1
|
Vander Elst N, Bellemans J, Lavigne R, Briers Y, Meyer E. Endolysin NC5 improves early cloxacillin treatment in a mouse model of Streptococcus uberis mastitis. Appl Microbiol Biotechnol 2024; 108:118. [PMID: 38204128 PMCID: PMC10781846 DOI: 10.1007/s00253-023-12820-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Streptococcus uberis frequently causes bovine mastitis, an infectious udder disease with significant economic implications for dairy cows. Conventional antibiotics, such as cloxacillin, sometimes have limited success in eliminating S. uberis as a stand-alone therapy. To address this challenge, the study objective was to investigate the VersaTile engineered endolysin NC5 as a supplemental therapy to cloxacillin in a mouse model of bovine S. uberis mastitis. NC5 was previously selected based on its intracellular killing and biofilm eradicating activity. To deliver preclinical proof-of-concept of this supplemental strategy, lactating mice were intramammarily infected with a bovine S. uberis field isolate and subsequently treated with cloxacillin (30.0 μg) combined with either a low (23.5 μg) or high (235.0 μg) dose of NC5. An antibiotic monotherapy group, as well as placebo treatment, was included as controls. Two types of responders were identified: fast (n = 17), showing response after 4-h treatment, and slow (n = 10), exhibiting no clear response at 4 h post-treatment across all groups. The high-dose combination therapy in comparison with placebo treatment impacted the hallmarks of mastitis in the fast responders by reducing (i) the bacterial load 13,000-fold (4.11 ± 0.78 Δlog10; p < 0.001), (ii) neutrophil infiltration 5.7-fold (p > 0.05), and (iii) the key pro-inflammatory chemokine IL-8 13-fold (p < 0.01). These mastitis hallmarks typically followed a dose response dependent on the amount of endolysin added. The current in vivo study complements our in vitro data and provides preclinical proof-of-concept of NC5 as an adjunct to intramammary cloxacillin treatment. KEY POINTS: • Engineered endolysin NC5 was preclinically evaluated as add-on to cloxacillin treatment. • Two types of mice (slow and fast responding) were observed. • The add-on treatment decreased bacterial load, neutrophil influx, and pro-inflammatory mediators.
Collapse
Affiliation(s)
- Niels Vander Elst
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 21, 3001, Heverlee, Belgium.
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Julie Bellemans
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 21, 3001, Heverlee, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
2
|
Vander Elst N. Bacteriophage-derived endolysins as innovative antimicrobials against bovine mastitis-causing streptococci and staphylococci: a state-of-the-art review. Acta Vet Scand 2024; 66:20. [PMID: 38769566 PMCID: PMC11106882 DOI: 10.1186/s13028-024-00740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
Bacteriophage-encoded endolysins, peptidoglycan hydrolases breaking down the Gram-positive bacterial cell wall, represent a groundbreaking class of novel antimicrobials to revolutionize the veterinary medicine field. Wild-type endolysins exhibit a modular structure, consisting of enzymatically active and cell wall-binding domains, that enable genetic engineering strategies for the creation of chimeric fusion proteins or so-called 'engineered endolysins'. This biotechnological approach has yielded variants with modified lytic spectrums, introducing new possibilities in antimicrobial development. However, the discovery of highly similar endolysins by different groups has occasionally resulted in the assignment of different names that complicate a straightforward comparison. The aim of this review was to perform a homology-based comparison of the wild-type and engineered endolysins that have been characterized in the context of bovine mastitis-causing streptococci and staphylococci, grouping homologous endolysins with ≥ 95.0% protein sequence similarity. Literature is explored by homologous groups for the wild-type endolysins, followed by a chronological examination of engineered endolysins according to their year of publication. This review concludes that the wild-type endolysins encountered persistent challenges in raw milk and in vivo settings, causing a notable shift in the field towards the engineering of endolysins. Lead candidates that display robust lytic activity are nowadays selected from screening assays that are performed under these challenging conditions, often utilizing advanced high-throughput protein engineering methods. Overall, these recent advancements suggest that endolysins will integrate into the antibiotic arsenal over the next decade, thereby innovating antimicrobial treatment against bovine mastitis-causing streptococci and staphylococci.
