1
|
Margets A, Foster J, Kumar A, Maier TR, Masonbrink R, Mejias J, Baum TJ, Innes RW. The Soybean Cyst Nematode Effector Cysteine Protease 1 (CPR1) Targets a Mitochondrial Soybean Branched-Chain Amino Acid Aminotransferase (GmBCAT1). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024:MPMI06240068R. [PMID: 39158991 DOI: 10.1094/mpmi-06-24-0068-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The soybean cyst nematode (SCN; Heterodera glycines) facilitates infection by secreting a repertoire of effector proteins into host cells to establish a permanent feeding site composed of a syncytium of root cells. Among the diverse proteins secreted by the nematode, we were specifically interested in identifying proteases to pursue our goal of engineering decoy substrates that elicit an immune response when cleaved by an SCN protease. We identified a cysteine protease that we named Cysteine Protease 1 (CPR1), which was predicted to be a secreted effector based on transcriptomic data obtained from SCN esophageal gland cells, the presence of a signal peptide, and the lack of transmembrane domains. CPR1 is conserved in all isolates of SCN sequenced to date, suggesting it is critical for virulence. Transient expression of CPR1 in Nicotiana benthamiana leaves suppressed cell death induced by a constitutively active nucleotide binding leucine-rich repeat protein, RPS5, indicating that CPR1 inhibits effector-triggered immunity. CPR1 localizes in part to the mitochondria when expressed in planta. Proximity-based labeling in transgenic soybean roots, co-immunoprecipitation, and cleavage assays identified a branched-chain amino acid aminotransferase from soybean (GmBCAT1) as a substrate of CPR1. Consistent with this, GmBCAT1 also localizes to mitochondria. Silencing of the CPR1 transcript in the nematode reduced penetration frequency in soybean roots, while the expression of CPR1 in soybean roots enhanced susceptibility. Our data demonstrates that CPR1 is a conserved effector protease with a direct target in soybean roots, highlighting it as a promising candidate for decoy engineering. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Alexandra Margets
- Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| | - Jessica Foster
- Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| | - Anil Kumar
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Tom R Maier
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Rick Masonbrink
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Joffrey Mejias
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Thomas J Baum
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| |
Collapse
|
2
|
Tahir S, Hassan SS, Yang L, Ma M, Li C. Detection Methods for Pine Wilt Disease: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2876. [PMID: 39458823 PMCID: PMC11511408 DOI: 10.3390/plants13202876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Pine wilt disease (PWD), caused by the nematode Bursaphelenchus xylophilus, is a highly destructive forest disease that necessitates rapid and precise identification for effective management and control. This study evaluates various detection methods for PWD, including morphological diagnosis, molecular techniques, and remote sensing. While traditional methods are economical, they are limited by their inability to detect subtle or early changes and require considerable time and expertise. To overcome these challenges, this study emphasizes advanced molecular approaches such as real-time polymerase chain reaction (RT-PCR), droplet digital PCR (ddPCR), and loop-mediated isothermal amplification (LAMP) coupled with CRISPR/Cas12a, which offer fast and accurate pathogen detection. Additionally, DNA barcoding and microarrays facilitate species identification, and proteomics can provide insights into infection-specific protein signatures. The study also highlights remote sensing technologies, including satellite imagery and unmanned aerial vehicle (UAV)-based hyperspectral analysis, for their capability to monitor PWD by detecting asymptomatic diseases through changes in the spectral signatures of trees. Future research should focus on combining traditional and innovative techniques, refining visual inspection processes, developing rapid and portable diagnostic tools for field application, and exploring the potential of volatile organic compound analysis and machine learning algorithms for early disease detection. Integrating diverse methods and adopting innovative technologies are crucial to effectively control this lethal forest disease.
Collapse
Affiliation(s)
- Sana Tahir
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (S.T.); (L.Y.); (M.M.)
| | - Syed Shaheer Hassan
- Heilongjiang Province Key Laboratory of Sustainable Forest Ecosystem Management—Ministry of Education, School of Forestry, Northeast Forestry University, Xiang Fang District, Harbin 150040, China;
| | - Lu Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (S.T.); (L.Y.); (M.M.)
| | - Miaomiao Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (S.T.); (L.Y.); (M.M.)
