1
|
Wang X, Allen C. Synergistic effects of thermosensitive liposomal doxorubicin, mild hyperthermia, and radiotherapy in breast cancer management: an orthotopic mouse model study. Drug Deliv Transl Res 2024:10.1007/s13346-024-01654-2. [PMID: 38977541 DOI: 10.1007/s13346-024-01654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Liposome formulations of the cancer drug doxorubicin have been developed to address the severe side effects that result from administration of this drug in a conventional formulation. Among them, thermosensitive liposomal doxorubicin presents enhanced tumor targeting and efficient drug release when combined with mild hyperthermia localized to the tumor site. Exploiting the radiosensitizing benefits of localized thermal therapy, the integration of radiation therapy with the thermally activated liposomal system is posited to amplify the anti-tumor efficacy. This study explored a synergistic therapeutic strategy that combines thermosensitive liposomal doxorubicin, mild hyperthermia, and radiotherapy, using an orthotopic murine model of breast cancer. The protocol of sequential multi-modal treatment, incorporating low-dose chemotherapy and radiotherapy, substantially postponed the progression of primary tumor growth in comparison to the application of monotherapy at elevated dosages. Improvements in unheated distant lesions were also observed. Furthermore, the toxicity associated with the combination treatment was comparable to that of either thermosensitive liposome treatment or radiation alone at low doses. These outcomes underscore the potential of multi-modal therapeutic strategies to refine treatment efficacy while concurrently diminishing adverse effects in the management of breast cancer, providing valuable insight for the future refinement of thermosensitive liposomal doxorubicin applications.
Collapse
Affiliation(s)
- Xuehan Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Kok HP, Herrera TD, Crezee J. Biological treatment evaluation in thermoradiotherapy: application in cervical cancer patients. Strahlenther Onkol 2024; 200:512-522. [PMID: 38177701 PMCID: PMC11111588 DOI: 10.1007/s00066-023-02185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/19/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Hyperthermia treatment quality is usually evaluated by thermal (dose) parameters, though hyperthermic radiosensitization effects are also influenced by the time interval between the two modalities. This work applies biological modelling for clinical treatment evaluation of cervical cancer patients treated with radiotherapy plus hyperthermia by calculating the equivalent radiation dose (EQDRT, i.e., the dose needed for the same effect with radiation alone). Subsequent analyses evaluate the impact of logistics. METHODS Biological treatment evaluation was performed for 58 patients treated with 23-28 fractions of 1.8-2 Gy plus 4-5 weekly hyperthermia sessions. Measured temperatures (T50) and recorded time intervals between the radiotherapy and hyperthermia sessions were used to calculate the EQDRT using an extended linear quadratic (LQ) model with hyperthermic LQ parameters based on extensive experimental data. Next, the impact of a 30-min time interval (optimized logistics) as well as a 4‑h time interval (suboptimal logistics) was evaluated. RESULTS Median average measured T50 and recorded time intervals were 41.2 °C (range 39.7-42.5 °C) and 79 min (range 34-125 min), respectively, resulting in a median total dose enhancement (D50) of 5.5 Gy (interquartile range [IQR] 4.0-6.6 Gy). For 30-min time intervals, the enhancement would increase by ~30% to 7.1 Gy (IQR 5.5-8.1 Gy; p < 0.001). In case of 4‑h time intervals, an ~ 40% decrease in dose enhancement could be expected: 3.2 Gy (IQR 2.3-3.8 Gy; p < 0.001). Normal tissue enhancement was negligible (< 0.3 Gy), even for short time intervals. CONCLUSION Biological treatment evaluation is a useful addition to standard thermal (dose) evaluation of hyperthermia treatments. Optimizing logistics to shorten time intervals seems worthwhile to improve treatment efficacy.
Collapse
Affiliation(s)
- H P Kok
- Dept. Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Treatment and quality of life, Cancer biology and immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | - T D Herrera
- Dept. Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Treatment and quality of life, Cancer biology and immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - J Crezee
- Dept. Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Treatment and quality of life, Cancer biology and immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Mei X, Kok HP, Rodermond HM, van Bochove GGW, Snoek BC, van Leeuwen CM, Franken NAP, Ten Hagen TLM, Crezee J, Vermeulen L, Stalpers LJA, Oei AL. Radiosensitization by Hyperthermia Critically Depends on the Time Interval. Int J Radiat Oncol Biol Phys 2024; 118:817-828. [PMID: 37820768 DOI: 10.1016/j.ijrobp.2023.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Hyperthermia is a potent sensitizer of radiation therapy that improves both tumor control and survival in women with locally advanced cervical cancer (LACC). The optimal sequence and interval between hyperthermia and radiation therapy are still under debate. METHODS AND MATERIALS We investigated the interval and sequence in vitro in cervical cancer cell lines, patient-derived organoids, and SiHa cervical cancer hind leg xenografts in athymic nude mice and compared the results with retrospective results from 58 women with LACC treated with thermoradiotherapy. RESULTS All 3 approaches confirmed that shortening the interval between hyperthermia and radiation therapy enhanced hyperthermic radiosensitization by 2 to 8 times more DNA double-strand breaks and apoptosis and 10 to 100 times lower cell survival, delayed tumor growth in mice, and increased the 5-year survival rate of women with LACC from 22% (interval ≥80 minutes) to 54% (interval <80 minutes). In vitro and in vivo results showed that the sequence of hyperthermia and radiation therapy did not affect the outcome. CONCLUSIONS Shortening the interval between hyperthermia and radiation therapy significantly improves treatment outcomes. The sequence of hyperthermia and radiation therapy (before or after) does not seem to matter.
Collapse
Affiliation(s)
- Xionge Mei
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Hans M Rodermond
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Gregor G W van Bochove
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Barbara C Snoek
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Caspar M van Leeuwen
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Louis Vermeulen
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Oncode Institute, Amsterdam, The Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Lukácsi S, Munkácsy G, Győrffy B. Harnessing Hyperthermia: Molecular, Cellular, and Immunological Insights for Enhanced Anticancer Therapies. Integr Cancer Ther 2024; 23:15347354241242094. [PMID: 38818970 PMCID: PMC11143831 DOI: 10.1177/15347354241242094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 06/01/2024] Open
Abstract
Hyperthermia, the raising of tumor temperature (≥39°C), holds great promise as an adjuvant treatment for cancer therapy. This review focuses on 2 key aspects of hyperthermia: its molecular and cellular effects and its impact on the immune system. Hyperthermia has profound effects on critical biological processes. Increased temperatures inhibit DNA repair enzymes, making cancer cells more sensitive to chemotherapy and radiation. Elevated temperatures also induce cell cycle arrest and trigger apoptotic pathways. Furthermore, hyperthermia modifies the expression of heat shock proteins, which play vital roles in cancer therapy, including enhancing immune responses. Hyperthermic treatments also have a significant impact on the body's immune response against tumors, potentially improving the efficacy of immune checkpoint inhibitors. Mild systemic hyperthermia (39°C-41°C) mimics fever, activating immune cells and raising metabolic rates. Intense heat above 50°C can release tumor antigens, enhancing immune reactions. Using photothermal nanoparticles for targeted heating and drug delivery can also modulate the immune response. Hyperthermia emerges as a cost-effective and well-tolerated adjuvant therapy when integrated with immunotherapy. This comprehensive review serves as a valuable resource for the selection of patient-specific treatments and the guidance of future experimental studies.