Collapse
Affiliation(s)
- Niels Vander Elst
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, Solnavägen 9, 17165, Solna, Stockholm, Sweden.
| |
Collapse
|
3
|
Wu F, Du T, Jiang X, Liu S, Cheng Y, Zhang Z, Miao W, Wang T. Lactococcus garvieae exerts a critical role in inducing inflammation in dairy mastitis by triggering NLRP3 inflammasome-mediated pyroptosis in MAC-T cells. World J Microbiol Biotechnol 2024; 40:132. [PMID: 38470533 DOI: 10.1007/s11274-024-03947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Lactococcus garvieae (L. garvieae) is a pathogenic bacterium that is Gram-positive and catalase-negative (GPCN), and it is capable of growing in a wide range of environmental conditions. This bacterium is associated with significant mortality and losses in fisheries, and there are concerns regarding its potential as a zoonotic pathogen, given its presence in cattle and dairy products. While we have identified and characterized virulent strains of L. garvieae through phenotyping and molecular typing studies, their impact on mammary tissue remains unknown. This study aims to investigate the pathogenicity of strong and weak virulent strains of L. garvieae using in vivo mouse models. We aim to establish MAC-T cell model to examine potential injury caused by the strong virulent strain LG41 through the TLR2/NLRP3/NF-kB pathway. Furthermore, we assess the involvement of NLRP3 inflammasome-mediated pyroptosis in dairy mastitis by silencing NLRP3. The outcomes of this study will yield crucial theoretical insights into the potential mechanisms involved in mastitis in cows caused by the L. garvieae-induced inflammatory response in MAC-T cells.
Collapse
Affiliation(s)
- Fan Wu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tao Du
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaodan Jiang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuhong Liu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yiru Cheng
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhe Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wei Miao
- Agronomy college, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tiancheng Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
4
|
Schneider P, Salamon H, Weizmann N, Nissim-Eliraz E, Lysnyansky I, Shpigel NY. Immune profiling of experimental murine mastitis reveals conserved response to mammary pathogenic Escherichia coli, Mycoplasma bovis, and Streptococcus uberis. Front Microbiol 2023; 14:1126896. [PMID: 37032878 PMCID: PMC10080000 DOI: 10.3389/fmicb.2023.1126896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Mastitis is one of the most prevalent and economically important diseases of dairy animals. The disease is caused by ascending bacterial infection through the teat canal. Among the most common mastitis-causing bacteria are Gram-negative coliforms, Gram-positive streptococci and staphylococci, and mycoplasma. The most prominent cellular hallmark of acute mammary infection is a massive recruitment of blood neutrophils into the tubular and alveolar milk spaces. The complex biological processes of leukocyte recruitment, activation, adhesion, and migration in the mammary gland remain largely elusive to date. While field research of mastitis in dairy animals contributed a lot to the development of mitigation, control, and even eradication programs, little progress was made toward understanding the molecular mechanisms underlying the pathogenesis of the disease. We report here experimental mastitis model systems in lactating mice challenged with field strains of common udder pathogens in dairy cows. We used these model systems to apply recently developed multiplex gene expression technology (Nanostring nCounter), which enabled us to study the expression of over 700 immune genes. Our analysis revealed a core of 100 genes that are similarly regulated and functionally or physically interacting in E. coli, M. bovis, and Strep uberis murine mastitis. Common significantly enriched gene sets include TNFɑ signaling via NFkB, Interferon gamma and alpha response, and IL6-JAK-STAT3 signaling. In addition, we show a significantly enriched expression of genes associated with neutrophil extracellular traps (NET) in glands challenged by the three pathogens. Ligand-receptor analysis revealed interactions shared by the three pathogens, including the interaction of the cytokines IL1β, IL1ɑ, and TNFɑ with their receptors, and proteins involved in immune cell recruitment such as complement C3 and ICAM1 (with CD11b), chemokines CCL3 and CCL4 (with CCR1), and CSF3 (with CSF3R). Taken together, our results show that mammary infection with E. coli, M. bovis, and Strep uberis culminated in the activation of a conserved core of immune genes and pathways including NET formation.
