1
|
Wang SX, Huang ZF, Li J, Wu Y, Du J, Li T. Optimization of diagnosis and treatment of hematological diseases via artificial intelligence. Front Med (Lausanne) 2024; 11:1487234. [PMID: 39574909 PMCID: PMC11578717 DOI: 10.3389/fmed.2024.1487234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024] Open
Abstract
Background Optimizing the diagnosis and treatment of hematological diseases is a challenging yet crucial research area. Effective treatment plans typically require the comprehensive integration of cell morphology, immunology, cytogenetics, and molecular biology. These plans also consider patient-specific factors such as disease stage, age, and genetic mutation status. With the advancement of artificial intelligence (AI), more "AI + medical" application models are emerging. In clinical practice, many AI-assisted systems have been successfully applied to the diagnosis and treatment of hematological diseases, enhancing precision and efficiency and offering valuable solutions for clinical practice. Objective This study summarizes the research progress of various AI-assisted systems applied in the clinical diagnosis and treatment of hematological diseases, with a focus on their application in morphology, immunology, cytogenetics, and molecular biology diagnosis, as well as prognosis prediction and treatment. Methods Using PubMed, Web of Science, and other network search engines, we conducted a literature search on studies from the past 5 years using the main keywords "artificial intelligence" and "hematological diseases." We classified the clinical applications of AI systems according to the diagnosis and treatment. We outline and summarize the current advancements in AI for optimizing the diagnosis and treatment of hematological diseases, as well as the difficulties and challenges in promoting the standardization of clinical diagnosis and treatment in this field. Results AI can significantly shorten turnaround times, reduce diagnostic costs, and accurately predict disease outcomes through applications in image-recognition technology, genomic data analysis, data mining, pattern recognition, and personalized medicine. However, several challenges remain, including the lack of AI product standards, standardized data, medical-industrial collaboration, and the complexity and non-interpretability of AI systems. In addition, regulatory gaps can lead to data privacy issues. Therefore, more research and improvements are needed to fully leverage the potential of AI to promote standardization of the clinical diagnosis and treatment of hematological diseases. Conclusion Our results serve as a reference point for the clinical diagnosis and treatment of hematological diseases and the development of AI-assisted clinical diagnosis and treatment systems. We offer suggestions for further development of AI in hematology and standardization of clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Shi-Xuan Wang
- The Endemic Disease (Thalassemia) Clinical Research Center of Jiangxi Province, Department of Hematology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zou-Fang Huang
- The Endemic Disease (Thalassemia) Clinical Research Center of Jiangxi Province, Department of Hematology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jing Li
- The Endemic Disease (Thalassemia) Clinical Research Center of Jiangxi Province, Department of Hematology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yin Wu
- The Third Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Jun Du
- Department of Hematology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Li
- The Endemic Disease (Thalassemia) Clinical Research Center of Jiangxi Province, Department of Hematology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
2
|
Neagu AI, Poalelungi DG, Fulga A, Neagu M, Fulga I, Nechita A. Enhanced Immunohistochemistry Interpretation with a Machine Learning-Based Expert System. Diagnostics (Basel) 2024; 14:1853. [PMID: 39272638 PMCID: PMC11394116 DOI: 10.3390/diagnostics14171853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND In recent decades, machine-learning (ML) technologies have advanced the management of high-dimensional and complex cancer data by developing reliable and user-friendly automated diagnostic tools for clinical applications. Immunohistochemistry (IHC) is an essential staining method that enables the identification of cellular origins by analyzing the expression of specific antigens within tissue samples. The aim of this study was to identify a model that could predict histopathological diagnoses based on specific immunohistochemical markers. METHODS The XGBoost learning model was applied, where the input variable (target variable) was the histopathological diagnosis and the predictors (independent variables influencing the target variable) were the immunohistochemical markers. RESULTS Our study demonstrated a precision rate of 85.97% within the dataset, indicating a high level of performance and suggesting that the model is generally reliable in producing accurate predictions. CONCLUSIONS This study demonstrated the feasibility and clinical efficacy of utilizing the probabilistic decision tree algorithm to differentiate tumor diagnoses according to immunohistochemistry profiles.