Collapse
Affiliation(s)
- Szilvia Lukácsi
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
| | - Gyöngyi Munkácsy
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
| | - Balázs Győrffy
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
- University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| |
Collapse
|
5
|
Srivastava N, Usmani SS, Subbarayan R, Saini R, Pandey PK. Hypoxia: syndicating triple negative breast cancer against various therapeutic regimens. Front Oncol 2023; 13:1199105. [PMID: 37492478 PMCID: PMC10363988 DOI: 10.3389/fonc.2023.1199105] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/05/2023] [Indexed: 07/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the deadliest subtypes of breast cancer (BC) for its high aggressiveness, heterogeneity, and hypoxic nature. Based on biological and clinical observations the TNBC related mortality is very high worldwide. Emerging studies have clearly demonstrated that hypoxia regulates the critical metabolic, developmental, and survival pathways in TNBC, which include glycolysis and angiogenesis. Alterations to these pathways accelerate the cancer stem cells (CSCs) enrichment and immune escape, which further lead to tumor invasion, migration, and metastasis. Beside this, hypoxia also manipulates the epigenetic plasticity and DNA damage response (DDR) to syndicate TNBC survival and its progression. Hypoxia fundamentally creates the low oxygen condition responsible for the alteration in Hypoxia-Inducible Factor-1alpha (HIF-1α) signaling within the tumor microenvironment, allowing tumors to survive and making them resistant to various therapies. Therefore, there is an urgent need for society to establish target-based therapies that overcome the resistance and limitations of the current treatment plan for TNBC. In this review article, we have thoroughly discussed the plausible significance of HIF-1α as a target in various therapeutic regimens such as chemotherapy, radiotherapy, immunotherapy, anti-angiogenic therapy, adjuvant therapy photodynamic therapy, adoptive cell therapy, combination therapies, antibody drug conjugates and cancer vaccines. Further, we also reviewed here the intrinsic mechanism and existing issues in targeting HIF-1α while improvising the current therapeutic strategies. This review highlights and discusses the future perspectives and the major alternatives to overcome TNBC resistance by targeting hypoxia-induced signaling.
Collapse
Affiliation(s)
- Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Salman Sadullah Usmani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rajasekaran Subbarayan
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Educations, Chennai, India
| | - Rashmi Saini
- Department of Zoology, Gargi College, University of Delhi, New Delhi, India
| | - Pranav Kumar Pandey
- Dr. R.P. Centre for Opthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
6
|
Kok HP, Herrera TD, Crezee J. The Relevance of High Temperatures and Short Time Intervals Between Radiation Therapy and Hyperthermia: Insights in Terms of Predicted Equivalent Enhanced Radiation Dose. Int J Radiat Oncol Biol Phys 2023; 115:994-1003. [PMID: 36288756 DOI: 10.1016/j.ijrobp.2022.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE The radiosensitization effect of hyperthermia can be considered and quantified as an enhanced equivalent radiation dose (EQDRT), that is, the dose needed to achieve the same effect without hyperthermia. EQDRT can be predicted using an extended linear quadratic model, with temperature-dependent parameters. Clinical data show that both the achieved temperature and time interval between radiation therapy and hyperthermia correlate with clinical outcome, but their effect on expected EQDRT is unknown and was therefore evaluated in this study. METHODS AND MATERIALS Biological modeling was performed using our in-house developed software (X-Term), considering a 23- × 2-Gy external beam radiation scheme, as applied for patients with locally advanced cervical cancer. First, the EQDRT was calculated for homogeneous temperature levels, evaluating time intervals between 0 and 4 hours. Next, realistic heterogeneous hyperthermia treatment plans were combined with radiation therapy plans and the EQDRT was calculated for 10 patients. Furthermore, the effect of achieving 0.5°C to 1°C lower or higher temperatures was evaluated. RESULTS EQDRT increases substantially with both increasing temperature and decreasing time interval. The effect of the time interval is most pronounced at higher temperatures (>41°C). At a typical hyperthermic temperature level of 41.5°C, an enhancement of ∼10 Gy can be realized with a 0-hour time interval, which is decreased to only ∼4 Gy enhancement with a 4-hour time interval. Most enhancement is already lost after 1 hour. Evaluation in patients predicted an average additional EQDRT (D95%) of 2.2 and 6.3 Gy for 4- and 0-hour time intervals, respectively. The effect of 0.5°C to 1°C lower or higher temperatures is most pronounced at high temperature levels and short time intervals. The additional EQDRT (D95%) ranged between 1.5 and 3.3 Gy and between 4.5 and 8.5 Gy for 4- and 0-hour time intervals, respectively. CONCLUSIONS Biological modeling provides relevant insight into the relationship between treatment parameters and expected EQDRT. Both high temperatures and short time intervals are essential to maximize EQDRT.
Collapse
Affiliation(s)
- H Petra Kok
- Amsterdam UMC Location University of Amsterdam, Department of Radiation Oncology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands.
| | - Timoteo D Herrera
- Amsterdam UMC Location University of Amsterdam, Department of Radiation Oncology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Johannes Crezee
- Amsterdam UMC Location University of Amsterdam, Department of Radiation Oncology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Khurshed M, Prades-Sagarra E, Saleh S, Sminia P, Wilmink JW, Molenaar RJ, Crezee H, van Noorden CJF. Hyperthermia as a Potential Cornerstone of Effective Multimodality Treatment with Radiotherapy, Cisplatin and PARP Inhibitor in IDH1-Mutated Cancer Cells. Cancers (Basel) 2022; 14:cancers14246228. [PMID: 36551714 PMCID: PMC9777513 DOI: 10.3390/cancers14246228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in the isocitrate dehydrogenase 1 (IDH1MUT) gene occur in various types of malignancies, including ~60% of chondrosarcomas, ~30% of intrahepatic cholangiocarcinomas and >80% of low-grade gliomas. IDH1MUT are causal in the development and progression of these types of cancer due to neomorphic production of the oncometabolite D-2-hydroxyglutarate (D-2HG). Intracellular accumulation of D-2HG has been implicated in suppressing homologous recombination and renders IDH1MUT cancer cells sensitive to DNA-repair-inhibiting agents, such as poly-(adenosine 5′-diphosphate−ribose) polymerase inhibitors (PARPi). Hyperthermia increases the efficacy of DNA-damaging therapies such as radiotherapy and platinum-based chemotherapy, mainly by inhibition of DNA repair. In the current study, we investigated the additional effects of hyperthermia (42 °C for 1 h) in the treatment of IDH1MUT HCT116 colon cancer cells and hyperthermia1080 chondrosarcoma cancer cells in combination with radiation, cisplatin and/or a PARPi on clonogenic cell survival, cell cycle distribution and the induction and repair of DNA double-strand breaks. We found that hyperthermia in combination with radiation or cisplatin induces an increase in double-strand breaks and cell death, up to 10-fold in IDH1MUT cancer cells compared to IDH1 wild-type cells. This vulnerability was abolished by the IDH1MUT inhibitor AGI-5198 and was further increased by the PARPi. In conclusion, our study shows that IDH1MUT cancer cells are sensitized to hyperthermia in combination with irradiation or cisplatin and a PARPi. Therefore, hyperthermia may be an efficacious sensitizer to cytotoxic therapies in tumors where the clinical application of hyperthermia is feasible, such as IDH1MUT chondrosarcoma of the extremities.
Collapse
Affiliation(s)
- Mohammed Khurshed
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Correspondence:
| | - Elia Prades-Sagarra
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sarah Saleh
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Peter Sminia
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Johanna W. Wilmink
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Remco J. Molenaar
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Hans Crezee
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Cornelis J. F. van Noorden
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Evaluation of the Heat Shock Protein 90 Inhibitor Ganetespib as a Sensitizer to Hyperthermia-Based Cancer Treatments. Cancers (Basel) 2022; 14:cancers14215250. [PMID: 36358669 PMCID: PMC9654690 DOI: 10.3390/cancers14215250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Hyperthermia boosts the effects of radio- and chemotherapy regimens, but its clinical potential is hindered by the ability of (cancer) cells to activate a protective mechanism known as the heat stress response. Strategies that inhibit its activation or functions have the potential, therefore, to improve the overall efficacy of hyperthermia-based treatments. In this study, we evaluated the efficacy of the HSP90 inhibitor ganetespib in promoting the effects of radiotherapy or cisplatin combined with hyperthermia in vitro and in a cervix cancer mouse model. Abstract Hyperthermia is being used as a radio- and chemotherapy sensitizer for a growing range of tumor subtypes in the clinic. Its potential is limited, however, by the ability of cancer cells to activate a protective mechanism known as the heat stress response (HSR). The HSR is marked by the rapid overexpression of molecular chaperones, and recent advances in drug development make their inhibition an attractive option to improve the efficacy of hyperthermia-based therapies. Our previous in vitro work showed that a single, short co-treatment with a HSR (HSP90) inhibitor ganetespib prolongs and potentiates the effects of hyperthermia on DNA repair, enhances hyperthermic sensitization to radio- and chemotherapeutic agents, and reduces thermotolerance. In the current study, we first validated these results using an extended panel of cell lines and more robust methodology. Next, we examined the effects of hyperthermia and ganetespib on global proteome changes. Finally, we evaluated the potential of ganetespib to boost the efficacy of thermo-chemotherapy and thermo-radiotherapy in a xenograft murine model of cervix cancer. Our results revealed new insights into the effects of HSR inhibition on cellular responses to heat and show that ganetespib could be employed to increase the efficacy of hyperthermia when combined with radiation.
