1
|
Mohamed M, Siddiqui MN, Oyiga BC, Léon J, Ballvora A. Validation of a QTL on Chromosome 1DS Showing a Major Effect on Salt Tolerance in Winter Wheat. Int J Mol Sci 2022; 23:13745. [PMID: 36430224 PMCID: PMC9691212 DOI: 10.3390/ijms232213745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Salt stress is one the most destructive abiotic stressors, causing yield losses in wheat worldwide. A prerequisite for improving salt tolerance is the identification of traits for screening genotypes and uncovering causative genes. Two populations of F3 lines developed from crosses between sensitive and tolerant parents were tested for salt tolerance at the seedling stage. Based on their response, the offspring were classified as salt sensitive and tolerant. Under saline conditions, tolerant genotypes showed lower Na+ and proline content but higher K+, higher chlorophyll content, higher K+/Na+ ratio, higher PSII activity levels, and higher photochemical efficiency, and were selected for further molecular analysis. Five stress responsive QTL identified in a previous study were validated in the populations. A QTL on the short arm of chromosome 1D showed large allelic effects in several salt tolerant related traits. An expression analysis of associated candidate genes showed that TraesCS1D02G052200 and TraesCS5B02G368800 had the highest expression in most tissues. Furthermore, qRT-PCR expression analysis revealed that ZIP-7 had higher differential expressions under saline conditions compared to KefC, AtABC8 and 6-SFT. This study provides information on the genetic and molecular basis of salt tolerance that could be useful in development of salt-tolerant wheat varieties.
Collapse
Affiliation(s)
- Maisa Mohamed
- INRES Plant Breeding, Rheinische Friedrich-Wilhelms-University, 53115 Bonn, Germany
- Agronomy Department, College of Agriculture, South Valley University, Qena 83523, Egypt
| | - Md Nurealam Siddiqui
- INRES Plant Breeding, Rheinische Friedrich-Wilhelms-University, 53115 Bonn, Germany
| | - Benedict Chijioke Oyiga
- INRES Plant Breeding, Rheinische Friedrich-Wilhelms-University, 53115 Bonn, Germany
- Kleinwanzlebener Saatzucht (KWS) KWS SAAT SE & Co. KGaA, 37574 Einbeck, Germany
| | - Jens Léon
- INRES Plant Breeding, Rheinische Friedrich-Wilhelms-University, 53115 Bonn, Germany
| | - Agim Ballvora
- INRES Plant Breeding, Rheinische Friedrich-Wilhelms-University, 53115 Bonn, Germany
| |
Collapse
|
2
|
Chen Z, Zheng Z, Luo W, Zhou H, Ying Z, Liu C. Detection of a major QTL conditioning trichome length and density on chromosome arm 4BL and development of near isogenic lines targeting this locus in bread wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:10. [PMID: 37309472 PMCID: PMC10236078 DOI: 10.1007/s11032-021-01201-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/04/2021] [Indexed: 06/14/2023]
Abstract
Trichomes are differentiated epidermal cells and can be found on above ground organs of nearly all land plants. Results from previous studies show that trichomes play important roles against a wide range of both biotic and abiotic stresses. By examining differences between parental genotypes of available populations, we identified a population of recombinant inbred lines showing clear segregation for trichome density and length. Assessing the F8 lines of the population growing in the field detected a major locus on chromosome arm 4BL. This locus was detected based the assessments of either fully expanded third leaves or flag leaves after anthesis. Based on the position of the QTL, an SSR marker was used to identify heterozygous plants at this locus from F5 lines derived from the same cross for the F8 population. Three pairs of near isogenic lines targeting this locus were obtained from these heterozygous plants. Difference in trichome length between the two lines with opposite alleles for each of these NIL pairs were similar to that between the two parental genotypes for the mapping populations, confirming that this single locus is mainly responsible for the trichome characteristics measured in this study. The allele with long and dense trichome is dominant as this characteristic was shown by the heterozygous individuals at this marker locus. Apart from the targeted locus, NIL pairs have highly homogeneous genetic backgrounds. Thus, the NILs could be invaluable in understanding the relationship between trichome density and resistance or tolerance to various biotic and abiotic stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01201-8.