Collapse
Affiliation(s)
- Anca Iulia Neagu
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania
- Saint John Clinical Emergency Hospital for Children, 800487 Galati, Romania
| | - Diana Gina Poalelungi
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei St., 800578 Galati, Romania
| | - Ana Fulga
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei St., 800578 Galati, Romania
| | - Marius Neagu
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei St., 800578 Galati, Romania
| | - Iuliu Fulga
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei St., 800578 Galati, Romania
| | - Aurel Nechita
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania
- Saint John Clinical Emergency Hospital for Children, 800487 Galati, Romania
| |
Collapse
|
3
|
Khan S, Bhake A, Sagar S. Deciphering the Role of BRAFV600E Immunohistochemistry in Breast Lesions: A Comprehensive Review. Cureus 2024; 16:e64872. [PMID: 39156294 PMCID: PMC11330685 DOI: 10.7759/cureus.64872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
The BRAFV600E mutation has been extensively studied in various cancers, but its role in breast lesions remains less understood. Immunohistochemistry (IHC) has emerged as a valuable tool for detecting BRAFV600E expression in breast tissue, aiding in diagnosis and prognosis. This comprehensive review examines the significance of BRAFV600E IHC in breast lesions, encompassing its frequency, association with clinicopathological features, and potential clinical implications. We summarize key findings, emphasizing their utility in diagnosis, prognosis prediction, and treatment response assessment. Additionally, we discuss implications for clinical practice, highlighting the need for integrating BRAFV600E IHC into diagnostic algorithms. Recommendations for future research include larger-scale studies to validate findings, optimize detection techniques, and explore therapeutic interventions targeting BRAFV600E in breast cancer. This review contributes to understanding the molecular landscape of breast lesions and informs clinical decision-making in their management.
Collapse
Affiliation(s)
- Simran Khan
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Arvind Bhake
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shakti Sagar
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
4
|
Poalelungi DG, Neagu AI, Fulga A, Neagu M, Tutunaru D, Nechita A, Fulga I. Revolutionizing Pathology with Artificial Intelligence: Innovations in Immunohistochemistry. J Pers Med 2024; 14:693. [PMID: 39063947 PMCID: PMC11278211 DOI: 10.3390/jpm14070693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Artificial intelligence (AI) is a reality of our times, and it has been successfully implemented in all fields, including medicine. As a relatively new domain, all efforts are directed towards creating algorithms applicable in most medical specialties. Pathology, as one of the most important areas of interest for precision medicine, has received significant attention in the development and implementation of AI algorithms. This focus is especially important for achieving accurate diagnoses. Moreover, immunohistochemistry (IHC) serves as a complementary diagnostic tool in pathology. It can be further augmented through the application of deep learning (DL) and machine learning (ML) algorithms for assessing and analyzing immunohistochemical markers. Such advancements can aid in delineating targeted therapeutic approaches and prognostic stratification. This article explores the applications and integration of various AI software programs and platforms used in immunohistochemical analysis. It concludes by highlighting the application of these technologies to pathologies such as breast, prostate, lung, melanocytic proliferations, and hematologic conditions. Additionally, it underscores the necessity for further innovative diagnostic algorithms to assist physicians in the diagnostic process.
Collapse
Affiliation(s)
- Diana Gina Poalelungi
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania; (D.G.P.); (M.N.); (D.T.); (A.N.); (I.F.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei St., 800578 Galati, Romania
| | - Anca Iulia Neagu
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania; (D.G.P.); (M.N.); (D.T.); (A.N.); (I.F.)
- Saint John Clinical Emergency Hospital for Children, 800487 Galati, Romania
| | - Ana Fulga
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania; (D.G.P.); (M.N.); (D.T.); (A.N.); (I.F.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei St., 800578 Galati, Romania
| | - Marius Neagu
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania; (D.G.P.); (M.N.); (D.T.); (A.N.); (I.F.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei St., 800578 Galati, Romania
| | - Dana Tutunaru
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania; (D.G.P.); (M.N.); (D.T.); (A.N.); (I.F.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei St., 800578 Galati, Romania
| | - Aurel Nechita
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania; (D.G.P.); (M.N.); (D.T.); (A.N.); (I.F.)
- Saint John Clinical Emergency Hospital for Children, 800487 Galati, Romania
| | - Iuliu Fulga
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania; (D.G.P.); (M.N.); (D.T.); (A.N.); (I.F.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei St., 800578 Galati, Romania
| |
Collapse
|
5
|
Alam MR, Seo KJ, Abdul-Ghafar J, Yim K, Lee SH, Jang HJ, Jung CK, Chong Y. Recent application of artificial intelligence on histopathologic image-based prediction of gene mutation in solid cancers. Brief Bioinform 2023; 24:bbad151. [PMID: 37114657 DOI: 10.1093/bib/bbad151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
PURPOSE Evaluation of genetic mutations in cancers is important because distinct mutational profiles help determine individualized drug therapy. However, molecular analyses are not routinely performed in all cancers because they are expensive, time-consuming and not universally available. Artificial intelligence (AI) has shown the potential to determine a wide range of genetic mutations on histologic image analysis. Here, we assessed the status of mutation prediction AI models on histologic images by a systematic review. METHODS A literature search using the MEDLINE, Embase and Cochrane databases was conducted in August 2021. The articles were shortlisted by titles and abstracts. After a full-text review, publication trends, study characteristic analysis and comparison of performance metrics were performed. RESULTS Twenty-four studies were found mostly from developed countries, and their number is increasing. The major targets were gastrointestinal, genitourinary, gynecological, lung and head and neck cancers. Most studies used the Cancer Genome Atlas, with a few using an in-house dataset. The area under the curve of some of the cancer driver gene mutations in particular organs was satisfactory, such as 0.92 of BRAF in thyroid cancers and 0.79 of EGFR in lung cancers, whereas the average of all gene mutations was 0.64, which is still suboptimal. CONCLUSION AI has the potential to predict gene mutations on histologic images with appropriate caution. Further validation with larger datasets is still required before AI models can be used in clinical practice to predict gene mutations.
