1
|
Salari E, Wang J, Wynne JF, Chang C, Wu Y, Yang X. Artificial intelligence-based motion tracking in cancer radiotherapy: A review. J Appl Clin Med Phys 2024; 25:e14500. [PMID: 39194360 PMCID: PMC11540048 DOI: 10.1002/acm2.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Radiotherapy aims to deliver a prescribed dose to the tumor while sparing neighboring organs at risk (OARs). Increasingly complex treatment techniques such as volumetric modulated arc therapy (VMAT), stereotactic radiosurgery (SRS), stereotactic body radiotherapy (SBRT), and proton therapy have been developed to deliver doses more precisely to the target. While such technologies have improved dose delivery, the implementation of intra-fraction motion management to verify tumor position at the time of treatment has become increasingly relevant. Artificial intelligence (AI) has recently demonstrated great potential for real-time tracking of tumors during treatment. However, AI-based motion management faces several challenges, including bias in training data, poor transparency, difficult data collection, complex workflows and quality assurance, and limited sample sizes. This review presents the AI algorithms used for chest, abdomen, and pelvic tumor motion management/tracking for radiotherapy and provides a literature summary on the topic. We will also discuss the limitations of these AI-based studies and propose potential improvements.
Collapse
Affiliation(s)
- Elahheh Salari
- Department of Radiation OncologyEmory UniversityAtlantaGeorgiaUSA
| | - Jing Wang
- Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Chih‐Wei Chang
- Department of Radiation OncologyEmory UniversityAtlantaGeorgiaUSA
| | - Yizhou Wu
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Xiaofeng Yang
- Department of Radiation OncologyEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
2
|
Bolten JH, Dunst J, Siebert FA. Geometric accuracy in patient positioning for stereotactic radiotherapy of intracranial tumors. Phys Imaging Radiat Oncol 2023; 27:100461. [PMID: 37720460 PMCID: PMC10500024 DOI: 10.1016/j.phro.2023.100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 09/19/2023] Open
Abstract
Background/Purpose This study determines and compares the geometric setup errors between stereoscopic x-ray and kilo-voltage cone beam CT (CBCT) in phantom tests on a linear accelerator (linac) for image-guided (IG) stereotactic radiotherapy of intracranial tumors. Additionally, dose-volume metrics in the target volumes of the setup errors of CBCT were evaluated. Materials/Methods A Winston-Lutz- and an anthropomorphic phantom were used. The mean deviation and root mean square error (RMSE) of CBCT and stereoscopic x-ray were compared. Dose-volume metrics of the planning target volume (PTV) and gross target volume (GTV) for CBCT were calculated. Results The RMSEs in the tests with the Winston-Lutz-Phantom were 0.3 mm, 1.1 mm and 0.3 mm for CBCT and 0.1 mm, 0,1 mm and <0.1 mm for stereoscopic x-ray in the translational dimensions (right-left, anterior-posterior and superior-inferior). The RMSEs in the tests with the anthropomorphic phantom were 0.3 mm, 0.2 mm and 0.1 mm for CBCT and 0.1 mm, 0,1 mm and <0.1 mm for stereoscopic x-ray. The effects on dose-volume metrics of the setup errors of CBCT on the GTV were within 1 % for all considered dose values. The effects on the PTV were within 5 % for all considered dose values. Conclusion Both IG systems provide high accuracy patient positioning within a submillimeter range. The phantom tests exposed a slightly higher accuracy of stereoscopic x-ray than CBCT. The comparison with other studies with a similar purpose emphasizes the importance of individual IG installation quality assurance.