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (S.T.); (L.Y.); (M.M.)
| |
Collapse
|
3
|
Zhang X, Zhu X, Chen L, Fan H, Liu X, Yang N, Wang Y, Duan Y. Functional Identification of miR2119 Targeting ADHs in Modulating Soybean Resistance to Heterodera glycines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21461-21474. [PMID: 39311099 PMCID: PMC11450968 DOI: 10.1021/acs.jafc.4c05000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
Soybean cyst nematode (SCN, Heterodera glycines) is a sedentary endoparasite nematode that results in severe economic losses in soybean crops. miRNAs play crucial roles in plant responses to nematode. However, the role of miR2119 responding to SCN stress in soybean. Here, we demonstrated that the transcript levels of polycistronic precursors containing miR2119 and miR398a were significantly reduced in soybean upon nematode infection. Promoter of the miR2119-398a precursor analysis was conducted containing a GUS reporter gene. GUS activity assays demonstrated a decrease in miR2119-398a promoter during SCN infection. Overexpression of polycistronic precursor miR2119-398a (OE-premiR2119-398a) and miR2119 precursor (OE-premiR2119) rendered soybean more susceptible to SCN. Conversely, silencing miR2119 (STTM2119) increased soybean resistance against SCN. Furthermore, RNA-seq analysis revealed that miR2119 is involved in many defense signaling pathways. GUS reporter gene assays demonstrated that miR2119 targets GmADH1.1a and GmADH1.1b. Functional analysis indicated that ADHs act as a major role in responding to H. glycines by modulating reactive oxygen species (ROS) levels. Together, the findings reveal a novel mechanism by which the polycistronic precursor miR2119-398a coordinately regulates in response to H. glycines. Additionally, miR2119 becomes an essential element contributing to H. glycines by modulating ADH activity and ROS homeostasis in soybean.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Nematology
Institute of Northern China, Shenyang Agricultural
University, Shenyang 110866, China
- College
of Plant Protection, Shenyang Agricultural
University, Shenyang 110866, China
| | - Xiaofeng Zhu
- Nematology
Institute of Northern China, Shenyang Agricultural
University, Shenyang 110866, China
- College
of Plant Protection, Shenyang Agricultural
University, Shenyang 110866, China
| | - Lijie Chen
- Nematology
Institute of Northern China, Shenyang Agricultural
University, Shenyang 110866, China
- College
of Plant Protection, Shenyang Agricultural
University, Shenyang 110866, China
| | - Haiyan Fan
- Nematology
Institute of Northern China, Shenyang Agricultural
University, Shenyang 110866, China
- College
of Plant Protection, Shenyang Agricultural
University, Shenyang 110866, China
| | - Xiaoyu Liu
- Nematology
Institute of Northern China, Shenyang Agricultural
University, Shenyang 110866, China
- College
of Sciences, Shenyang Agricultural University, Shenyang 110866, China
| | - Ning Yang
- Nematology
Institute of Northern China, Shenyang Agricultural
University, Shenyang 110866, China
- College
of Plant Protection, Shenyang Agricultural
University, Shenyang 110866, China
| | - Yuanyuan Wang
- Nematology
Institute of Northern China, Shenyang Agricultural
University, Shenyang 110866, China
- College
of Biological Science and Technology, Shenyang
Agricultural University, Shenyang 110866, China
| | - Yuxi Duan
- Nematology
Institute of Northern China, Shenyang Agricultural
University, Shenyang 110866, China
- College
of Plant Protection, Shenyang Agricultural
University, Shenyang 110866, China
| |
Collapse
|
4
|
Yazdani R, Yaghoubi A, Quintanilla M. Evaluation of Compost and Manure Amendments for Suppressing Heterodera glycines. PLANT DISEASE 2024; 108:3146-3155. [PMID: 38932447 DOI: 10.1094/pdis-04-24-0783-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Soybean cyst nematode (SCN) is a major pest of soybean crops, causing significant yield losses and economic impact. Current management strategies primarily rely on resistant varieties, cover crops, and seed treatments. In addition, there is a growing interest in developing sustainable, ecologically based approaches to integrate SCN risk reduction into soybean production systems. This study aimed to evaluate the efficacy of various compost and manure amendments in suppressing SCN populations and promoting soybean productivity. An in vitro egg hatching assay was conducted to screen the inhibitory effects of different compost and manure extracts on SCN egg hatching. Results indicated that poultry manure, Layer Ash Blend, and swine manure extracts significantly inhibited SCN hatching compared with other treatments across multiple time points. Greenhouse trials further validated the effectiveness of Layer Manure, poultry manure, High Carbon Dairy Doo, and Seed Starter 101 in suppressing SCN cysts, eggs, and juveniles. A field microplot trial confirmed the potential of Layer Ash Blend and poultry manure in SCN management, with significant reductions in SCN populations and increased soybean yields. The study also investigated the impact of these amendments on promoting the population of bacterivorous and frugivorous nematodes, contributing to a biological diverse soil ecosystem. Overall, the results indicate that amending SCN-infested soil with specific compost or manure formulations can effectively suppress nematode populations while improving soybean productivity. These findings contribute to the development of sustainable strategies for SCN management in soybean production systems.