Collapse
Affiliation(s)
- Peleg Schneider
- Department of Basic Sciences, The Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hagit Salamon
- Department of Basic Sciences, The Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nathalie Weizmann
- Department of Basic Sciences, The Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Einat Nissim-Eliraz
- Department of Basic Sciences, The Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Inna Lysnyansky
- Mycoplasma Unit, Kimron Veterinary Institute, Beit Dagan, Israel
| | - Nahum Y. Shpigel
- Department of Basic Sciences, The Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
- *Correspondence: Nahum Y. Shpigel,
| |
Collapse
|
5
|
Morales-Ferré C, Franch À, Castell M, Olivares M, Rodríguez-Lagunas MJ, Pérez-Cano FJ. Staphylococcus epidermidis' Overload During Suckling Impacts the Immune Development in Rats. Front Nutr 2022; 9:916690. [PMID: 35859758 PMCID: PMC9289531 DOI: 10.3389/fnut.2022.916690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Mastitis is an inflammation of the mammary gland occurring in 3-33% of the breastfeeding mothers. The majority of mastitis cases have an infectious etiology. More than 75% of infectious mastitis are caused by Staphylococcus epidermidis and Staphylococcus aureus and involves breast milk microbiota alteration, which, may have an impact in lactating infant. The aim of this study was to analyze in rats during the suckling period and later in life the impact of a high and a low overload of Staphylococcus epidermidis, similarly as it occurs during the clinical and the subclinical mastitis, respectively. From days 2 to 21 of life, suckling rats were daily supplemented with low (Ls group) or high (Hs group) dose of S. epidermidis. Body weight and fecal humidity were periodically recorded. On days 21 and 42 of life, morphometry, hematological variables, intestinal gene expression, immunoglobulin (Ig) and cytokine profile and spleen cells' phenotype were measured. Although no differences were found in body weight, Ls and Hs groups showed higher body length and lower fecal humidity. Both doses induced small changes in lymphocytes subpopulations, reduced the plasma levels of Ig and delayed the Th1/Th2 balance causing a bias toward the Th2 response. No changes were found in cytokine concentration. The low dose affected the Tc cells intestinal homing pattern whereas the high dose had an impact on the hematological variables causing leukocytosis and lymphocytosis and also influenced the intestinal barrier maturation. In conclusion, both interventions with Staphylococcus epidermidis overload during suckling, affects the immune system development in short and long term.
Collapse
Affiliation(s)
- Carla Morales-Ferré
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | | | - María J. Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| |
Collapse
|
6
|
Liu K, Deng Z, Zhang L, Gu X, Liu G, Liu Y, Chen P, Gao J, Han B, Qu W. Biological Characteristics and Pathogenicity of Helcococcus ovis Isolated From Clinical Bovine Mastitis in a Chinese Dairy Herd. Front Vet Sci 2022; 8:756438. [PMID: 35224069 PMCID: PMC8874022 DOI: 10.3389/fvets.2021.756438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
Helcococcus ovis (H. ovis) was first reported in ovine subclinical mastitis milk and post-mortem examination organs in Spain and the United Kingdom in 1999; subsequently, it appeared in cattle, horse, goat, and human. However, isolation and characterization of the pathogen from clinical bovine mastitis is unknown. The objective of this study was to identify the pathogen in clinical bovine mastitis. A total of four strains were isolated from bovine mastitis milk samples from a Chinese dairy farm, and they were identified as H. ovis by microscopic examination and 16S rRNA gene sequencing. Phylogenetic tree was constructed using 16S rRNA gene, and the isolates were closely related to other China strains and strains from Japan. The growth speed of the H. ovis isolated was relatively slower than Streptococcus agalactiae, and the phenotypic characteristics were similar to H. ovis CCUG37441 and CCUG39041 except to lactose. The isolates were sensitive to most of the common used antimicrobials. The H. ovis isolates could lead to mild murine mastitis alone and induce severe mastitis when co-infected with Trueperella pyogenes in the murine mammary infection model constructed.