Collapse
Affiliation(s)
- Mohammad Rizwan Alam
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kyung Jin Seo
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jamshid Abdul-Ghafar
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kwangil Yim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Hak Lee
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyun-Jong Jang
- Catholic Big Data Integration Center, Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chan Kwon Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yosep Chong
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
6
|
Abdul-Ghafar J, Seo KJ, Jung HR, Park G, Lee SS, Chong Y. Validation of a Machine Learning Expert Supporting System, ImmunoGenius, Using Immunohistochemistry Results of 3000 Patients with Lymphoid Neoplasms. Diagnostics (Basel) 2023; 13:1308. [PMID: 37046526 PMCID: PMC10093096 DOI: 10.3390/diagnostics13071308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
(1) Background: Differential diagnosis using immunohistochemistry (IHC) panels is a crucial step in the pathological diagnosis of hematolymphoid neoplasms. In this study, we evaluated the prediction accuracy of the ImmunoGenius software using nationwide data to validate its clinical utility. (2) Methods: We collected pathologically confirmed lymphoid neoplasms and their corresponding IHC results from 25 major university hospitals in Korea between 2015 and 2016. We tested ImmunoGenius using these real IHC panel data and compared the precision hit rate with previously reported diagnoses. (3) Results: We enrolled 3052 cases of lymphoid neoplasms with an average of 8.3 IHC results. The precision hit rate was 84.5% for these cases, whereas it was 95.0% for 984 in-house cases. (4) Discussion: ImmunoGenius showed excellent results in most B-cell lymphomas and generally showed equivalent performance in T-cell lymphomas. The primary reasons for inaccurate precision were atypical IHC profiles of certain cases, lack of disease-specific markers, and overlapping IHC profiles of similar diseases. We verified that the machine-learning algorithm could be applied for diagnosis precision with a generally acceptable hit rate in a nationwide dataset. Clinical and histological features should also be taken into account for the proper use of this system in the decision-making process.
Collapse
Affiliation(s)
- Jamshid Abdul-Ghafar
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kyung Jin Seo
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hye-Ra Jung
- Department of Pathology, Keimyung University, Daegu 42601, Republic of Korea
| | - Gyeongsin Park
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung-Sook Lee
- Department of Pathology, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Yosep Chong
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
7
|
Thakur N, Alam MR, Abdul-Ghafar J, Chong Y. Recent Application of Artificial Intelligence in Non-Gynecological Cancer Cytopathology: A Systematic Review. Cancers (Basel) 2022; 14:3529. [PMID: 35884593 PMCID: PMC9316753 DOI: 10.3390/cancers14143529] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022] Open
Abstract
State-of-the-art artificial intelligence (AI) has recently gained considerable interest in the healthcare sector and has provided solutions to problems through automated diagnosis. Cytological examination is a crucial step in the initial diagnosis of cancer, although it shows limited diagnostic efficacy. Recently, AI applications in the processing of cytopathological images have shown promising results despite the elementary level of the technology. Here, we performed a systematic review with a quantitative analysis of recent AI applications in non-gynecological (non-GYN) cancer cytology to understand the current technical status. We searched the major online databases, including MEDLINE, Cochrane Library, and EMBASE, for relevant English articles published from January 2010 to January 2021. The searched query terms were: "artificial intelligence", "image processing", "deep learning", "cytopathology", and "fine-needle aspiration cytology." Out of 17,000 studies, only 26 studies (26 models) were included in the full-text review, whereas 13 studies were included for quantitative analysis. There were eight classes of AI models treated of according to target organs: thyroid (n = 11, 39%), urinary bladder (n = 6, 21%), lung (n = 4, 14%), breast (n = 2, 7%), pleural effusion (n = 2, 7%), ovary (n = 1, 4%), pancreas (n = 1, 4%), and prostate (n = 1, 4). Most of the studies focused on classification and segmentation tasks. Although most of the studies showed impressive results, the sizes of the training and validation datasets were limited. Overall, AI is also promising for non-GYN cancer cytopathology analysis, such as pathology or gynecological cytology. However, the lack of well-annotated, large-scale datasets with Z-stacking and external cross-validation was the major limitation found across all studies. Future studies with larger datasets with high-quality annotations and external validation are required.
Collapse
Affiliation(s)
| | | | | | - Yosep Chong
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (N.T.); (M.R.A.); (J.A.-G.)
| |
Collapse
|