Collapse
Affiliation(s)
- Razieh Yazdani
- Department of Entomology, Michigan State University, East Lansing, MI 48824
| | - Ali Yaghoubi
- Department of Entomology, Michigan State University, East Lansing, MI 48824
| | | |
Collapse
|
5
|
Kim Y, Nguyen TT, Durning DJ, Ishidate T, Aydemir O, Mello CC, Hu Y, Kahn TW, Aroian RV. Resistance to Cry14A family Bacillus thuringiensis crystal proteins in Caenornabditis elegans operates via the nhr-31 transcription factor and vacuolar-type ATPase pathway. PLoS Pathog 2024; 20:e1012611. [PMID: 39423230 PMCID: PMC11524453 DOI: 10.1371/journal.ppat.1012611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/30/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024] Open
Abstract
Bacillus thuringiensis (Bt) has been successfully used commercially for more than 60 years for biocontrol of insect pests. Since 1996, transgenic plants expressing Bt crystal (Cry) proteins have been used commercially to provide protection against insects that predate on corn and cotton. More recently, Bt Cry proteins that target nematodes have been discovered. One of these, Cry14Ab, has been expressed in transgenic soybean plants and found to provide significant protection against the soybean cyst nematode, Heterodera glycines. However, to date there has been no description of high-level resistance to any Cry14A family protein in nematodes. Here, we describe forward genetic screens to identify such mutants using the nematode Caenorhabditis elegans. Although non-conditional screens failed to identify highly resistant C. elegans, a conditional (temperature-sensitive) genetic screen identified one mutant, bre-6(ye123) (for Bt protein resistant), highly resistant to both Cry14Aa and Cry14Ab. The mutant comes at a high fitness cost, showing significant delays in growth and development and reduced fecundity. bre-6(ye123) hermaphrodites are only weakly resistant to copper intoxication, indicating that the mutant is not highly resistant to all insults. Backcrossing-whole genome sequencing was used to identify the gene mutated in ye123 as the nuclear hormone receptor nhr-31. RNAi, DNA rescue, and CRISPR analyses confirm that resistance to Cry14Aa intoxication in bre-6(ye123) is due to mutation of nhr-31 and was renamed nhr-31(ye123). As predicted for a mutation in this gene, nhr-31(ye123) animals showed significantly reduced expression of most of the subunits of the C. elegans vacuolar ATPase (vATPase). Mutants in the vATPase subunits unc-32 and vha-7 also show resistance to Cry14Aa and/or Cry14Ab. These data demonstrate that nhr-31 and the vATPase play a significant role in the intoxication of C. elegans by Cry14A family proteins, that reduction in vATPase levels result in high resistance to Cry14A family proteins, and that such resistance comes at a high fitness cost. Based on the relative difficulty of finding resistant mutants and the fitness cost associated with the vATPase pathway, our data suggest that transgenic Cry14Ab plants may hold up well to resistance by nematode parasites.
