1
|
Zhou L, Zeng X, Yang Y, Li R, Zhao Z. Applications and Prospects of CRISPR/Cas9 Technology in the Breeding of Major Tropical Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:3388. [PMID: 39683180 DOI: 10.3390/plants13233388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
China is a major producer of tropical crops globally, boasting rich varieties and diverse functions. Tropical crops account for two-thirds of the plant species in this country. Many crops and their products, such as oil palm, rubber, banana, sugarcane, cassava, and papaya are well known to people. Most of these products are irreplaceable and possess special functions. They not only supply important raw materials for people's daily life and for industrial and agricultural production but also contribute to the economic growth in the tropical and subtropical regions of China. However, the modern molecular breeding of these crops is severely hampered by their biological characteristics and genetic complexity. Issues such as polyploidy, heterozygosity, vegetative propagation, long juvenile periods, and large plant sizes result in time consuming, low efficiency, and slow progress in conventional breeding of the major tropical crops. The development of genome-editing technologies has brought a new way in tropical crops breeding. As an emerging gene-editing technology, the CRISPR-Cas9 system has been widely used in plants, adopted for its higher targeting efficiency, versatility, and ease of usage. This approach has been applied in oil palm, rubber, banana, sugarcane, cassava, and papaya. This review summarized the delivery patterns, mutation detection, and application of the CRISPR-Cas9 system in tropical crop breeding, discussed the existing problems, and addressed prospects for future applications in this field, providing references to relevant studies.
Collapse
Affiliation(s)
- Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xianhai Zeng
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Rui Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Zhihao Zhao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
2
|
Chen F, Chen L, Yan Z, Xu J, Feng L, He N, Guo M, Zhao J, Chen Z, Chen H, Yao G, Liu C. Recent advances of CRISPR-based genome editing for enhancing staple crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1478398. [PMID: 39376239 PMCID: PMC11456538 DOI: 10.3389/fpls.2024.1478398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024]
Abstract
An increasing population, climate change, and diminishing natural resources present severe threats to global food security, with traditional breeding and genetic engineering methods often falling short in addressing these rapidly evolving challenges. CRISPR/Cas systems have emerged as revolutionary tools for precise genetic modifications in crops, offering significant advancements in resilience, yield, and nutritional value, particularly in staple crops like rice and maize. This review highlights the transformative potential of CRISPR/Cas technology, emphasizing recent innovations such as prime and base editing, and the development of novel CRISPR-associated proteins, which have significantly improved the specificity, efficiency, and scope of genome editing in agriculture. These advancements enable targeted genetic modifications that enhance tolerance to abiotic stresses as well as biotic stresses. Additionally, CRISPR/Cas plays a crucial role in improving crop yield and quality by enhancing photosynthetic efficiency, nutrient uptake, and resistance to lodging, while also improving taste, texture, shelf life, and nutritional content through biofortification. Despite challenges such as off-target effects, the need for more efficient delivery methods, and ethical and regulatory concerns, the review underscores the importance of CRISPR/Cas in addressing global food security and sustainability challenges. It calls for continued research and integration of CRISPR with other emerging technologies like nanotechnology, synthetic biology, and machine learning to fully realize its potential in developing resilient, productive, and sustainable agricultural systems.
Collapse
Affiliation(s)
- Feng Chen
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Lu Chen
- Pharma Technology A/S, Køge, Denmark
| | - Zhao Yan
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Jingyuan Xu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Luoluo Feng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Na He
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Mingli Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiaxiong Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijun Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengzhen Yao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Divya K, Thangaraj M, Krishna Radhika N. CRISPR/Cas9: an advanced platform for root and tuber crops improvement. Front Genome Ed 2024; 5:1242510. [PMID: 38312197 PMCID: PMC10836405 DOI: 10.3389/fgeed.2023.1242510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024] Open
Abstract
Root and tuber crops (RTCs), which include cassava, potato, sweet potato, and yams, principally function as staple crops for a considerable fraction of the world population, in addition to their diverse applications in nutrition, industry, and bioenergy sectors. Even then, RTCs are an underutilized group considering their potential as industrial raw material. Complexities in conventional RTC improvement programs curb the extensive exploitation of the potentials of this group of crop species for food, energy production, value addition, and sustainable development. Now, with the advent of whole-genome sequencing, sufficient sequence data are available for cassava, sweet potato, and potato. These genomic resources provide enormous scope for the improvement of tuber crops, to make them better suited for agronomic and industrial applications. There has been remarkable progress in RTC improvement through the deployment of new strategies like gene editing over the last decade. This review brings out the major areas where CRISPR/Cas technology has improved tuber crops. Strategies for genetic transformation of RTCs with CRISPR/Cas9 constructs and regeneration of edited lines and the bottlenecks encountered in their establishment are also discussed. Certain attributes of tuber crops requiring focus in future research along with putative editing targets are also indicated. Altogether, this review provides a comprehensive account of developments achieved, future lines of research, bottlenecks, and major experimental concerns regarding the establishment of CRISPR/Cas9-based gene editing in RTCs.
Collapse
Affiliation(s)
- K Divya
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | | | - N Krishna Radhika
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| |
Collapse
|