Collapse
|
9
|
A patterns of care analysis of hyperthermia in combination with radio(chemo)therapy or chemotherapy in European clinical centers. Strahlenther Onkol 2022; 199:436-444. [PMID: 36038671 PMCID: PMC10133066 DOI: 10.1007/s00066-022-01980-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE The combination of hyperthermia (HT) with radio(chemo)therapy or chemotherapy (CT) is an established treatment strategy for specific indications. Its application in routine clinical practice in Europe depends on regulatory and local conditions. We conducted a survey among European clinical centers to determine current practice of HT. METHODS A questionnaire with 22 questions was sent to 24 European HT centers. The questions were divided into two main categories. The first category assessed how many patients are treated with HT in combination with radio(chemo)therapy or CT for specific indications per year. The second category addressed which hyperthermia parameters are recorded. Analysis was performed using descriptive methods. RESULTS The response rate was 71% (17/24) and 16 centers were included in this evaluation. Annually, these 16 centers treat approximately 637 patients using HT in combination with radio(chemo)therapy or CT. On average, 34% (range: 3-100%) of patients are treated in clinical study protocols. Temperature readings and the time interval between HT and radio(chemo)therapy or CT are recorded in 13 (81%) and 9 (56%) centers, respectively. The thermal dose quality parameter "cumulative equivalent minutes at 43 °C" (CEM43°C) is only evaluated in five (31%) centers for each HT session. With regard to treatment sequence, 8 (50%) centers administer HT before radio(chemo)therapy and the other 8 in the reverse order. CONCLUSION There is a significant heterogeneity among European HT centers as to the indications treated and the recording of thermometric parameters. More evidence from clinical studies is necessary to achieve standardization of HT practice.
Collapse
|
10
|
Kok HP, van Rhoon GC, Herrera TD, Overgaard J, Crezee J. Biological modeling in thermoradiotherapy: present status and ongoing developments toward routine clinical use. Int J Hyperthermia 2022; 39:1126-1140. [PMID: 35998930 DOI: 10.1080/02656736.2022.2113826] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Biological modeling for anti-cancer treatments using mathematical models can be very supportive in gaining more insight into dynamic processes responsible for cellular response to treatment, and predicting, evaluating and optimizing therapeutic effects of treatment. This review presents an overview of the current status of biological modeling for hyperthermia in combination with radiotherapy (thermoradiotherapy). Various distinct models have been proposed in the literature, with varying complexity; initially aiming to model the effect of hyperthermia alone, and later on to predict the effect of the combined thermoradiotherapy treatment. Most commonly used models are based on an extension of the linear-quadratic (LQ)-model enabling an easy translation to radiotherapy where the LQ model is widely used. Basic predictions of cell survival have further progressed toward 3 D equivalent dose predictions, i.e., the radiation dose that would be needed without hyperthermia to achieve the same biological effect as the combined thermoradiotherapy treatment. This approach, with the use of temperature-dependent model parameters, allows theoretical evaluation of the effectiveness of different treatment strategies in individual patients, as well as in patient cohorts. This review discusses the significant progress that has been made in biological modeling for hyperthermia combined with radiotherapy. In the future, when adequate temperature-dependent LQ-parameters will be available for a large number of tumor sites and normal tissues, biological modeling can be expected to be of great clinical importance to further optimize combined treatments, optimize clinical protocols and guide further clinical studies.
Collapse
Affiliation(s)
- H P Kok
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - G C van Rhoon
- Department of Radiation Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - T D Herrera
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - J Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - J Crezee
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Dewhirst MW, Oleson JR, Kirkpatrick J, Secomb TW. Accurate Three-Dimensional Thermal Dosimetry and Assessment of Physiologic Response Are Essential for Optimizing Thermoradiotherapy. Cancers (Basel) 2022; 14:1701. [PMID: 35406473 PMCID: PMC8997141 DOI: 10.3390/cancers14071701] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Numerous randomized trials have revealed that hyperthermia (HT) + radiotherapy or chemotherapy improves local tumor control, progression free and overall survival vs. radiotherapy or chemotherapy alone. Despite these successes, however, some individuals fail combination therapy; not every patient will obtain maximal benefit from HT. There are many potential reasons for failure. In this paper, we focus on how HT influences tumor hypoxia, since hypoxia negatively influences radiotherapy and chemotherapy response as well as immune surveillance. Pre-clinically, it is well established that reoxygenation of tumors in response to HT is related to the time and temperature of exposure. In most pre-clinical studies, reoxygenation occurs only during or shortly after a HT treatment. If this were the case clinically, then it would be challenging to take advantage of HT induced reoxygenation. An important question, therefore, is whether HT induced reoxygenation occurs in the clinic that is of radiobiological significance. In this review, we will discuss the influence of thermal history on reoxygenation in both human and canine cancers treated with thermoradiotherapy. Results of several clinical series show that reoxygenation is observed and persists for 24-48 h after HT. Further, reoxygenation is associated with treatment outcome in thermoradiotherapy trials as assessed by: (1) a doubling of pathologic complete response (pCR) in human soft tissue sarcomas, (2) a 14 mmHg increase in pO2 of locally advanced breast cancers achieving a clinical response vs. a 9 mmHg decrease in pO2 of locally advanced breast cancers that did not respond and (3) a significant correlation between extent of reoxygenation (as assessed by pO2 probes and hypoxia marker drug immunohistochemistry) and duration of local tumor control in canine soft tissue sarcomas. The persistence of reoxygenation out to 24-48 h post HT is distinctly different from most reported rodent studies. In these clinical series, comparison of thermal data with physiologic response shows that within the same tumor, temperatures at the higher end of the temperature distribution likely kill cells, resulting in reduced oxygen consumption rate, while lower temperatures in the same tumor improve perfusion. However, reoxygenation does not occur in all subjects, leading to significant uncertainty about the thermal-physiologic relationship. This uncertainty stems from limited knowledge about the spatiotemporal characteristics of temperature and physiologic response. We conclude with recommendations for future research with emphasis on retrieving co-registered thermal and physiologic data before and after HT in order to begin to unravel complex thermophysiologic interactions that appear to occur with thermoradiotherapy.
Collapse
Affiliation(s)
- Mark W Dewhirst
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - James R Oleson
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John Kirkpatrick
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
12
|
Present Practice of Radiative Deep Hyperthermia in Combination with Radiotherapy in Switzerland. Cancers (Basel) 2022; 14:cancers14051175. [PMID: 35267486 PMCID: PMC8909523 DOI: 10.3390/cancers14051175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Moderate hyperthermia is a potent and evidence-based radiosensitizer. Several indications are reimbursed for the combination of deep hyperthermia with radiotherapy (dHT+RT). We evaluated the current practice of dHT+RT in Switzerland. METHODS All indications presented to the national hyperthermia tumor board for dHT between January 2017 and June 2021 were evaluated and treatment schedules were analyzed using descriptive statistics. RESULTS Of 183 patients presented at the hyperthermia tumor board, 71.6% were accepted and 54.1% (99/183) finally received dHT. The most commonly reimbursed dHT indications were "local recurrence and compression" (20%), rectal (14.7%) and bladder (13.7%) cancer, respectively. For 25.3% of patients, an individual request for insurance cover was necessary. 47.4% of patients were treated with curative intent; 36.8% were in-house patients and 63.2% were referred from other hospitals. CONCLUSIONS Approximately two thirds of patients were referred for dHT+RT from external hospitals, indicating a general demand for dHT in Switzerland. The patterns of care were diverse with respect to treatment indication. To the best of our knowledge, this study shows for the first time the pattern of care in a national cohort treated with dHT+RT. This insight will serve as the basis for a national strategy to evaluate and expand the evidence for dHT.