Collapse
Affiliation(s)
- Youmie Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Thanh-Thanh Nguyen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Daniel J. Durning
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Takao Ishidate
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Ozkan Aydemir
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Craig C. Mello
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Yan Hu
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
- Current address: Biology Department, Worcester State University, Worcester, Massachusetts, United States of America
| | - Theodore W. Kahn
- BASF Corporation, Research Triangle Park, North Carolina, United States of America
| | - Raffi V. Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
6
|
Hoang D, Flanagan K, Ding Q, Cazeault NR, Li H, Díaz-Valerio S, Rus F, Darfour EA, Kass E, Petersson KH, Nielsen MK, Liesegang H, Ostroff GR, Aroian RV. Bacillus thuringiensis Cry14A family proteins as novel anthelmintics against gastrointestinal nematode parasites. PLoS Negl Trop Dis 2024; 18:e0012611. [PMID: 39453964 PMCID: PMC11540219 DOI: 10.1371/journal.pntd.0012611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/06/2024] [Accepted: 10/07/2024] [Indexed: 10/27/2024] Open
Abstract
Bacillus thuringiensis crystal (Cry) proteins have been expressed in commercial transgenic crops for nearly 30 years, providing safe and effective control of insect pests and significantly reducing the application of hazardous chemical pesticides. B. thuringiensis crystal proteins have also been shown to target parasitic nematodes, including plant parasitic nematodes. Recently, transgenic soybean crops expressing Cry14Ab have been shown to provide control against the soybean cyst nematode Heterodera glycines, marking the first time a crystal protein is being commercialized in transgenic crops for control of a nematode pest. However, apart from H. glycines and the free-living nematode, Caenorhabditis elegans, the breadth of nematode activity of Cry14Ab, e.g., against gastrointestinal parasitic nematodes (GINs), has not been reported. Here we study the efficacy of Cry14Ab against a wide range of gastrointestinal nematode parasites (GINs) in vitro and in vivo. We find that Cry14Ab is effective in vitro against the barber's pole worm Haemonchus contortus larvae, small strongyles cyathostomin larvae, the hookworm Ancylostoma ceylanicum adults, the roundworm Ascaris suum L4 larvae, and the whipworm Trichuris muris adults. In rodents infected with GIN parasites, Cry14Ab is effective as an in vivo anthelmintic against the hookworms A. ceylanicum and N. americanus, against the mouse parasite Heligmosomoides polygyrus bakeri, and against the roundworm A. suum. Cry14Ab also variably reduces the reproduction of the whipworm T. muris in vivo. Using optimized profile Markov Models, we looked for other putative anthelmintic Cry proteins and, within this list, identified a Bt crystal protein, GenBank accession no. MF893203, that we produced and demonstrated intoxicated GINs. This protein, with 90% amino acid identity to Cry14Ab, is active against C. elegans, A. ceylanicum adults, and A. suum L4 larvae in vitro. MF893203 was given the official designation of Cry14Ac. Cry14Ac is also an effective in vivo anthelmintic against A. ceylanicum hookworms in hamsters and intestinal A. suum in mice. Taken together, our results demonstrate that Cry14Ab and Cry14Ac have wide therapeutic utility against GINs.
Collapse
Affiliation(s)
- Duy Hoang
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester, Massachusetts, United States of America
| | - Kelly Flanagan
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester, Massachusetts, United States of America
| | - Qian Ding
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester, Massachusetts, United States of America
| | - Nicholas R. Cazeault
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester, Massachusetts, United States of America
| | - Hanchen Li
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester, Massachusetts, United States of America
| | - Stefani Díaz-Valerio
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Florentina Rus
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester, Massachusetts, United States of America
| | - Esther A. Darfour
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester, Massachusetts, United States of America
| | - Elizabeth Kass
- Department of Fisheries, Animal, and Veterinary Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Katherine H. Petersson
- Department of Fisheries, Animal, and Veterinary Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Martin K. Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Heiko Liesegang
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Gary R. Ostroff
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester, Massachusetts, United States of America
| | - Raffi V. Aroian
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
7
|
Liu L, Liu X, Lu X, Guo X, Chen X, Li W, Yu X, Cheng Z. Characterization of Acid-Responsive-Release Matrine/ZIF-8@Sodium Alginate Microcapsules Prepared by Electrostatic Spray and Their Application in the Control of Soybean Cyst Nematode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19689-19700. [PMID: 39235286 DOI: 10.1021/acs.langmuir.4c02375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Matrine (MT) is a kind of alkaloid extracted from Sophora and is a promising substitute for chemical nematicides and botanical pesticides. The present study utilized sodium alginate (SA), zeolite imidazole salt skeleton (ZIF), and MT as raw materials to prepare a pH-response-release nematicide through the electrostatic spray technique. Zinc metal-organic framework (ZIF-8) was initially synthesized, followed by the successful loading of MT. Subsequently, the electrostatic spray process was employed to encapsulate it in SA, resulting in the formation of MT/ZIF-8@SA microcapsules. The efficiency of encapsulation and drug loadings can reach 79.93 and 26.83%, respectively. Soybean cyst nematode (SCN) is one of the important pests that harm crops; acetic acid produced by plant roots and CO2 produced by root respiration causing a decrease in the pH of the surrounding environment, which is most attractive to the SCN when the pH is between 4.5 and 5.4. MT/ZIF-8@SA releases the loaded MT in response to acetic acid produced by roots and acidic oxides produced by root respiration. The rate of release was 37.67% higher at pH 5.25 compared with pH 8.60. The control efficiency can reach 89.08% under greenhouse conditions. The above results demonstrate that the prepared MT/ZIF-8@SA not only exhibited excellent efficacy but also demonstrated a pH-responsive release of the nematicide.