Collapse
Affiliation(s)
- Kai Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Zhaoju Deng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Limei Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xiaolong Gu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Gang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Gao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weijie Qu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Wang H, Chen C, Chen X, Zhang J, Liu Y, Li X. PK/PD Modeling to Assess Rifaximin Clinical Dosage in a Mouse Model of Staphylococcus aureus-Induced Mastitis. Front Vet Sci 2021; 8:651369. [PMID: 34195244 PMCID: PMC8236590 DOI: 10.3389/fvets.2021.651369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a common pathogen that causes mastitis, an infection of the milk-secreting tissue of the udder, in dairy cows, and presents a huge economic problem for the dairy industry worldwide. Thus, control and treatment of mastitis in dairy cows is vital in order to reduce the costs associated with the disease. The main purpose of the current work was to examine the current dosage of rifaximin for the treatment mastitis in cows caused by S. aureus using pharmacokinetic/pharmacodynamic integration in a mouse mastitis model. The mouse mastitis model was established via injection of S. aureus Newbould 305 (400 CFU/gland) into the mouse mammary gland. A single dose of 50, 100, 200, or 400 μg/gland, administered via intramammary infusion, was used to study the pharmacokinetics of rifaximin. The pharmacokinetic parameters were analyzed by non-compartment and non-linear mixed-effect models using Phoenix software (version 8.1; Pharsight, USA). In vivo pharmacodynamics was used to examine 18 therapeutic regimens covering various doses ranging from 25 to 800 μg/gland and three dosing intervals of 8, 12, and 24 h per 24 h experiment cycle. The antibacterial effect of rifaximin was elevated with higher concentrations of rifaximin or shorter intervals of administration. The percentage of time that drug concentrations exceeded the MIC during a dose interval (%T > MIC) was generally 100% for rifaximin and was not better than AUC24/MIC in the sigmoid Emax model of inhibitory effect. The optimal antibacterial effect was 2log10CFU/gland when the magnitude of AUC24/MIC reached 14,281.63 h. A total of 14,281.63 h of AUC24/MIC was defined as a target value in the Monte Carlo simulation. The clinically recommended dosage regimen of 100 mg/gland every 8 h in 1 day achieved an 82.97% cure rate for the treatment of bovine mastitis caused by Staphylococcus aureus infection.
Collapse
Affiliation(s)
- Honglei Wang
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chen Chen
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojie Chen
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingju Zhang
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiming Liu
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiubo Li
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Wang Z, Xue Y, Gao Y, Guo M, Liu Y, Zou X, Cheng Y, Ma J, Wang H, Sun J, Yan Y. Phage vB_PaeS-PAJD-1 Rescues Murine Mastitis Infected With Multidrug-Resistant Pseudomonas aeruginosa. Front Cell Infect Microbiol 2021; 11:689770. [PMID: 34178726 PMCID: PMC8226249 DOI: 10.3389/fcimb.2021.689770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/27/2021] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative pathogen that causes a variety of infections in humans and animals. Due to the inappropriate use of antibiotics, multi-drug resistant (MDR) P. aeruginosa strains have emerged and are prevailing. In recent years, cow mastitis caused by MDR P. aeruginosa has attracted attention. In this study, a microbial community analysis revealed that P. aeruginosa could be a cause of pathogen-induced cow mastitis. Five MDR P. aeruginosa strains were isolated from milk diagnosed as mastitis positive. To seek an alternative antibacterial agent against MDR, P. aeruginosa, a lytic phage, designated vB_PaeS_PAJD-1 (PAJD-1), was isolated from dairy farm sewage. PAJD-1 was morphologically classified as Siphoviridae and was estimated to be about 57.9 kb. Phage PAJD-1 showed broad host ranges and a strong lytic ability. A one-step growth curve analysis showed a relatively short latency period (20 min) and a relatively high burst size (223 PFU per infected cell). Phage PAJD-1 remained stable over wide temperature and pH ranges. Intramammary-administered PAJD-1 reduced bacterial concentrations and repaired mammary glands in mice with mastitis induced by MDR P. aeruginosa. Furthermore, the cell wall hydrolase (termed endolysin) from phage PAJD-1 exhibited a strong bacteriolytic and a wide antibacterial spectrum against MDR P. aeruginosa. These findings present phage PAJD-1 as a candidate for phagotherapy against MDR P. aeruginosa infection.