Collapse
|
13
|
Heterogeneous Heat Absorption Is Complementary to Radiotherapy. Cancers (Basel) 2022; 14:cancers14040901. [PMID: 35205649 PMCID: PMC8870118 DOI: 10.3390/cancers14040901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary This review shows the advantages of heterogeneous heating of selected malignant cells in harmonic synergy with radiotherapy. The main clinical achievement of this complementary therapy is its extreme safety and minimal adverse effects. Combining the two methods opens a bright perspective, transforming the local radiotherapy to the antitumoral impact on the whole body, destroying the distant metastases by “teaching” the immune system about the overall danger of malignancy. Abstract (1) Background: Hyperthermia in oncology conventionally seeks the homogeneous heating of the tumor mass. The expected isothermal condition is the basis of the dose calculation in clinical practice. My objective is to study and apply a heterogenic temperature pattern during the heating process and show how it supports radiotherapy. (2) Methods: The targeted tissue’s natural electric and thermal heterogeneity is used for the selective heating of the cancer cells. The amplitude-modulated radiofrequency current focuses the energy absorption on the membrane rafts of the malignant cells. The energy partly “nonthermally” excites and partly heats the absorbing protein complexes. (3) Results: The excitation of the transmembrane proteins induces an extrinsic caspase-dependent apoptotic pathway, while the heat stress promotes the intrinsic caspase-dependent and independent apoptotic signals generated by mitochondria. The molecular changes synergize the method with radiotherapy and promote the abscopal effect. The mild average temperature (39–41 °C) intensifies the blood flow for promoting oxygenation in combination with radiotherapy. The preclinical experiences verify, and the clinical studies validate the method. (4) Conclusions: The heterogenic, molecular targeting has similarities with DNA strand-breaking in radiotherapy. The controlled energy absorption allows using a similar energy dose to radiotherapy (J/kg). The two therapies are synergistically combined.
Collapse
|
14
|
Bakker A, Tello Valverde CP, van Tienhoven G, Kolff MW, Kok HP, Slotman BJ, Konings IRHM, Oei AL, Oldenburg HSA, Rutgers EJT, Rasch CRN, van den Bongard HJGD, Crezee H. Post-operative re-irradiation with hyperthermia in locoregional breast cancer recurrence: Temperature matters. Radiother Oncol 2022; 167:149-157. [PMID: 34973278 DOI: 10.1016/j.radonc.2021.12.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate the impact of hyperthermia thermal dose (TD) on locoregional control (LRC), overall survival (OS) and toxicity in locoregional recurrent breast cancer patients treated with postoperative re-irradiation and hyperthermia. METHODS In this retrospective study, 112 women with resected locoregional recurrent breast cancer treated in 2010-2017 with postoperative re-irradiation 8frx4Gy (n = 34) or 23frx2Gy (n = 78), combined with 4-5 weekly hyperthermia sessions guided by invasive thermometry, were subdivided into 'low' (n = 56) and 'high' TD (n = 56) groups by the best session with highest median cumulative equivalent minutes at 43 °C (Best CEM43T50) < 7.2 min and ≥7.2 min, respectively. Actuarial LRC, OS and late toxicity incidence were analyzed. Backward multivariable Cox regression and inverse probability weighting (IPW) analysis were performed. RESULTS TD subgroups showed no significant differences in patient/treatment characteristics. Median follow-up was 43 months (range 1-107 months). High vs. low TD was associated with LRC (p = 0.0013), but not with OS (p = 0.29) or late toxicity (p = 0.58). Three-year LRC was 74.0% vs. 92.3% in the low and high TD group, respectively (p = 0.008). After three years, 25.0% and 0.9% of the patients had late toxicity grade 3 and 4, respectively. Multivariable analysis showed that distant metastasis (HR 17.6; 95%CI 5.2-60.2), lymph node involvement (HR 2.9; 95%CI 1.2-7.2), recurrence site (chest wall vs. breast; HR 4.6; 95%CI 1.8-11.6) and TD (low vs. high; HR 4.1; 95%CI 1.4-11.5) were associated with LRC. TD was associated with LRC in IPW analysis (p = 0.0018). CONCLUSIONS High thermal dose (best CEM43T50 ≥ 7.2 min) was associated with significantly higher LRC for patients with locoregional recurrent breast cancer treated with postoperative re-irradiation and hyperthermia, without augmenting toxicity.
Collapse
Affiliation(s)
- Akke Bakker
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - C Paola Tello Valverde
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Geertjan van Tienhoven
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - M Willemijn Kolff
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - H Petra Kok
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Ben J Slotman
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Inge R H M Konings
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Arlene L Oei
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Hester S A Oldenburg
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Emiel J T Rutgers
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Coen R N Rasch
- Department of Radiation Oncology, LUMC, Leiden, the Netherlands.
| | - H J G Desirée van den Bongard
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Hans Crezee
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Clinical Evidence for Thermometric Parameters to Guide Hyperthermia Treatment. Cancers (Basel) 2022; 14:cancers14030625. [PMID: 35158893 PMCID: PMC8833668 DOI: 10.3390/cancers14030625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/01/2023] Open
Abstract
Hyperthermia (HT) is a cancer treatment modality which targets malignant tissues by heating to 40-43 °C. In addition to its direct antitumor effects, HT potently sensitizes the tumor to radiotherapy (RT) and chemotherapy (CT), thereby enabling complete eradication of some tumor entities as shown in randomized clinical trials. Despite the proven efficacy of HT in combination with classic cancer treatments, there are limited international standards for the delivery of HT in the clinical setting. Consequently, there is a large variability in reported data on thermometric parameters, including the temperature obtained from multiple reference points, heating duration, thermal dose, time interval, and sequence between HT and other treatment modalities. Evidence from some clinical trials indicates that thermal dose, which correlates with heating time and temperature achieved, could be used as a predictive marker for treatment efficacy in future studies. Similarly, other thermometric parameters when chosen optimally are associated with increased antitumor efficacy. This review summarizes the existing clinical evidence for the prognostic and predictive role of the most important thermometric parameters to guide the combined treatment of RT and CT with HT. In conclusion, we call for the standardization of thermometric parameters and stress the importance for their validation in future prospective clinical studies.
Collapse
|
16
|
IJff M, Crezee J, Oei AL, Stalpers LJA, Westerveld H. The role of hyperthermia in the treatment of locally advanced cervical cancer: a comprehensive review. Int J Gynecol Cancer 2022; 32:288-296. [PMID: 35046082 PMCID: PMC8921566 DOI: 10.1136/ijgc-2021-002473] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/14/2021] [Indexed: 01/02/2023] Open
Abstract
Radiotherapy with cisplatin (chemoradiation) is the standard treatment for women with locally advanced cervical cancer. Radiotherapy with deep hyperthermia (thermoradiation) is a well established alternative, but is rarely offered as an alternative to chemoradiation, particularly for patients in whom cisplatin is contraindicated. The scope of this review is to provide an overview of the biological rationale of hyperthermia treatment delivery, including patient workflow, and the clinical effectiveness of hyperthermia as a radiosensitizer in the treatment of cervical cancer. Hyperthermia is especially effective in hypoxic and nutrient deprived areas of the tumor where radiotherapy is less effective. Its radiosensitizing effectiveness depends on the temperature level, duration of treatment, and the time interval between radiotherapy and hyperthermia. High quality hyperthermia treatment requires an experienced team, adequate online adaptive treatment planning, and is preferably performed using a phased array radiative locoregional hyperthermia device to achieve the optimal thermal dose effect. Hyperthermia is well tolerated and generally leads to only mild toxicity, such as patient discomfort. Patients in whom cisplatin is contraindicated should therefore be referred to a hyperthermia center for thermoradiation.