Collapse
Affiliation(s)
- Longyu Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130000, China
| | - Xueqiu Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130000, China
| | - Xinyi Lu
- College of Plant Protection, Jilin Agricultural University, Changchun 130000, China
| | - Xinmiao Guo
- College of Plant Protection, Jilin Agricultural University, Changchun 130000, China
| | - Xi Chen
- College of Plant Protection, Jilin Agricultural University, Changchun 130000, China
| | - Weiping Li
- College of Information Technology, Jilin Agricultural University, Changchun 130000, China
| | - Xiaobin Yu
- College of Plant Protection, Jilin Agricultural University, Changchun 130000, China
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agricultural University, Changchun 130000, China
| |
Collapse
|
8
|
Alnasrawi A, Sanadhya P, Zhang L, Gleason C, Minor K, Crippen D, Goggin FL. The Effects of Bacillus subtilis Expressing a Plant Elicitor Peptide on Nematode Infection on Soybean. PHYTOPATHOLOGY 2024; 114:2143-2150. [PMID: 38831544 DOI: 10.1094/phyto-03-24-0080-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
There is a pressing need to develop alternative management strategies for the soybean cyst nematode (Heterodera glycines), the most costly pathogen to soybeans. Plant elicitor peptides (PEPs), which are produced by plants in response to stress and stimulate broad-spectrum disease resistance, were previously shown to reduce soybean cyst nematode infection on soybeans when applied as a seed treatment. Here, we introduce an alternative method to deliver PEPs to soybean using a common plant growth-promoting rhizobacterium, Bacillus subtilis, as a bacterial expression system. Similar to the empty vector control, B. subtilis engineered to express a PEP from soybean (GmPEP3) was able to colonize soybean roots and persisted on roots more than a month after treatment. Compared with water or the empty vector control, plants that received a seed treatment with B. subtilis expressing GmPEP3 (B.+GmPEP3) were significantly taller early in vegetative growth (V1 stage) and had lower chlorophyll content in the reproductive stage (R3/R4); these results suggest that GmPEP3 may hasten growth and subsequent senescence. When plants were inoculated with soybean cyst nematode at the V1 stage, those pretreated with B.+GmPEP3 supported significantly fewer nematode eggs at the reproductive stage (R3/R4) than plants treated with water or the empty vector. The effects of B.+GmPEP3 on nematode infection and plant growth appeared to be due primarily to the peptide itself because no significant differences were observed between plants treated with water or with B. subtilis expressing the empty vector. These results indicate the ability of B. subtilis to deliver defense activators for nematode management on soybean.
Collapse
Affiliation(s)
- Abeer Alnasrawi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR
- Cell and Molecular Biology graduate program, University of Arkansas, Fayetteville, AR
| | - Payal Sanadhya
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR
| | - Lei Zhang
- Department of Botany & Plant Pathology, Purdue University, Lafayette, IN
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, WA
| | - Kallahan Minor
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR
| | - Devany Crippen
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR
| | - Fiona L Goggin
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR
- Cell and Molecular Biology graduate program, University of Arkansas, Fayetteville, AR
| |
Collapse
|
9
|
Zhang X, Zhu X, Chen L, Fan H, Liu X, Yang N, Duan Y, Wang Y. MiR398b Targets Superoxide Dismutase Genes in Soybean in Defense Against Heterodera glycines via Modulating Reactive Oxygen Species Homeostasis. PHYTOPATHOLOGY 2024; 114:1950-1962. [PMID: 38970805 DOI: 10.1094/phyto-09-23-0343-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
MicroRNAs play crucial roles in plant defense responses. However, the underlying mechanism by which miR398b contributes to soybean responses to soybean cyst nematode (Heterodera glycines) remains elusive. In this study, by using Agrobacterium rhizogenes-mediated transformation of soybean hairy roots, we observed that miR398b and target genes GmCCS and GmCSD1b played vital functions in soybean-H. glycines interaction. The study revealed that the abundance of miR398b was downregulated by H. glycines infection, and overexpression of miR398b enhanced the susceptibility of soybean to H. glycines. Conversely, silencing of miR398b improved soybean resistance to H. glycines. Detection assays revealed that miR398b rapidly senses stress-induced reactive oxygen species, leading to the repression of target genes GmCCS and GmCSD1b and regulating the accumulation of plant defense genes against nematode infection. Moreover, exogenous synthetic ds-miR398b enhanced soybean sensitivity to H. glycines by modulating H2O2 and O2- levels. Functional analysis demonstrated that overexpression of GmCCS and GmCSD1b in soybean enhanced resistance to H. glycines. RNA interference-mediated repression of GmCCS and GmCSD1b in soybean increased susceptibility to H. glycines. RNA sequencing revealed that a majority of differentially expressed genes in overexpressed GmCCS were associated with oxidative stress. Overall, the results indicate that miR398b targets superoxide dismutase genes, which negatively regulate soybean resistance to H. glycines via modulating reactive oxygen species levels and defense signals.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Lijie Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Haiyan Fan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyu Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Sciences, Shenyang Agricultural University, Shenyang 110866, China