Collapse
Affiliation(s)
- Zhaofei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yibing Xue
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Ya Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Mengting Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yuanping Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Xinwei Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yuqiang Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jingjiao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Hengan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jianhe Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yaxian Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
9
|
Betts CB, Quackenbush A, Anderson W, Marshall NE, Schedin PJ. Mucosal Immunity and Liver Metabolism in the Complex Condition of Lactation Insufficiency. J Hum Lact 2020; 36:582-590. [PMID: 32795211 DOI: 10.1177/0890334420947656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lactation insufficiency is variously defined and includes the inability to produce milk, not producing enough milk to exclusively meet infant growth requirements, and pathological interruption of lactation (e.g., mastitis). Of women with intent-to-breastfeed, lactation insufficiency has been estimated to affect 38%-44% of newly postpartum women, likely contributing to the nearly 60% of infants that are not breastfed according to the World Health Organization's guidelines. To date, research and clinical practice aimed at improving feeding outcomes have focused on hospital lactation support and education, with laudable results. However, researchers' reports of recent rodent studies concerning fundamental lactation biology have suggested that the underlying pathologies of lactation insufficiency may be more nuanced than is currently appreciated. In this article, we identify mucosal biology of the breast and lactation-specific liver biology as two under-researched aspects of lactation physiology. Specifically, we argue that further scientific inquiry into reproductive state-dependent regulation of immunity in the human breast will reveal insights into novel immune based requirements for healthy lactation. Additionally, our synthesis of the literature supports the hypothesis that the liver is an essential player in lactation-highlighting the potential that pathologies of the liver may also be associated with lactation insufficiency. More research into these biologic underpinnings of lactation is anticipated to provide new avenues to understand and treat lactation insufficiency.
Collapse
Affiliation(s)
- Courtney B Betts
- 89020 Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Alexandra Quackenbush
- 89020 Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Weston Anderson
- 89020 Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Nicole E Marshall
- Obstetrics and Gynecology, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Pepper J Schedin
- 89020 Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA.,University of Colorado Cancer Center, Aurora, CO, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
10
|
Dehydroandrographolide inhibits mastitis by activating autophagy without affecting intestinal flora. Aging (Albany NY) 2020; 12:14050-14065. [PMID: 32702668 PMCID: PMC7425474 DOI: 10.18632/aging.103312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022]
Abstract
Mastitis can seriously damage the physical and mental health of lactating women. The use of antibiotics and anti-inflammatory drugs may damage the flora balance in lactating women. To alleviate mastitis in lactating women and reduce drug-induced damage to the flora, we found that dehydroandrographolide (Deh) has good anti-inflammatory and bacterial balance functions. In vivo, we found that Deh significantly inhibited the expression of MPO, IL6, IL-1β, TNF-α, COX2 and iNOS and reduced pathological damage to the mammary gland. The feces in the control and Deh groups were collected and sequenced for 16S flora. The results showed that Deh did not change the primary intestinal microflora composition of the two groups. In vitro, our study showed that Deh significantly inhibited the expression of IL6, IL-1β and TNF-α in the EpH4-Ev cell line. When an AMPK inhibitor was added, the anti-inflammatory effect of Deh was blocked. To further study the anti-inflammatory mechanism of Deh, we found that Deh significantly promoted autophagy through the phosphorylation of AMPK, Beclin and ULK1. In conclusion, our study found that Deh promoted autophagy and played an anti-inflammatory role by activating the AMPK/Beclin/ULK1 signaling pathway and did not affect intestinal flora.