Collapse
Affiliation(s)
- Marloes IJff
- Department of Radiation Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory for Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory for Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory for Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Henrike Westerveld
- Department of Radiation Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Vilaplana-Lopera N, Besh M, Moon EJ. Targeting Hypoxia: Revival of Old Remedies. Biomolecules 2021; 11:1604. [PMID: 34827602 PMCID: PMC8615589 DOI: 10.3390/biom11111604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022] Open
Abstract
Tumour hypoxia is significantly correlated with patient survival and treatment outcomes. At the molecular level, hypoxia is a major driving factor for tumour progression and aggressiveness. Despite the accumulative scientific and clinical efforts to target hypoxia, there is still a need to find specific treatments for tumour hypoxia. In this review, we discuss a variety of approaches to alter the low oxygen tumour microenvironment or hypoxia pathways including carbogen breathing, hyperthermia, hypoxia-activated prodrugs, tumour metabolism and hypoxia-inducible factor (HIF) inhibitors. The recent advances in technology and biological understanding reveal the importance of revisiting old therapeutic regimens and repurposing their uses clinically.
Collapse
Affiliation(s)
| | | | - Eui Jung Moon
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Headington OX3 7DQ, UK; (N.V.-L.); (M.B.)
| |
Collapse
|
18
|
|
19
|
Hannon G, Tansi FL, Hilger I, Prina‐Mello A. The Effects of Localized Heat on the Hallmarks of Cancer. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging Group Trinity Translational Medicine Institute Dublin 8 Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute Trinity College Dublin Dublin 8 Ireland
| | - Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital—Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital—Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Adriele Prina‐Mello
- Nanomedicine and Molecular Imaging Group Trinity Translational Medicine Institute Dublin 8 Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute Trinity College Dublin Dublin 8 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute Trinity College Dublin Dublin 2 Ireland
| |
Collapse
|
20
|
Kok HP, Cressman ENK, Ceelen W, Brace CL, Ivkov R, Grüll H, Ter Haar G, Wust P, Crezee J. Heating technology for malignant tumors: a review. Int J Hyperthermia 2021; 37:711-741. [PMID: 32579419 DOI: 10.1080/02656736.2020.1779357] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 °C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 °C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors.
Collapse
Affiliation(s)
- H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik N K Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| | - Christopher L Brace
- Department of Radiology and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Holger Grüll
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Gail Ter Haar
- Department of Physics, The Institute of Cancer Research, London, UK
| | - Peter Wust
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
21
|
In Vitro Examinations of Cell Death Induction and the Immune Phenotype of Cancer Cells Following Radiative-Based Hyperthermia with 915 MHz in Combination with Radiotherapy. Cells 2021; 10:cells10061436. [PMID: 34201238 PMCID: PMC8230049 DOI: 10.3390/cells10061436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
Multimodal tumor treatment settings consisting of radiotherapy and immunomodulating agents such as immune checkpoint inhibitors are more and more commonly applied in clinics. In this context, the immune phenotype of tumor cells has a major influence on the anti-tumor immune response as well as the composition of the tumor microenvironment. A promising approach to further boost anti-tumor immune responses is to add hyperthermia (HT), i.e., heating the tumor tissue between 39 °C to 45 °C for 60 min. One key technique is the use of radiative hyperthermia systems. However, knowledge is limited as to how the frequency of the used radiative systems affects the immune phenotype of the treated tumor cells. By using our self-designed in vitro hyperthermia system, we compared cell death induction and expression of immune checkpoint molecules (ICM) on the tumor cell surface of murine B16 melanoma and human MDA-MB-231 and MCF-7 breast cancer cells following HT treatment with clinically relevant microwaves at 915 MHz or 2.45 GHz alone, radiotherapy (RT; 2 × 5 Gy or 5 × 2 Gy) alone or in combination (RHT). At 44 °C, HT alone was the dominant cell death inductor with inactivation rates of around 70% for B16, 45% for MDA-MB-231 and 35% for MCF-7 at 915 MHz and 80%, 60% and 50% at 2.45 GHz, respectively. Additional RT resulted in 5–15% higher levels of dead cells. The expression of ICM on tumor cells showed time-, treatment-, cell line- and frequency-dependent effects and was highest for RHT. Computer simulations of an exemplary spherical cell revealed frequency-dependent local energy absorption. The frequency of hyperthermia systems is a newly identified parameter that could also affect the immune phenotype of tumor cells and consequently the immunogenicity of tumors.
Collapse
|
22
|
Zhang X, Bobeica M, Unger M, Bednarz A, Gerold B, Patties I, Melzer A, Landgraf L. Focused ultrasound radiosensitizes human cancer cells by enhancement of DNA damage. Strahlenther Onkol 2021; 197:730-743. [PMID: 33885910 PMCID: PMC8292237 DOI: 10.1007/s00066-021-01774-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/23/2021] [Indexed: 12/19/2022]
Abstract
Purpose High-intensity focused ultrasound (HIFU/FUS) has expanded as a noninvasive quantifiable option for hyperthermia (HT). HT in a temperature range of 40–47 °C (thermal dose CEM43 ≥ 25) could work as a sensitizer to radiation therapy (RT). Here, we attempted to understand the tumor radiosensitization effect at the cellular level after a combination treatment of FUS+RT. Methods An in vitro FUS system was developed to induce HT at frequencies of 1.147 and 1.467 MHz. Human head and neck cancer (FaDU), glioblastoma (T98G), and prostate cancer (PC-3) cells were exposed to FUS in ultrasound-penetrable 96-well plates followed by single-dose X‑ray irradiation (10 Gy). Radiosensitizing effects of FUS were investigated by cell metabolic activity (WST‑1 assay), apoptosis (annexin V assay, sub-G1 assay), cell cycle phases (propidium iodide staining), and DNA double-strand breaks (γH2A.X assay). Results The FUS intensities of 213 (1.147 MHz) and 225 W/cm2 (1.467 MHz) induced HT for 30 min at mean temperatures of 45.20 ± 2.29 °C (CEM43 = 436 ± 88) and 45.59 ± 1.65 °C (CEM43 = 447 ± 79), respectively. FUS improves the effect of RT significantly by reducing metabolic activity in T98G cells 48 h (RT: 96.47 ± 8.29%; FUS+RT: 79.38 ± 14.93%; p = 0.012) and in PC-3 cells 72 h (54.20 ± 10.85%; 41.01 ± 11.17%; p = 0.016) after therapy, but not in FaDu cells. Mechanistically, FUS+RT leads to increased apoptosis and enhancement of DNA double-strand breaks compared to RT alone in T98G and PC-3 cells. Conclusion Our in vitro findings demonstrate that FUS has good potential to sensitize glioblastoma and prostate cancer cells to RT by mainly enhancing DNA damage. Supplementary Information The online version of this article (10.1007/s00066-021-01774-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinrui Zhang
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Semmelweisstr. 14, Haus 14, Leipzig, 04103, Germany.
| | - Mariana Bobeica
- Institute for Medical Science and Technology (IMSaT), University of Dundee, Wilson House, 1 Wurzburg Loan, Dundee MediPark, Dundee, DD2 1FD, UK.,Extreme Light Infrastructure - Nuclear Physics ELI-NP, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, Bucharest-Magurele, 077125, Romania
| | - Michael Unger
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Semmelweisstr. 14, Haus 14, Leipzig, 04103, Germany
| | - Anastasia Bednarz
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Semmelweisstr. 14, Haus 14, Leipzig, 04103, Germany
| | - Bjoern Gerold
- Institute for Medical Science and Technology (IMSaT), University of Dundee, Wilson House, 1 Wurzburg Loan, Dundee MediPark, Dundee, DD2 1FD, UK.,Theraclion, 102 Rue Etienne Dolet, Malakoff, 92240, France
| | - Ina Patties
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Semmelweisstr. 14, Haus 14, Leipzig, 04103, Germany.,Department of Radiation Oncology, University of Leipzig, Stephanstr. 9a, Leipzig, 04103, Germany
| | - Andreas Melzer
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Semmelweisstr. 14, Haus 14, Leipzig, 04103, Germany. .,Institute for Medical Science and Technology (IMSaT), University of Dundee, Wilson House, 1 Wurzburg Loan, Dundee MediPark, Dundee, DD2 1FD, UK.