Collapse
Affiliation(s)
- Jan-Hendrik Bolten
- Clinic of Radiotherapy (Radiooncology), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Dunst
- Clinic of Radiotherapy (Radiooncology), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Frank-André Siebert
- Clinic of Radiotherapy (Radiooncology), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
3
|
Da Silva Mendes V, Reiner M, Huang L, Reitz D, Straub K, Corradini S, Niyazi M, Belka C, Kurz C, Landry G, Freislederer P. ExacTrac Dynamic workflow evaluation: Combined surface optical/thermal imaging and X-ray positioning. J Appl Clin Med Phys 2022; 23:e13754. [PMID: 36001389 DOI: 10.1002/acm2.13754] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
In modern radiotherapy (RT), especially for stereotactic radiotherapy or stereotactic radiosurgery treatments, image guidance is essential. Recently, the ExacTrac Dynamic (EXTD) system, a new combined surface-guided RT and image-guided RT (IGRT) system for patient positioning, monitoring, and tumor targeting, was introduced in clinical practice. The purpose of this study was to provide more information about the geometric accuracy of EXTD and its workflow in a clinical environment. The surface optical/thermal- and the stereoscopic X-ray imaging positioning systems of EXTD was evaluated and compared to cone-beam computed tomography (CBCT). Additionally, the congruence with the radiation isocenter was tested. A Winston Lutz test was executed several times over 1 year, and repeated end-to-end positioning tests were performed. The magnitude of the displacements between all systems, CBCT, stereoscopic X-ray, optical-surface imaging, and MV portal imaging was within the submillimeter range, suggesting that the image guidance provided by EXTD is accurate at any couch angle. Additionally, results from the evaluation of 14 patients with intracranial tumors treated with open-face masks are reported, and limited differences with a maximum of 0.02 mm between optical/thermal- and stereoscopic X-ray imaging were found. As the optical/thermal positioning system showed a comparable accuracy to other IGRT systems, and due to its constant monitoring capability, it can be an efficient tool for detecting intra-fractional motion and for real-time tracking of the surface position during RT.
Collapse
Affiliation(s)
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Lili Huang
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Reitz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Katrin Straub
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Philipp Freislederer
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Reitz D, Muecke J, da Silva Mendes V, Landry G, Reiner M, Niyazi M, Belka C, Freislederer P, Corradini S. Intrafractional monitoring of patients using four different immobilization mask systems for cranial radiotherapy. Phys Imaging Radiat Oncol 2022; 23:134-139. [PMID: 35958289 PMCID: PMC9361321 DOI: 10.1016/j.phro.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022] Open
Abstract
Background and purpose Patients receiving cranial radiotherapy are immobilized with a thermoplastic mask to restrict patient motion. Depending on the target volume margins and treatment dose, different mask systems are used. Intrafractional movements can be monitored using stereoscopic X-ray imaging. The aim of the present work was to compare the magnitudes of intrafractional deviation for different mask systems. Material and methods Four different head mask systems (open face mask, open mask, stereotactic mask, double mask) used in the treatment of 40 patients were investigated. In total 487 treatment fractions and 3708 X-ray images were collected. Deviations were calculated by comparison of the acquired X-ray images with digitally reconstructed radiographs. The results of intrafractional X-ray deviations for translational and rotational axes were compared between the different mask systems. Results Deviations were below 0.6 mm for translations and below 0.6° for rotations for all mask systems. Along the lateral and longitudinal directions the stereotactic mask was superior, while along the vertical direction the double mask showed the lowest deviations. For low rotational deviations the double mask is the best amongst all other mask systems. Conclusion As expected, the lowest movement was shown using cranial stereotactic mask systems. The results have shown deviations lower than 0.6 mm and 0.6° using any of the four thermoplastic mask systems.