Collapse
|
11
|
Grzeskowiak LE, Wlodek ME, Geddes DT. What Evidence Do We Have for Pharmaceutical Galactagogues in the Treatment of Lactation Insufficiency?-A Narrative Review. Nutrients 2019; 11:nu11050974. [PMID: 31035376 PMCID: PMC6567188 DOI: 10.3390/nu11050974] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/23/2022] Open
Abstract
Inadequate breast milk supply is a frequently reported reason for early discontinuation of breastfeeding and represents a critical opportunity for intervening to improve breastfeeding outcomes. For women who continue to experience insufficient milk supply despite the utilisation of non-pharmacological lactation support strategies, pharmacological intervention with medications used to augment lactation, commonly referred to as galactagogues, is common. Galactagogues exert their pharmacological effects through altering the complex hormonal milieu regulating lactation, particularly prolactin and oxytocin. This narrative review provides an appraisal of the existing evidence regarding the efficacy and safety of pharmaceutical treatments for lactation insufficiency to guide their use in clinical practice. The greatest body of evidence surrounds the use of domperidone, with studies demonstrating moderate short-term improvements in breast milk supply. Evidence regarding the efficacy and safety of metoclopramide is less robust, but given that it shares the same mechanism of action as domperidone it may represent a potential treatment alternative where domperidone is unsuitable. Data on remaining interventions such as oxytocin, prolactin and metformin is too limited to support their use in clinical practice. The review provides an overview of key evidence gaps and areas of future research, including the impacts of pharmaceutical galactagogues on breast milk composition and understanding factors contributing to individual treatment response to pharmaceutical galactagogues.
Collapse
Affiliation(s)
- Luke E Grzeskowiak
- Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia.
- SA Pharmacy, Flinders Medical Centre, SA Health, Bedford Park, Adelaide, SA 5042, Australia.
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth, WA 6009, Australia.
| |
Collapse
|
12
|
Hughes K, Watson CJ. The Mammary Microenvironment in Mastitis in Humans, Dairy Ruminants, Rabbits and Rodents: A One Health Focus. J Mammary Gland Biol Neoplasia 2018; 23:27-41. [PMID: 29705830 PMCID: PMC5978844 DOI: 10.1007/s10911-018-9395-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/12/2018] [Indexed: 12/18/2022] Open
Abstract
The One Health concept promotes integrated evaluation of human, animal, and environmental health questions to expedite advances benefiting all species. A recognition of the multi-species impact of mastitis as a painful condition with welfare implications leads us to suggest that mastitis is an ideal target for a One Health approach. In this review, we will evaluate the role of the mammary microenvironment in mastitis in humans, ruminants and rabbits, where appropriate also drawing on studies utilising laboratory animal models. We will examine subclinical mastitis, clinical lactational mastitis, and involution-associated, or dry period, mastitis, highlighting important anatomical and immunological species differences. We will synthesise knowledge gained across different species, comparing and contrasting disease presentation. Subclinical mastitis (SCM) is characterised by elevated Na/K ratio, and increased milk IL-8 concentrations. SCM affecting the breastfeeding mother may result in modulation of infant mucosal immune system development, whilst in ruminants notable milk production losses may ensue. In the case of clinical lactational mastitis, we will focus on mastitis caused by Staphylococcus aureus and Escherichia coli. Understanding of the pathogenesis of involution-associated mastitis requires characterization of the structural and molecular changes occurring during involution and we will review these changes across species. We speculate that milk accumulation may act as a nidus for infection, and that the involution 'wound healing phenotype' may render the tissue susceptible to bacterial infection. We will discuss the impact of concurrent pregnancy and a 'parallel pregnancy and involution signature' during bovine mammary involution.
Collapse
Affiliation(s)
- Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
13
|
Genomic analysis and immune response in a murine mastitis model of vB_EcoM-UFV13, a potential biocontrol agent for use in dairy cows. Sci Rep 2018; 8:6845. [PMID: 29717158 PMCID: PMC5931544 DOI: 10.1038/s41598-018-24896-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/11/2018] [Indexed: 02/02/2023] Open
Abstract
Bovine mastitis remains the main cause of economic losses for dairy farmers. Mammary pathogenic Escherichia coli (MPEC) is related to an acute mastitis and its treatment is still based on the use of antibiotics. In the era of antimicrobial resistance (AMR), bacterial viruses (bacteriophages) present as an efficient treatment or prophylactic option. However, this makes it essential that its genetic structure, stability and interaction with the host immune system be thoroughly characterized. The present study analyzed a novel, broad host-range anti-mastitis agent, the T4virus vB_EcoM-UFV13 in genomic terms, and its activity against a MPEC strain in an experimental E. coli-induced mastitis mouse model. 4,975 Single Nucleotide Polymorphisms (SNPs) were assigned between vB_EcoM-UFV13 and E. coli phage T4 genomes with high impact on coding sequences (CDS) (37.60%) for virion proteins. Phylogenetic trees and genome analysis supported a recent infection mix between vB_EcoM-UFV13 and Shigella phage Shfl2. After a viral stability evaluation (e.g pH and temperature), intramammary administration (MOI 10) resulted in a 10-fold reduction in bacterial load. Furthermore, pro-inflammatory cytokines, such as IL-6 and TNF-α, were observed after viral treatment. This work brings the whole characterization and immune response to vB_EcoM-UFV13, a biocontrol candidate for bovine mastitis.