| | - Lisa Landgraf
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Semmelweisstr. 14, Haus 14, Leipzig, 04103, Germany
| |
Collapse
|
23
|
Modulating the Heat Stress Response to Improve Hyperthermia-Based Anticancer Treatments. Cancers (Basel) 2021; 13:cancers13061243. [PMID: 33808973 PMCID: PMC8001574 DOI: 10.3390/cancers13061243] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Hyperthermia is a method to expose a tumor to elevated temperatures. Heating of the tumor promotes the effects of various treatment regimens that are based on chemo and radiotherapy. Several aspects, however, limit the efficacy of hyperthermia-based treatments. This review provides an overview of the effects and limitations of hyperthermia and discusses how current drawbacks of the therapy can potentially be counteracted by inhibiting the heat stress response—a mechanism that cells activate to defend themselves against hyperthermia. Abstract Cancer treatments based on mild hyperthermia (39–43 °C, HT) are applied to a widening range of cancer types, but several factors limit their efficacy and slow down more widespread adoption. These factors include difficulties in adequate heat delivery, a short therapeutic window and the acquisition of thermotolerance by cancer cells. Here, we explore the biological effects of HT, the cellular responses to these effects and their clinically-relevant consequences. We then identify the heat stress response—the cellular defense mechanism that detects and counteracts the effects of heat—as one of the major forces limiting the efficacy of HT-based therapies and propose targeting this mechanism as a potentially universal strategy for improving their efficacy.
Collapse
|
24
|
Mathematical model for the thermal enhancement of radiation response: thermodynamic approach. Sci Rep 2021; 11:5503. [PMID: 33750833 PMCID: PMC7970926 DOI: 10.1038/s41598-021-84620-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/15/2021] [Indexed: 02/08/2023] Open
Abstract
Radiotherapy can effectively kill malignant cells, but the doses required to cure cancer patients may inflict severe collateral damage to adjacent healthy tissues. Recent technological advances in the clinical application has revitalized hyperthermia treatment (HT) as an option to improve radiotherapy (RT) outcomes. Understanding the synergistic effect of simultaneous thermoradiotherapy via mathematical modelling is essential for treatment planning. We here propose a theoretical model in which the thermal enhancement ratio (TER) relates to the cell fraction being radiosensitised by the infliction of sublethal damage through HT. Further damage finally kills the cell or abrogates its proliferative capacity in a non-reversible process. We suggest the TER to be proportional to the energy invested in the sensitisation, which is modelled as a simple rate process. Assuming protein denaturation as the main driver of HT-induced sublethal damage and considering the temperature dependence of the heat capacity of cellular proteins, the sensitisation rates were found to depend exponentially on temperature; in agreement with previous empirical observations. Our findings point towards an improved definition of thermal dose in concordance with the thermodynamics of protein denaturation. Our predictions well reproduce experimental in vitro and in vivo data, explaining the thermal modulation of cellular radioresponse for simultaneous thermoradiotherapy.
Collapse
|
25
|
Elming PB, Sørensen BS, Spejlborg H, Overgaard J, Horsman MR. Does the combination of hyperthermia with low LET (linear energy transfer) radiation induce anti-tumor effects equivalent to those seen with high LET radiation alone? Int J Hyperthermia 2021; 38:105-110. [PMID: 33530766 DOI: 10.1080/02656736.2021.1876929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
INTRODUCTION The combination of hyperthermia with low LET (linear energy transfer) radiation may have similar anti-tumor effects as high LET radiation alone. This pre-clinical study determined the optimal heating temperature and time interval between radiation and heat to achieve this equivalent effect. METHODS C3H mammary carcinomas (200 mm3 in size) growing in the right rear foot of CDF1 mice was used in all experiments. Tumors were locally irradiated with graded doses of either 240 kV ortho- or 6 MV mega-voltage X-rays to produce full dose-response curves. Heating (41.0-43.5 °C; 60 min) was achieved by immersing the tumor bearing foot in a water-bath applied at the same time, or up to 4-hours after, irradiating. The endpoint was the percentage of mice showing local tumor control at 90 days, with enhancements calculated from the ratios of the radiation doses causing 50% tumor control (± 95% confidence intervals). RESULTS Previous published results in this tumor model reported that carbon ions were 1.3-1.7 times more effective than low LET radiation at inducing tumor control. Similar enhancements occurred with a temperature of only 41.0 °C with a simultaneous heat and radiation treatment. However, higher temperatures were needed with the introduction of any interval; at 42.5 °C, the enhancement was 2.5 with a simultaneous treatment, decreasing to a value within the carbon ion range with a 4-hour interval. CONCLUSIONS Combining hyperthermia with low LET radiation can be as effective as high LET at inducing tumor control, but the temperature needed depended on the time interval between the two modalities.
Collapse
Affiliation(s)
- Pernille B Elming
- Experimental Clinical Oncology - Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Brita S Sørensen
- Experimental Clinical Oncology - Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Harald Spejlborg
- Experimental Clinical Oncology - Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Overgaard
- Experimental Clinical Oncology - Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael R Horsman
- Experimental Clinical Oncology - Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
26
|
Bosque JJ, Calvo GF, Pérez-García VM, Navarro MC. The interplay of blood flow and temperature in regional hyperthermia: a mathematical approach. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201234. [PMID: 33614070 PMCID: PMC7890498 DOI: 10.1098/rsos.201234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/16/2020] [Indexed: 05/04/2023]
Abstract
In recent decades, hyperthermia has been used to raise oxygenation levels in tumours undergoing other therapeutic modalities, of which radiotherapy is the most prominent one. It has been hypothesized that oxygenation increases would come from improved blood flow associated with vasodilation. However, no test has determined whether this is a relevant assumption or other mechanisms might be acting. Additionally, since hyperthermia and radiotherapy are not usually co-administered, the crucial question arises as to how temperature and perfusion in tumours will change during and after hyperthermia. Overall, it would seem necessary to find a research framework that clarifies the current knowledge, delimits the scope of the different effects and guides future research. Here, we propose a simple mathematical model to account for temperature and perfusion dynamics in brain tumours subjected to regional hyperthermia. Our results indicate that tumours in well-perfused organs like the brain might only reach therapeutic temperatures if their vasculature is highly disrupted. Furthermore, the characteristic times of return to normal temperature levels are markedly shorter than those required to deliver adjuvant radiotherapy. According to this, a mechanistic coupling of perfusion and temperature would not explain any major oxygenation boost in brain tumours immediately after hyperthermia.
Collapse
Affiliation(s)
- Jesús J. Bosque
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
- Author for correspondence: Jesús J. Bosque e-mail:
| | - Gabriel F. Calvo
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
| | - Víctor M. Pérez-García
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
| | - María Cruz Navarro
- Department of Mathematics-IMACI, Facultad de Ciencias y Tecnologías Químicas, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
27
|
Clinical Feasibility of a High-Resolution Thermal Monitoring Sheet for Superficial Hyperthermia in Breast Cancer Patients. Cancers (Basel) 2020; 12:cancers12123644. [PMID: 33291685 PMCID: PMC7761988 DOI: 10.3390/cancers12123644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Hyperthermia, i.e., heating tumors to 41–43 °C, combined with radiotherapy improves treatment response, for patients with recurrent breast cancer after previous irradiation. During hyperthermia of superficial tumors, the skin surface temperature must be monitored to ensure that therapeutic temperatures are reached without hotspots that can cause additional toxicity. A thin sheet with a dense grid of 56 temperature sensors was developed, this sheet is placed on the skin of the patient. The influence of the sheet on the hyperthermia applicator performance was investigated and found to be negligible. Next, the clinical feasibility was evaluated in 10 women with locoregional recurrent breast cancer, and resulted in precise monitoring of skin surface temperatures. In conclusion, this novel method can be implemented for thermal monitoring of the skin surface to ensure treatment quality during superficial hyperthermia treatment of patients with locoregional recurrent breast cancer. Abstract Background: Accurate monitoring of skin surface temperatures is necessary to ensure treatment quality during superficial hyperthermia. A high-resolution thermal monitoring sheet (TMS) was developed to monitor the skin surface temperature distribution. The influence of the TMS on applicator performance was investigated, feasibility and ability to reliably monitor the temperature distribution were evaluated in a clinical study. Methods: Phantom experiments were performed to determine the influence of the TMS on power deposition patterns, applicator efficiency, and heat transfer of the water bolus for 434 and 915 MHz applicators. Clinical feasibility was evaluated in 10 women with locoregional recurrent breast cancer. Skin surface temperatures during consecutive treatments were monitored alternatingly with either standard Amsterdam UMC thermometry or TMS. Treatments were compared using (generalized) linear mixed models. Results: The TMS did not significantly affect power deposition patterns and applicator efficiency (1–2%), the reduced heat transfer of the water boluses (51–56%) could be compensated by adjusting the water bolus flow. Skin surface temperatures were monitored reliably, and no alteration of thermal toxicity was observed compared to standard Amsterdam UMC thermometry. Conclusion: Clinical application of the TMS is feasible. Power deposition patterns and applicator efficiency were not affected. Surface temperatures were monitored reliably.