Collapse
|
5
|
Eder MM, Reiner M, Heinz C, Garny S, Freislederer P, Landry G, Niyazi M, Belka C, Riboldi M. Single-isocenter stereotactic radiosurgery for multiple brain metastases: Impact of patient misalignments on target coverage in non-coplanar treatments. Z Med Phys 2022; 32:296-311. [PMID: 35504799 PMCID: PMC9948862 DOI: 10.1016/j.zemedi.2022.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 10/18/2022]
Abstract
Frameless single-isocenter non-coplanar stereotactic radiosurgery (SRS) for patients with multiple brain metastases is a treatment at high geometrical complexity. The goal of this study is to analyze the dosimetric impact of non-coplanar image guidance with stereoscopic X-ray imaging. Such an analysis is meant to provide insights on the adequacy of safety margins, and to evaluate the benefit of imaging at non-coplanar configurations. The ExacTrac® (ET) system (Brainlab AG, Munich, Germany) was used for stereoscopic X-ray imaging in frameless single-isocenter non-coplanar SRS for multiple brain metastases. Sub-millimeter precision was found for the ET-based pre-treatment setup, whereas a degradation was noted for non-coplanar treatment angles. Misalignments without intra-fractional positioning corrections were reconstructed in 6 degrees of freedom (DoF) to resemble the situation without non-coplanar image guidance. Dose recalculation in 20 SRS patients with applied positioning corrections did not reveal any significant differences in D98% for 75 planning target volumes (PTVs) and gross tumor volumes (GTVs). For recalculation without applied positioning corrections, significant differences (p<0.05) were reported in D98% for both PTVs and GTVs, with stronger effects for small PTV volumes. A worst-case analysis at increasing translational and rotational misalignment revealed that dosimetric changes are a complex function of the combination thereof. This study highlighted the important role of positioning correction with ET at non-coplanar configurations in frameless single-isocenter non-coplanar SRS for patients with multiple brain metastases. Uncorrected patient misalignments at non-coplanar couch angles were linked to a significant loss of PTV coverage, with effects varying according to the combination of single DoF and PTV geometrical properties.
Collapse
Affiliation(s)
- Michael Martin Eder
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Department of Medical Physics, Ludwig-Maximilians University, Garching, Germany.
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.
| | - Christian Heinz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.
| | - Sylvia Garny
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.
| | - Philipp Freislederer
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Department of Medical Physics, Ludwig-Maximilians University, Garching, Germany.
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| | - Marco Riboldi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
6
|
Bodensohn R, Kaempfel AL, Fleischmann DF, Hadi I, Hofmaier J, Garny S, Reiner M, Forbrig R, Corradini S, Thon N, Belka C, Niyazi M. Simultaneous stereotactic radiosurgery of multiple brain metastases using single-isocenter dynamic conformal arc therapy: a prospective monocentric registry trial. Strahlenther Onkol 2021; 197:601-613. [PMID: 33884441 PMCID: PMC8219560 DOI: 10.1007/s00066-021-01773-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/23/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Single-isocenter dynamic conformal arc (SIDCA) therapy is a technically efficient way of delivering stereotactic radiosurgery (SRS) to multiple metastases simultaneously. This study reports on the safety and feasibility of linear accelerator (LINAC) based SRS with SIDCA for patients with multiple brain metastases. METHODS All patients who received SRS with this technique between November 2017 and June 2019 within a prospective registry trial were included. The patients were irradiated with a dedicated planning tool for multiple brain metastases using a LINAC with a 5 mm multileaf collimator. Follow-up was performed every 3 months, including clinical and radiological examination with cranial magnetic resonance imaging (MRI). These early data were analyzed using descriptive statistics and the Kaplan-Meier method. RESULTS A total of 65 patients with 254 lesions (range 2-12) were included in this analysis. Median beam-on time was 23 min. The median follow-up at the time of analysis was 13 months (95% CI 11.1-14.9). Median overall survival and median intracranial progression-free survival was 15 months (95% CI 7.7-22.3) and 7 months (95% CI 3.9-10.0), respectively. Intracranial and local control after 1 year was 64.6 and 97.5%, respectively. During follow-up, CTCAE grade I adverse effects (AE) were experienced by 29 patients (44.6%; 18 of them therapy related, 27.7%), CTCAE grade II AEs by four patients (6.2%; one of them therapy related, 1.5%), and CTCAE grade III by three patients (4.6%; none of them therapy related). Two lesions (0.8%) in two patients (3.1%) were histopathologically proven to be radiation necrosis. CONCLUSION Simultaneous SRS using SIDCA seems to be a feasible and safe treatment for patients with multiple brain metastases.