Collapse
|
14
|
Camperio C, Armas F, Biasibetti E, Frassanito P, Giovannelli C, Spuria L, D’Agostino C, Tait S, Capucchio MT, Marianelli C. A mouse mastitis model to study the effects of the intramammary infusion of a food-grade Lactococcus lactis strain. PLoS One 2017; 12:e0184218. [PMID: 28873396 PMCID: PMC5584933 DOI: 10.1371/journal.pone.0184218] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/21/2017] [Indexed: 11/26/2022] Open
Abstract
Lactococcus lactis is one of the most important microorganisms in the dairy industry and has “generally recognized as safe” (GRAS) status. L. lactis belongs to the group of lactic acid bacteria (LAB) and is encountered in a wide range of environments. Recently, the use of the intramammary infusion of a live culture of LAB has been investigated as a new antibiotic alternative for treating mastitis in dairy ruminants. Controversial results are described in literature regarding its efficacy and safety. In this study we conducted in-depth investigation of the mammary gland immune response induced by intramammary inoculum of a live culture of L. lactis LMG 7930 using the mouse mastitis model. Overnight cultures either of L. lactis (≈ 107 CFU) or of the mastitis pathogens Staphylococcus chromogenes (≈ 105 CFU) or S. aureus (≈ 102 CFU/ml) were injected into the mouse inguinal glands. A double injection, consisting of S. chromogenes first and then L. lactis, was also investigated. Bacterial recovery from the gland and inflammatory cell infiltration were assessed. L. lactis-treated and control glands were analysed for proinflammatory cytokine production. Microbiological results showed that L. lactis was able to survive in the mammary gland 24 h post infection, as were the mastitis pathogens S. chromogenes and S. aureus. L. lactis reduced S. chromogenes survival in the glands and increased its own survival ability by coexisting with the pathogen. Histology showed that L. lactis-treated glands presented variable histological features, ranging from undamaged tissue with no inflammatory cell infiltrate to severe PMN infiltrate with focal areas of tissue damage. S. aureus-treated glands showed the most severe histological grade of inflammation despite the fact that the inoculum size was the smallest. In contrast, most S. chromogenes-treated glands showed normal structures with no infiltration or lesions. Significant increases in IL-1β and TNF-α levels were also found in L. lactis-inoculated glands. The above findings seem to suggest that food-grade L. lactis at a high-inoculum dose such as an overnight culture may elicit a suppurative inflammatory response in the mammary gland, thus becoming a potential mastitis-causing pathogen. Because of the unpredictable potential of L. lactis in acting as a potential mastitis pathogen, this organism cannot be considered a safe treatment for bovine mastitis.
Collapse
Affiliation(s)
- Cristina Camperio
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Federica Armas
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- Department of Sciences, Roma Tre University, Rome, Italy
| | - Elena Biasibetti
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Paolo Frassanito
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Carlo Giovannelli
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Liliana Spuria
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Claudia D’Agostino
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Cinzia Marianelli
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
15
|
Method for collecting mouse milk without exogenous oxytocin stimulation. Biotechniques 2016; 60:47-9. [PMID: 26757812 DOI: 10.2144/000114373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/23/2015] [Indexed: 11/23/2022] Open
Abstract
It has been reported that breast-feeding more than 6 months strongly decreases the risk of allergy, diabetes, obesity, and hypertension in humans. In order to understand the mechanisms responsible for this benefit, it is important to evaluate precisely the composition of maternal milk, especially in response to environmental cues. Mouse models offer a unique opportunity to study the impact of maternal milk composition on the development and health of offspring. Oxytocin injection of the dam is usually used to stimulate milk ejection; however, exogenous oxytocin might have deleterious effects under some experimental conditions by modifying milk content as well as the physiology and behavior of the dam. Taking advantage of the natural stimulation of the mammary gland that occurs after the reunion of a dam that has been separated from her pups, we developed a new procedure to collect mouse milk without the injection of oxytocin. This method is easy to use, low-cost ,and non-invasive. Moreover, it provides a sufficient amount of milk for use in a wide range of biological analyses.