Collapse
Affiliation(s)
- Zhitong Chen
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013 China
- CSIRO Agriculture & Food, 306 Carmody Road, St Lucia, QLD 4067 Australia
| | - Zhi Zheng
- CSIRO Agriculture & Food, 306 Carmody Road, St Lucia, QLD 4067 Australia
| | - Wei Luo
- CSIRO Agriculture & Food, 306 Carmody Road, St Lucia, QLD 4067 Australia
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Hong Zhou
- CSIRO Agriculture & Food, 306 Carmody Road, St Lucia, QLD 4067 Australia
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Zhaoyang Ying
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013 China
| | - Chunji Liu
- CSIRO Agriculture & Food, 306 Carmody Road, St Lucia, QLD 4067 Australia
| |
Collapse
|
3
|
Liu M, Zhao Q, Qi F, Stiller J, Tang S, Miao J, Vrána J, Holušová K, Liu D, Doležel J, Manners JM, Han B, Liu C. Sequence divergence between spelt and common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1125-1132. [PMID: 29427242 DOI: 10.1007/s00122-018-3064-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Sequence comparison between spelt and common wheat reveals that the former has huge potential in enriching the genetic variation of the latter. Genetic variation is the foundation of crop improvement. By comparing genome sequences of a Triticum spelta accession and one of its derived hexaploid lines with the sequences of the international reference genotype Chinese Spring, we detected variants more than tenfold higher than those present among common wheat (T. aestivum L) genotypes. Furthermore, different from the typical 'V-shaped' pattern of variant distribution often observed along wheat chromosomes, the sequence variation detected in this study was more evenly distributed along the 3B chromosome. This was also the case between T. spelta and the wild emmer genome. Genetic analysis showed that T. spelta and common wheat formed discrete groups. These results showed that, although it is believed that the spelt and common wheat are evolutionarily closely related and belong to the same species, a significant sequence divergence exists between them. Thus, the values of T. spelta in enriching the genetic variation of common wheat can be huge.
Collapse
Affiliation(s)
- Miao Liu
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, 4 Shizishan Road, Jinjiang District, Chengdu, 610066, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Qiang Zhao
- National Center for Gene Research, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233, China
| | - Feng Qi
- National Center for Gene Research, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233, China
| | - Jiri Stiller
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Shican Tang
- National Center for Gene Research, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233, China
| | - Jiashun Miao
- National Center for Gene Research, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233, China
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Kateřina Holušová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - John M Manners
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Bin Han
- National Center for Gene Research, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233, China.
| | - Chunji Liu
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia.
| |
Collapse
|
4
|
Wang Y, Tiwari VK, Rawat N, Gill BS, Huo N, You FM, Coleman-Derr D, Gu YQ. GSP: a web-based platform for designing genome-specific primers in polyploids. ACTA ACUST UNITED AC 2016; 32:2382-3. [PMID: 27153733 DOI: 10.1093/bioinformatics/btw134] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/04/2016] [Indexed: 11/15/2022]
Abstract
MOTIVATION The sequences among subgenomes in a polyploid species have high similarity, making it difficult to design genome-specific primers for sequence analysis. RESULTS We present GSP, a web-based platform to design genome-specific primers that distinguish subgenome sequences in a polyploid genome. GSP uses BLAST to extract homeologous sequences of the subgenomes in existing databases, performs a multiple sequence alignment, and design primers based on sequence variants in the alignment. An interactive primers diagram, a sequence alignment viewer and a virtual electrophoresis are displayed as parts of the primer design result. GSP also designs specific primers from multiple sequences uploaded by users. AVAILABILITY AND IMPLEMENTATION GSP is a user-friendly and efficient web platform freely accessible at http://probes.pw.usda.gov/GSP Source code and command-line application are available at https://github.com/bioinfogenome/GSP CONTACTS: yong.gu@ars.usda.gov or devin.coleman-derr@ars.usda.gov SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yi Wang
- USDA-ARS, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA 94710, USA USDA-ARS, Plant Gene Expression Center, Albany, CA 94710, USA
| | - Vijay K Tiwari
- Wheat Genetic Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Nidhi Rawat
- Wheat Genetic Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Bikram S Gill
- Wheat Genetic Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Naxin Huo
- USDA-ARS, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA 94710, USA
| | - Frank M You
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
| | | | - Yong Q Gu
- USDA-ARS, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA 94710, USA
| |
Collapse
|