Collapse
Affiliation(s)
- Raphael Bodensohn
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Anna-Lena Kaempfel
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Daniel Felix Fleischmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Indrawati Hadi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Jan Hofmaier
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Sylvia Garny
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany. .,German Cancer Consortium (DKTK), Munich, Germany.
| |
Collapse
|
7
|
Nguyen V, Sanctorum JG, Van Wassenbergh S, Dirckx JJJ, Sijbers J, De Beenhouwer J. Geometry Calibration of a Modular Stereo Cone-Beam X-ray CT System. J Imaging 2021; 7:jimaging7030054. [PMID: 34460710 PMCID: PMC8321318 DOI: 10.3390/jimaging7030054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/02/2022] Open
Abstract
Compared to single source systems, stereo X-ray CT systems allow acquiring projection data within a reduced amount of time, for an extended field-of-view, or for dual X-ray energies. To exploit the benefit of a dual X-ray system, its acquisition geometry needs to be calibrated. Unfortunately, in modular stereo X-ray CT setups, geometry misalignment occurs each time the setup is changed, which calls for an efficient calibration procedure. Although many studies have been dealing with geometry calibration of an X-ray CT system, little research targets the calibration of a dual cone-beam X-ray CT system. In this work, we present a phantom-based calibration procedure to accurately estimate the geometry of a stereo cone-beam X-ray CT system. With simulated as well as real experiments, it is shown that the calibration procedure can be used to accurately estimate the geometry of a modular stereo X-ray CT system thereby reducing the misalignment artifacts in the reconstruction volumes.
Collapse
Affiliation(s)
- Van Nguyen
- Imec—Vision Lab, Department of Physics, University of Antwerp, 2610 Antwerp, Belgium;
- Correspondence: (V.N.); (J.S.)
| | - Joaquim G. Sanctorum
- Biophysics and BioMedical Physics (BIMEF) Lab, University of Antwerp, 2020 Antwerp, Belgium; (J.G.S.); (J.J.J.D.)
| | - Sam Van Wassenbergh
- Functional Morphology Lab (FunMorph), University of Antwerp, 2610 Antwerp, Belgium;
| | - Joris J. J. Dirckx
- Biophysics and BioMedical Physics (BIMEF) Lab, University of Antwerp, 2020 Antwerp, Belgium; (J.G.S.); (J.J.J.D.)
| | - Jan Sijbers
- Imec—Vision Lab, Department of Physics, University of Antwerp, 2610 Antwerp, Belgium;
- Correspondence: (V.N.); (J.S.)
| | - Jan De Beenhouwer
- Imec—Vision Lab, Department of Physics, University of Antwerp, 2610 Antwerp, Belgium;
| |
Collapse
|
8
|
Positioning accuracy of a single-isocenter multiple targets SRS treatment: A comparison between Varian TrueBeam CBCT and Brainlab ExacTrac. Phys Med 2020; 80:267-273. [PMID: 33221708 DOI: 10.1016/j.ejmp.2020.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 11/21/2022] Open
Abstract
PURPOSE This study compared the positioning accuracy between cone-beam CT (CBCT) and ExacTrac (ETX) for a single-isocenter multiple target stereotactic radiosurgery (SRS) on two TrueBeam STx systems. METHODS A single-isocenter treatment plan was simulated on an anthropomorphic head phantom with six spherical steel ball bearings (BBs). One of the BBs was chosen to be the isocenter. The five off-isocenter targets were located at various distances from the isocenter. MV portal images were generated to evaluate the deviations between the expected and the real center of the targets after CBCT and ETX positioning, respectively. RESULTS The evaluation of the positioning accuracy for the isocenter target showed that CBCT and ETX positioning provided comparable, sub-millimetric results. Deviations in positioning accuracy were also calculated for all other targets, also showing comparable results for CBCT and ETX. Moreover, our study showed that the deviation between CBCT and ETX positioning were in better agreement for TBSTx1 and deviated slightly higher on TBSTx2 (maximum: 1.23 mm at S/I direction), due to a less perfect alignment between the CBCT coordinate system and the ETX coordinate system on TBSTx2 compared to TBSTx1. This study also showed a correlation between the target positioning accuracy and the distance to the isocenter. CONCLUSION The positioning accuracy of ETX and CBCT for targets located at isocenter and off-isocenter locations was compared on two treatment machines and found comparable. Our study highlights the importance of a proper calibration procedure, to ensure correct alignment between the CBCT, ETX and machine coordinate systems.