Collapse
|
16
|
Cullinane M, Amir LH, Donath SM, Garland SM, Tabrizi SN, Payne MS, Bennett CM. Determinants of mastitis in women in the CASTLE study: a cohort study. BMC FAMILY PRACTICE 2015; 16:181. [PMID: 26674724 PMCID: PMC4681172 DOI: 10.1186/s12875-015-0396-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/09/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Mastitis is an acute, debilitating condition that occurs in approximately 20 % of breastfeeding women who experience a red, painful breast with fever. This paper describes the factors correlated with mastitis and investigates the presence of Staphylococcus aureus in women who participated in the CASTLE (Candida and Staphylococcus Transmission: Longitudinal Evaluation) study. The CASTLE study was a prospective cohort study which recruited nulliparous women in late pregnancy in two maternity hospitals in Melbourne, Australia in 2009-2011. METHODS Women completed questionnaires at recruitment and six time-points in the first eight weeks postpartum. Postpartum questionnaires asked about incidences of mastitis, nipple damage, milk supply, expressing practices and breastfeeding problems. Nasal and nipple swabs were collected from mothers and babies, as well as breast milk samples. All samples were cultured for S. aureus. "Time at risk" of mastitis was defined as days between birth and first occurrence of mastitis (for women who developed mastitis) and days between birth and the last study time-point (for women who did not develop mastitis). Risk factors for incidence of mastitis occurring during the time at risk (Incident Rate Ratios [IRR]) were investigated using a discrete version of the multivariable proportional hazards regression model. RESULTS Twenty percent (70/346) of participants developed mastitis. Women had an increased risk of developing mastitis if they reported nipple damage (IRR 2.17, 95 % CI 1.21, 3.91), over-supply of breast milk (IRR 2.60, 95 % CI 1.58, 4.29), nipple shield use (IRR 2.93, 95 % CI 1.72, 5.01) or expressing several times a day (IRR 1.64, 95 % CI 1.01, 2.68). The presence of S. aureus on the nipple (IRR 1.72, 95 % CI 1.04, 2.85) or in milk (IRR 1.78, 95 % CI 1.08, 2.92) also increased the risk of developing mastitis. CONCLUSIONS Nipple damage, over-supply of breast milk, use of nipple shields and the presence of S. aureus on the nipple or in breast milk increased the mastitis risk in our prospective cohort study sample. Reducing nipple damage may help reduce maternal breast infections.
Collapse
Affiliation(s)
- Meabh Cullinane
- Judith Lumley Centre (formerly Mother & Child Health Research), La Trobe University, Melbourne, VIC, 3000, Australia.
| | - Lisa H Amir
- Judith Lumley Centre (formerly Mother & Child Health Research), La Trobe University, Melbourne, VIC, 3000, Australia.
| | - Susan M Donath
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia. .,University of Melbourne Department of Paediatrics, The Royal Children's Hospital, Parkville, VIC, 3052, Australia.
| | - Suzanne M Garland
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia. .,Women's Centre for Infectious Diseases, Royal Women's Hospital, Parkville, VIC, 3052, Australia. .,University of Melbourne Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Parkville, VIC, 3052, Australia.
| | - Sepehr N Tabrizi
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia. .,Women's Centre for Infectious Diseases, Royal Women's Hospital, Parkville, VIC, 3052, Australia. .,University of Melbourne Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Parkville, VIC, 3052, Australia.
| | - Matthew S Payne
- School of Women's and Infants' Health, University of Western Australia, Crawley, WA, Australia.
| | - Catherine M Bennett
- Centre for Population Health Research, Deakin University, Burwood, VIC, 3125, Australia.
| |
Collapse
|