| | - Ning Yang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanyuan Wang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
10
|
Ayaz M, Zhao JT, Zhao W, Chi YK, Ali Q, Ali F, Khan AR, Yu Q, Yu JW, Wu WC, Qi RD, Huang WK. Biocontrol of plant parasitic nematodes by bacteria and fungi: a multi-omics approach for the exploration of novel nematicides in sustainable agriculture. Front Microbiol 2024; 15:1433716. [PMID: 39132133 PMCID: PMC11316259 DOI: 10.3389/fmicb.2024.1433716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Plant parasitic nematodes (PPNs) pose a significant threat to global crop productivity, causing an estimated annual loss of US $157 billion in the agriculture industry. While synthetic chemical nematicides can effectively control PPNs, their overuse has detrimental effects on human health and the environment. Biocontrol agents (BCAs), such as bacteria and fungi in the rhizosphere, are safe and promising alternatives for PPNs control. These BCAs interact with plant roots and produce extracellular enzymes, secondary metabolites, toxins, and volatile organic compounds (VOCs) to suppress nematodes. Plant root exudates also play a crucial role in attracting beneficial microbes toward infested roots. The complex interaction between plants and microbes in the rhizosphere against PPNs is mostly untapped which opens new avenues for discovering novel nematicides through multi-omics techniques. Advanced omics approaches, including metagenomics, transcriptomics, proteomics, and metabolomics, have led to the discovery of nematicidal compounds. This review summarizes the status of bacterial and fungal biocontrol strategies and their mechanisms for PPNs control. The importance of omics-based approaches for the exploration of novel nematicides and future directions in the biocontrol of PPNs are also addressed. The review highlighted the potential significance of multi-omics techniques in biocontrol of PPNs to ensure sustainable agriculture.
Collapse
Affiliation(s)
- Muhammad Ayaz
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jing-Tian Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhao
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yuan-Kai Chi
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Qurban Ali
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farman Ali
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdur Rashid Khan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qing Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing-Wen Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen-Cui Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ren-De Qi
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Wen-Kun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Qin R, Huang M, Jiang Y, Jiang D, Chang D, Xie Y, Dou Y, Wu L, Wei L, Wang M, Tian Z, Li C, Wang C. N6-Methyladenosine (m6A) Sequencing Reveals Heterodera glycines-Induced Dynamic Methylation Promoting Soybean Defense. PHYTOPATHOLOGY 2024; 114:1612-1625. [PMID: 38478699 DOI: 10.1094/phyto-12-23-0474-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Unraveling the intricacies of soybean cyst nematode (Heterodera glycines) race 4 resistance and susceptibility in soybean breeding lines-11-452 (highly resistant) and Dongsheng1 (DS1, highly susceptible)-was the focal point of this study. Employing cutting-edge N6-methyladenosine (m6A) and RNA sequencing techniques, we delved into the impact of m6A modification on gene expression and plant defense responses. Through the evaluation of nematode development in both resistant and susceptible roots, a pivotal time point (3 days postinoculation) for m6A methylation sequencing was identified. Our sequencing data exhibited robust statistics, successful soybean genome mapping, and prevalent m6A peak distributions, primarily in the 3' untranslated region and stop codon regions. Analysis of differential methylation peaks and differentially expressed genes revealed distinctive patterns between resistant and susceptible genotypes. In the highly resistant line (11-452), key resistance and defense-associated genes displayed increased expression coupled with inhibited methylation, encompassing crucial players such as R genes, receptor kinases, and transcription factors. Conversely, the highly susceptible DS1 line exhibited heightened expression correlated with decreased methylation in genes linked to susceptibility pathways, including Mildew Locus O-like proteins and regulatory elements affecting defense mechanisms. Genome-wide assessments, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, and differential methylation peak/differentially expressed gene overlap emphasized the intricate interplay of m6A modifications, alternative splicing, microRNA, and gene regulation in plant defense. Protein-protein interaction networks illuminated defense-pivotal genes, delineating divergent mechanisms in resistant and susceptible responses. This study sheds light on the dynamic correlation between methylation, splicing, and gene expression, providing profound insights into plant responses to nematode infection.