Collapse
|
28
|
Krenacs T, Meggyeshazi N, Forika G, Kiss E, Hamar P, Szekely T, Vancsik T. Modulated Electro-Hyperthermia-Induced Tumor Damage Mechanisms Revealed in Cancer Models. Int J Mol Sci 2020; 21:E6270. [PMID: 32872532 PMCID: PMC7504298 DOI: 10.3390/ijms21176270] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
The benefits of high-fever range hyperthermia have been utilized in medicine from the Ancient Greek culture to the present day. Amplitude-modulated electro-hyperthermia, induced by a 13.56 MHz radiofrequency current (mEHT, or Oncothermia), has been an emerging means of delivering loco-regional clinical hyperthermia as a complementary of radiation-, chemo-, and molecular targeted oncotherapy. This unique treatment exploits the metabolic shift in cancer, resulting in elevated oxidative glycolysis (Warburg effect), ion concentration, and electric conductivity. These promote the enrichment of electric fields and induce heat (controlled at 42 °C), as well as ion fluxes and disequilibrium through tumor cell membrane channels. By now, accumulating preclinical studies using in vitro and in vivo models of different cancer types have revealed details of the mechanism and molecular background of the oncoreductive effects of mEHT monotherapy. These include the induction of DNA double-strand breaks, irreversible heath and cell stress, and programmed cells death; the upregulation of molecular chaperones and damage (DAMP) signaling, which may contribute to a secondary immunogenic tumor cell death. In combination therapies, mEHT proved to be a good chemosensitizer through increasing drug uptake and tumor reductive effects, as well as a good radiosensitizer by downregulating hypoxia-related target genes. Recently, immune stimulation or intratumoral antigen-presenting dendritic cell injection have been able to extend the impact of local mEHT into a systemic "abscopal" effect. The complex network of pathways emerging from the published mEHT experiments has not been overviewed and arranged yet into a framework to reveal links between the pieces of the "puzzle". In this paper, we review the mEHT-related damage mechanisms published in tumor models, which may allow some geno-/phenotype treatment efficiency correlations to be exploited both in further research and for more rational clinical treatment planning when mEHT is involved in combination therapies.
Collapse
Affiliation(s)
- Tibor Krenacs
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Nora Meggyeshazi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Gertrud Forika
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Eva Kiss
- Institute of Oncology at 1st Department of Internal Medicine, Semmelweis University, H-1083 Budapest, Hungary;
| | - Peter Hamar
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary; (P.H.); (T.V.)
| | - Tamas Szekely
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Tamas Vancsik
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary; (P.H.); (T.V.)
| |
Collapse
|
29
|
Ghadjar P, Beck M, Zschaeck S, Wust P. In Regard to Wang et al. Int J Radiat Oncol Biol Phys 2020; 107:855. [PMID: 32589993 DOI: 10.1016/j.ijrobp.2020.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Pirus Ghadjar
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Peter Wust
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
30
|
Datta NR, Kok HP, Crezee H, Gaipl US, Bodis S. Integrating Loco-Regional Hyperthermia Into the Current Oncology Practice: SWOT and TOWS Analyses. Front Oncol 2020; 10:819. [PMID: 32596144 PMCID: PMC7303270 DOI: 10.3389/fonc.2020.00819] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Moderate hyperthermia at temperatures between 40 and 44°C is a multifaceted therapeutic modality. It is a potent radiosensitizer, interacts favorably with a host of chemotherapeutic agents, and, in combination with radiotherapy, enforces immunomodulation akin to “in situ tumor vaccination.” By sensitizing hypoxic tumor cells and inhibiting repair of radiotherapy-induced DNA damage, the properties of hyperthermia delivered together with photons might provide a tumor-selective therapeutic advantage analogous to high linear energy transfer (LET) neutrons, but with less normal tissue toxicity. Furthermore, the high LET attributes of hyperthermia thermoradiobiologically are likely to enhance low LET protons; thus, proton thermoradiotherapy would mimic 12C ion therapy. Hyperthermia with radiotherapy and/or chemotherapy substantially improves therapeutic outcomes without enhancing normal tissue morbidities, yielding level I evidence reported in several randomized clinical trials, systematic reviews, and meta-analyses for various tumor sites. Technological advancements in hyperthermia delivery, advancements in hyperthermia treatment planning, online invasive and non-invasive MR-guided thermometry, and adherence to quality assurance guidelines have ensured safe and effective delivery of hyperthermia to the target region. Novel biological modeling permits integration of hyperthermia and radiotherapy treatment plans. Further, hyperthermia along with immune checkpoint inhibitors and DNA damage repair inhibitors could further augment the therapeutic efficacy resulting in synthetic lethality. Additionally, hyperthermia induced by magnetic nanoparticles coupled to selective payloads, namely, tumor-specific radiotheranostics (for both tumor imaging and radionuclide therapy), chemotherapeutic drugs, immunotherapeutic agents, and gene silencing, could provide a comprehensive tumor-specific theranostic modality akin to “magic (nano)bullets.” To get a realistic overview of the strength (S), weakness (W), opportunities (O), and threats (T) of hyperthermia, a SWOT analysis has been undertaken. Additionally, a TOWS analysis categorizes future strategies to facilitate further integration of hyperthermia with the current treatment modalities. These could gainfully accomplish a safe, versatile, and cost-effective enhancement of the existing therapeutic armamentarium to improve outcomes in clinical oncology.
Collapse
Affiliation(s)
- Niloy R Datta
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - H Petra Kok
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans Crezee
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan Bodis
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
31
|
Crezee J, Oei AL, Franken NAP, Stalpers LJA, Kok HP. Response: Commentary: The Impact of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in Patients With Locally Advanced Cervical Cancer. Front Oncol 2020; 10:528. [PMID: 32351897 PMCID: PMC7174773 DOI: 10.3389/fonc.2020.00528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Johannes Crezee
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
32
|
Wang Y, Zou L, Qiang Z, Jiang J, Zhu Z, Ren J. Enhancing Targeted Cancer Treatment by Combining Hyperthermia and Radiotherapy Using Mn–Zn Ferrite Magnetic Nanoparticles. ACS Biomater Sci Eng 2020; 6:3550-3562. [DOI: 10.1021/acsbiomaterials.0c00287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yijue Wang
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Liqing Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhe Qiang
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jianhai Jiang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
33
|
Notter M, Thomsen AR, Nitsche M, Hermann RM, Wolff HA, Habl G, Münch K, Grosu AL, Vaupel P. Combined wIRA-Hyperthermia and Hypofractionated Re-Irradiation in the Treatment of Locally Recurrent Breast Cancer: Evaluation of Therapeutic Outcome Based on a Novel Size Classification. Cancers (Basel) 2020; 12:cancers12030606. [PMID: 32155740 PMCID: PMC7139693 DOI: 10.3390/cancers12030606] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023] Open
Abstract
Effective tumor control in patients suffering from unresectable locally recurrent breast cancer (LRBC) in pre-irradiated areas can be achieved by re-irradiation combined with superficial hyperthermia. Using this combined modality, total re-irradiation dose and toxicity can be significantly reduced compared to conventionally fractionated treatment schedules with total doses of 60–66 Gy. Applying contact-free, thermography-controlled water-filtered infrared-A superficial hyperthermia, immediately followed by hypofractionated re-irradiation, consisting of 4 Gy once per week up to a total dose of 20 Gy, resulted in high overall response rates even in large-sized tumors. Comparability of clinical data between different combined Hyperthermia (HT)/Radiotherapy (RT) treatment schedules is impeded by the highly individual characteristics of this disease. Tumor size, ranging from microscopic disease and small lesions to large-sized cancer en cuirasse, is described as one of the most important prognostic factors. However, in clinical studies and analyses of LRBC, tumor size has so far been reported in a very heterogeneous way. Therefore, we suggest a novel, simple and feasible size classification (rClasses 0–IV). Applying this classification for the evaluation of 201 patients with pre-irradiated LRBC allowed for a stratification into distinct prognostic groups.
