PFOA.
Collapse
Affiliation(s)
- Xiannan Meng
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Wei Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Yongjing Qian
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Xiaojing Cai
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Jianfeng Wei
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Ling Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
2
|
Guo C, Qu X, Tang X, Song Y, Wang J, Hua K, Qiu J. Spatiotemporally deciphering the mysterious mechanism of persistent HPV-induced malignant transition and immune remodelling from HPV-infected normal cervix, precancer to cervical cancer: Integrating single-cell RNA-sequencing and spatial transcriptome. Clin Transl Med 2023; 13:e1219. [PMID: 36967539 PMCID: PMC10040725 DOI: 10.1002/ctm2.1219] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND The mechanism underlying cervical carcinogenesis that is mediated by persistent human papillomavirus (HPV) infection remains elusive. AIMS Here, for the first time, we deciphered both the temporal transition and spatial distribution of cellular subsets during disease progression from normal cervix tissues to precursor lesions to cervical cancer. MATERIALS & METHODS We generated scRNA-seq profiles and spatial transcriptomics data from nine patient samples, including two HPV-negative normal, two HPV-positive normal, two HPV-positive HSIL and three HPV-positive cancer samples. RESULTS We not only identified three 'HPV-related epithelial clusters' that are unique to normal, high-grade squamous intraepithelial lesions (HSIL) and cervical cancer tissues but also discovered node genes that potentially regulate disease progression. Moreover, we observed the gradual transition of multiple immune cells that exhibited positive immune responses, followed by dysregulation and exhaustion, and ultimately established an immune-suppressive microenvironment during the malignant program. In addition, analysis of cellular interactions further verified that a 'homeostasis-balance-malignancy' change occurred within the cervical microenvironment during disease progression. DISCUSSION We for the first time presented a spatiotemporal atlas that systematically described the cellular heterogeneity and spatial map along the four developmental steps of HPV-related cervical oncogenesis, including normal, HPV-positive normal, HSIL and cancer. We identified three unique HPV-related clusters, discovered critical node genes that determined the cell fate and uncovered the immune remodeling during disease escalation. CONCLUSION Together, these findings provided novel possibilities for accurate diagnosis, precise treatment and prognosis evaluation of patients with precancer and cervical cancer.
Collapse
Affiliation(s)
- Chenyan Guo
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Xinyu Qu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Xiaoyan Tang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Yu Song
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Jue Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| |
Collapse
|
3
|
Zhou X, Khan S, Huang D, Li L. V-Set and immunoglobulin domain containing (VSIG) proteins as emerging immune checkpoint targets for cancer immunotherapy. Front Immunol 2022; 13:938470. [PMID: 36189222 PMCID: PMC9520664 DOI: 10.3389/fimmu.2022.938470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The development of immune checkpoint inhibitors is becoming a promising approach to fight cancers. Antibodies targeting immune checkpoint proteins such as CTLA-4 and PD-1 can reinvigorate endogenous antitumor T-cell responses and bring durable advantages to several malignancies. However, only a small subset of patients benefit from these checkpoint inhibitors. Identification of new immune checkpoints with the aim of combination blockade of multiple immune inhibitory pathways is becoming necessary to improve efficiency. Recently, several B7 family-related proteins, TIGIT, VSIG4, and VSIG3, which belong to the VSIG family, have attracted substantial attention as coinhibitory receptors during T-cell activation. By interacting with their corresponding ligands, these VSIG proteins inhibit T-cell responses and maintain an immune suppressive microenvironment in tumors. These results indicated that VSIG family members are becoming putative immune checkpoints in cancer immunotherapy. In this review, we summarized the function of each VSIG protein in regulating immune responses and in tumor progression, thus providing an overview of our current understanding of VSIG family members.
Collapse
Affiliation(s)
- Xia Zhou
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sohail Khan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dabing Huang
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Dabing Huang, ; Lu Li,
| | - Lu Li
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Dabing Huang, ; Lu Li,
| |
Collapse
|
4
|
Gurzu S, Sugimura H, Szederjesi J, Szodorai R, Braicu C, Kobori L, Fodor D, Jung I. Interaction between cadherins, vimentin, and V-set and immunoglobulin domain containing 1 in gastric-type hepatocellular carcinoma. Histochem Cell Biol 2021; 156:377-390. [PMID: 34170400 DOI: 10.1007/s00418-021-02006-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
In hepatocellular carcinomas (HCCs), the role of the cell surface protein V-set and immunoglobulin domain containing 1 (VSIG1), which is known as a specific marker of the gastric mucosa and testis, has not yet been determined. We examined VSIG1 immunohistochemical (IHC) expression in 105 consecutive samples provided by HCC patients, along with the IHC expression of three of the biomarkers known to be involved in the epithelial-mesenchymal transition (EMT): vimentin (VIM), and E- and N-cadherin (encoded by CDH1 and CDH2 genes). IHC subcellular localization of thyroid transcription factor 1 (TTF1), in which nuclear-to-cytoplasmic translocation is known to cause a lineage shift from lung to gastric-type adenocarcinoma, was also checked. The obtained data were validated using the miRNET program. In the examined HCC samples, VSIG1 expression was observed in the cytoplasm of normal hepatocytes and downregulated in 47 of the 105 HCCs (44.76%). In 29 cases (27.62%), VSIG1 was co-expressed with cytoplasmic TTF1. VSIG1 expression was positively correlated with both E-cadherin and N-cadherin and negatively correlated with VIM (p < 0.0001). The VSIG1+/E-cadherin+/N-cadherin-/VIM phenotype was seen in 13 cases (12.4%) and was characteristic of well-differentiated (G1/2) carcinomas diagnosed in pT1/2 stages. Like pulmonary carcinomas, simultaneous cytoplasmic positivity of HCC cells for VSIG1 and TTF1 may be a potential indicator of a lineage shift from conventional to gastric-type HCC. The E-cadherin/VSIG1 complex can help suppress tumor growth by limiting HCC dedifferentiation. The miRNET-based interaction between VSIG1/VIM/CDH1/CDH2 genes might be interconnected by miR-200b-3p, a central regulator of EMT which also targets VIM and VSIG1.
Collapse
Affiliation(s)
- Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 530149, Targu-Mures, Romania.
- Research Center for Oncopathology and Translational Medicine, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu-Mures, Romania.
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Janos Szederjesi
- Department of Anesthesiology and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu-Mures, Romania
| | - Rita Szodorai
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 530149, Targu-Mures, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laszlo Kobori
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Decebal Fodor
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 530149, Targu-Mures, Romania
- Department of Anatomy and Embryology, Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures, Romania
| | - Ioan Jung
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 530149, Targu-Mures, Romania
| |
Collapse
|