Collapse
Affiliation(s)
- Ruifeng Qin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Huang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| | - Ye Jiang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| | - Dan Jiang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Doudou Chang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Xie
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuewen Dou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuli Wei
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| | - Mingze Wang
- Heilongjiang Academy of Agricultural Sciences, Daqing 163316, Heilongjiang, China
| | - Zhongyan Tian
- Heilongjiang Academy of Agricultural Sciences, Daqing 163316, Heilongjiang, China
| | - Chunjie Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| | - Congli Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| |
Collapse
|
12
|
Yin C, Larson M, Lahr N, Paulitz T. Wheat Rhizosphere-Derived Bacteria Protect Soybean from Soilborne Diseases. PLANT DISEASE 2024; 108:1565-1576. [PMID: 38105448 DOI: 10.1094/pdis-08-23-1713-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Soybean (Glycine max [L.] Merr.) is an important oilseed crop with a high economic value. However, three damaging soybean diseases, soybean cyst nematode (SCN; Heterodera glycines Ichinohe), Sclerotinia stem rot caused by the fungus Sclerotinia sclerotiorum (Lid.) de Bary, and soybean root rot caused by Fusarium spp., are major constraints to soybean production in the Great Plains. Current disease management options, including resistant or tolerant varieties, fungicides, nematicides, and agricultural practices (crop rotation and tillage), have limited efficacy for these pathogens or have adverse effects on the ecosystem. Microbes with antagonistic activity are a promising option to control soybean diseases with the advantage of being environmentally friendly and sustainable. In this study, 61 bacterial strains isolated from wheat rhizospheres were used to examine their antagonistic abilities against three soybean pathogens. Six bacterial strains significantly inhibited the growth of Fusarium graminearum in the dual-culture assay. These bacterial strains were identified as Chryseobacterium ginsengisoli, C. indologenes, Pseudomonas poae, two Pseudomonas spp., and Delftia acidovorans by 16S rRNA gene sequencing. Moreover, C. ginsengisoli, C. indologenes, and P. poae significantly increased the mortality of SCN second-stage juveniles (J2), and two Pseudomonas spp. inhibited the growth of S. sclerotiorum in vitro. Further growth chamber tests found that C. ginsengisoli and C. indologenes reduced soybean Fusarium root rot disease. C. ginsengisoli and P. poae dramatically decreased SCN egg number on SCN-susceptible soybean 'Williams 82'. Two Pseudomonas spp. protected soybean plants from leaf damage and collapse after being infected by S. sclerotiorum. These bacteria exhibit versatile antagonistic potential. This work lays the foundation for further research on the field control of soybean pathogens.