Collapse
|
9
|
Positioning error analysis of the fraxion localization system in the intracranial stereotactic radiotherapy of tumors. Clin Transl Oncol 2020; 23:43-47. [PMID: 32462396 DOI: 10.1007/s12094-020-02382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/10/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To investigate positioning error analysis of the Fraxion localization system in the intracranial stereotactic radiotherapy of tumors. METHODS 64 patients were divided into two groups: a control group (36 patients with the standard thermoplastic mask) and a model group (28 patients with the Fraxion localization system). 3D images of the treated position were obtained by cone-beam computed tomography (CBCT). Positioning errors were obtained by, respectively, registering these two sets of CBCT images to planning CT images, using a 6°-freedom robotic patient positioning system (HexaPOD Evo RT System). The changes in positioning errors with the Fraxion localization system and with the standard thermoplastic mask were analyzed. RESULTS CBCT scan results of the model group showed that the mean of linear error of three directions [superior-inferior (SI), lateral (LAT), and anterior-posterior (AP)] was 0.710 ± 0.676 mm, 0.817 ± 0.687 mm, and 0.710 ± 0.685 mm, respectively. The corresponding PTV was 1.23 mm, 1.26 mm, and 1.36 mm. The differences between the 3D images and the planned CT images were significant (p < 0.001). CONCLUSION The Fraxion radiotherapy system can not only improve the positioning accuracy and reduce positioning errors but also narrow the PTV margin and reduce the radiated volume of normal tissue.
Collapse
|
10
|
Cao X, Liu M, Zhai F, Li N, Bao C, Liu Y, Chen G. Comparison of different registration methods and landmarks for image-guided radiation therapy of pulmonary tumors. BMC Med Imaging 2019; 19:46. [PMID: 31151424 PMCID: PMC6544943 DOI: 10.1186/s12880-019-0343-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 05/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To compare the accuracy, advantages and disadvantages of automatic registration methods at different anatomical-sites for thoracic image-guided radiation therapy (IGRT). METHODS The Varian-IX IGRT system was used to perform a manual registration of the images collected on the first fraction of 60 patients with lung cancer (42 cases central location and 18 cases of peripheral). The registered images were used as reference images. Offline registration was performed for computed tomography-CBCT images using four methods: whole image registration, ipsilateral registration, soft tissue tumor registration, and vertebral body registration. Time taken to complete and deviation value were analyzed between the different methods. RESULTS There were significant differences in absolute deviation value of all the three directions (P < 0.001) and the time consumption (P < 0.001) between 4 methods. The Z direction had significant differences in deviation value of 4 methods (0.023 ± 0.128 mm, - 0.030 ± 0.175 mm, - 0.010 ± 0.238 mm, - 0.075 ± 0.137 mm, P = 0.011). The difference was significant in the X direction of the ipsilateral registration method between central and peripheral lung cancer (0.033 ± 0.053 mm vs. 0.067 ± 0.067 mm, P = 0.045). CONCLUSIONS The whole lung or affected side registration methods could be recommended to be used in the automatic registration function of the Varian-IX's On-Board Imaging (OBI) system.
Collapse
Affiliation(s)
- Xiaohui Cao
- Department of Radiotherapy and Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
| | - Ming Liu
- Department of Radiotherapy and Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
| | - Fushan Zhai
- Department of Radiotherapy and Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
| | - Nan Li
- Department of Radiotherapy and Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
| | - Chaoen Bao
- Department of Radiotherapy and Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
| | - Yinliang Liu
- Department of Radiotherapy and Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
| | - Gang Chen
- Department of Respiratory Medicine, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
11
|
Apport du guidage par l’image pour le repositionnement au cours de la radiothérapie des tumeurs encéphaliques. Cancer Radiother 2018; 22:593-601. [DOI: 10.1016/j.canrad.2018.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/29/2018] [Indexed: 11/20/2022]
|