Collapse
Affiliation(s)
- Chuntao Yin
- North Central Agricultural Research Laboratory, USDA-ARS, Brookings, SD
| | - Matt Larson
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD
| | - Nathan Lahr
- North Central Agricultural Research Laboratory, USDA-ARS, Brookings, SD
| | - Timothy Paulitz
- Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, Pullman, WA
| |
Collapse
|
13
|
You J, Chen J, Hu Y, Wang S, Wang J, Sun T, Shen Z. Identification of cytochrome P450 gene family and functional analysis of HgCYP33E1 from Heterodera glycines. FRONTIERS IN PLANT SCIENCE 2023; 14:1219702. [PMID: 37692428 PMCID: PMC10485556 DOI: 10.3389/fpls.2023.1219702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
The cytochrome P450 (CYP) genes of nematode play a crucial role in the metabolic detoxification of xenobiotics including pesticides. Heterodera glycines, also known as the soybean cyst nematode, is a sedentary endoparasite that infests plant roots, causing high annual economic losses in soybean production regions globally. In this study, we identified 36 CYP genes at a genome-wide level of the H. glycines isolate TN10 using all CYPs from Caenorhabditis elegans as queries. Subsequently, a full-length cDNA of HgCYP33E1 which was significantly up-regulated by the conventional nematicide abamectin was initially cloned from H. glycines. It presented significantly higher expressions in the second-stage juvenile (J2) compared to other parasitic stages of H. glycines. qRT-PCR analysis suggested that the expression of HgCYP33E1 was also xenobiotically induced by soybean root exudate and the metabolites of biocontrol agents. Using RNA interference (RNAi), we investigated the function of HgCYP33E1 in H. glycines parasitism and nematicide selectivity. Compared to the control and dsGFP-treated group, silencing of HgCYP33E1 did not affect the J2 behaviors and the early invasion ability, while it decreased the number of J4s in soybean roots after 18-d inoculation with the dsHgCYP33E1-treated nematodes. In addition, knockdown of HgCYP33E1 in H. glycines resulted in an increase in J2 mortality after 24-h incubation with abamectin compared to the GFP dsRNA-soaked and the control group. These findings revealed the potential role of HgCYP33E1 in the xenobiotic detoxification pathway of H. glycines. Moreover, our data also provided valuable gene information for studying the functions of the CYP family in H. glycines host adaption.
Collapse
Affiliation(s)
- Jia You
- Institute of Pratacultural Science, Heilongjiang Academy of Agricultural Science, Harbin, Heilongjiang, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, China
| | - Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, China
| | - Siru Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, China
| | - Jianli Wang
- Institute of Pratacultural Science, Heilongjiang Academy of Agricultural Science, Harbin, Heilongjiang, China
| | - Tao Sun
- Chongqing Customs Technology Center, Chongqing, China
| | - Zhongbao Shen
- Institute of Pratacultural Science, Heilongjiang Academy of Agricultural Science, Harbin, Heilongjiang, China
| |
Collapse
|
14
|
Shao H, Zhang P, Peng D, Huang W, Kong LA, Li C, Liu E, Peng H. Current advances in the identification of plant nematode diseases: From lab assays to in-field diagnostics. FRONTIERS IN PLANT SCIENCE 2023; 14:1106784. [PMID: 36760630 PMCID: PMC9902721 DOI: 10.3389/fpls.2023.1106784] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Plant parasitic nematodes (PPNs) cause an important class of diseases that occur in almost all types of crops, seriously affecting yield and quality and causing great economic losses. Accurate and rapid diagnosis of nematodes is the basis for their control. PPNs often have interspecific overlays and large intraspecific variations in morphology, therefore identification is difficult based on morphological characters alone. Instead, molecular approaches have been developed to complement morphology-based approaches and/or avoid these issues with various degrees of achievement. A large number of PPNs species have been successfully detected by biochemical and molecular techniques. Newly developed isothermal amplification technologies and remote sensing methods have been recently introduced to diagnose PPNs directly in the field. These methods have been useful because they are fast, accurate, and cost-effective, but the use of integrative diagnosis, which combines remote sensing and molecular methods, is more appropriate in the field. In this paper, we review the latest research advances and the status of diagnostic approaches and techniques for PPNs, with the goal of improving PPNs identification and detection.
Collapse
Affiliation(s)
- Hudie Shao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Pan Zhang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling-an Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chuanren Li
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Enliang Liu
- Grain Crops Institute, XinJiang Academy of Agricultural Sciences, Urumqi, China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Effector-Dependent and -Independent Molecular Mechanisms of Soybean-Microbe Interaction. Int J Mol Sci 2022; 23:ijms232214184. [PMID: 36430663 PMCID: PMC9695568 DOI: 10.3390/ijms232214184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Soybean is a pivotal staple crop worldwide, supplying the main food and feed plant proteins in some countries. In addition to interacting with mutualistic microbes, soybean also needs to protect itself against pathogens. However, to grow inside plant tissues, plant defense mechanisms ranging from passive barriers to induced defense reactions have to be overcome. Pathogenic but also symbiotic micro-organisms effectors can be delivered into the host cell by secretion systems and can interfere with the immunity system and disrupt cellular processes. This review summarizes the latest advances in our understanding of the interaction between secreted effectors and soybean feedback mechanism and uncovers the conserved and special signaling pathway induced by pathogenic soybean cyst nematode, Pseudomonas, Xanthomonas as well as by symbiotic rhizobium.
Collapse
|