Collapse
Affiliation(s)
- Markus Notter
- Department of Radiation Oncology, Lindenhofspital Bern, 3012 Bern, Switzerland; (M.N.); (K.M.)
| | - Andreas R. Thomsen
- Department of Radiation Oncology, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (A.R.T.); (A.-L.G.)
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mirko Nitsche
- Center for Radiotherapy and Radiooncology Bremen and Westerstede, 28239 Bremen, Germany; (M.N.); (R.M.H.)
| | - Robert M. Hermann
- Center for Radiotherapy and Radiooncology Bremen and Westerstede, 28239 Bremen, Germany; (M.N.); (R.M.H.)
| | - Hendrik A. Wolff
- Department of Radiology, Nuclear Medicine and Radiotherapy, Radiology Munich, 80333 Munich, Germany; (H.A.W.); (G.H.)
- Department of Radiation Oncology, Medical Center, University of Regensburg, 93053 Regensburg, Germany
| | - Gregor Habl
- Department of Radiology, Nuclear Medicine and Radiotherapy, Radiology Munich, 80333 Munich, Germany; (H.A.W.); (G.H.)
- Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Karin Münch
- Department of Radiation Oncology, Lindenhofspital Bern, 3012 Bern, Switzerland; (M.N.); (K.M.)
| | - Anca-L. Grosu
- Department of Radiation Oncology, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (A.R.T.); (A.-L.G.)
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Vaupel
- Department of Radiation Oncology, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (A.R.T.); (A.-L.G.)
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-171-124-0073
| |
Collapse
|
34
|
Cheng Y, Weng S, Yu L, Zhu N, Yang M, Yuan Y. The Role of Hyperthermia in the Multidisciplinary Treatment of Malignant Tumors. Integr Cancer Ther 2020; 18:1534735419876345. [PMID: 31522574 PMCID: PMC7242805 DOI: 10.1177/1534735419876345] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hyperthermia is often used in combination with chemotherapy and radiotherapy for
cancer treatment. Recently, immunotherapy has become a popular research area,
breaking exciting new ground with concurrent immunotherapy and hyperthermia.
Much evidence has demonstrated the effectiveness of multidisciplinary
synergistic therapy, and the underlying mechanism has been gradually explored.
In this review, we focus on the mechanism of various cancer treatments in the
current literature and recent advances in hyperthermia. Additionally, we review
clinical studies of hyperthermia combined with other therapies in the previous
10 years and propose future prospects for hyperthermia in multidisciplinary
synergistic therapy.
Collapse
Affiliation(s)
- Yi Cheng
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shanshan Weng
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Linzhen Yu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ning Zhu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Mengyuan Yang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ying Yuan
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
35
|
Mei X, ten Cate R, van Leeuwen CM, Rodermond HM, de Leeuw L, Dimitrakopoulou D, Stalpers LJA, Crezee J, Kok HP, Franken NAP, Oei AL. Radiosensitization by Hyperthermia: The Effects of Temperature, Sequence, and Time Interval in Cervical Cell Lines. Cancers (Basel) 2020; 12:cancers12030582. [PMID: 32138173 PMCID: PMC7139900 DOI: 10.3390/cancers12030582] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/03/2022] Open
Abstract
Cervical cancers are almost exclusively caused by an infection with the human papillomavirus (HPV). When patients suffering from cervical cancer have contraindications for chemoradiotherapy, radiotherapy combined with hyperthermia is a good treatment option. Radiation-induced DNA breaks can be repaired by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Hyperthermia can temporarily inactivate homologous recombination. Therefore, combining radiotherapy with hyperthermia can result in the persistence of more fatal radiation-induced DNA breaks. However, there is no consensus on the optimal sequence of radiotherapy and hyperthermia and the optimal time interval between these modalities. Moreover, the temperature of hyperthermia and HPV-type may also be important in radiosensitization by hyperthermia. In this study we thoroughly investigated the impact of different temperatures (37–42 °C), and the sequence of and time interval (0 up to 4 h) between ionizing radiation and hyperthermia on HPV16+: SiHa, Caski; HPV18+: HeLa, C4I; and HPV−: C33A, HT3 cervical cancer cell lines. Our results demonstrate that a short time interval between treatments caused more unrepaired DNA damages and more cell kill, especially at higher temperatures. Although hyperthermia before ionizing radiation may result in slightly more DNA damage, the sequence between hyperthermia and ionizing radiation yielded similar effects on cell survival.
Collapse
Affiliation(s)
- Xionge Mei
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (X.M.); (R.t.C.); (H.M.R.); (L.d.L.); (D.D.); (L.J.A.S.); (N.A.P.F.)
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - Rosemarie ten Cate
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (X.M.); (R.t.C.); (H.M.R.); (L.d.L.); (D.D.); (L.J.A.S.); (N.A.P.F.)
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - Caspar M. van Leeuwen
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - Hans M. Rodermond
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (X.M.); (R.t.C.); (H.M.R.); (L.d.L.); (D.D.); (L.J.A.S.); (N.A.P.F.)
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - Lidewij de Leeuw
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (X.M.); (R.t.C.); (H.M.R.); (L.d.L.); (D.D.); (L.J.A.S.); (N.A.P.F.)
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - Dionysia Dimitrakopoulou
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (X.M.); (R.t.C.); (H.M.R.); (L.d.L.); (D.D.); (L.J.A.S.); (N.A.P.F.)
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - Lukas J. A. Stalpers
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (X.M.); (R.t.C.); (H.M.R.); (L.d.L.); (D.D.); (L.J.A.S.); (N.A.P.F.)
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - Johannes Crezee
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - H. Petra Kok
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - Nicolaas A. P. Franken
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (X.M.); (R.t.C.); (H.M.R.); (L.d.L.); (D.D.); (L.J.A.S.); (N.A.P.F.)
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - Arlene L. Oei
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (X.M.); (R.t.C.); (H.M.R.); (L.d.L.); (D.D.); (L.J.A.S.); (N.A.P.F.)
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
- Correspondence: ; Tel.: +31-205-663-641
| |
Collapse
|
36
|
Oei A, Kok H, Oei S, Horsman M, Stalpers L, Franken N, Crezee J. Molecular and biological rationale of hyperthermia as radio- and chemosensitizer. Adv Drug Deliv Rev 2020; 163-164:84-97. [PMID: 31982475 DOI: 10.1016/j.addr.2020.01.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/11/2019] [Accepted: 01/20/2020] [Indexed: 12/24/2022]
Abstract
Mild hyperthermia, local heating of the tumour up to temperatures <43 °C, has been clinically applied for almost four decades and has been proven to substantially enhance the effectiveness of both radiotherapy and chemotherapy in treatment of primary and recurrent tumours. Clinical results and mechanisms of action are discussed in this review, including the molecular and biological rationale of hyperthermia as radio- and chemosensitizer as established in in vitro and in vivo experiments. Proven mechanisms include inhibition of different DNA repair processes, (in)direct reduction of the hypoxic tumour cell fraction, enhanced drug uptake, increased perfusion and oxygen levels. All mechanisms show different dose effect relationships and different optimal scheduling with radiotherapy and chemotherapy. Therefore, obtaining the ideal multi-modality treatment still requires elucidation of more detailed data on dose, sequence, duration, and possible synergisms between modalities. A multidisciplinary approach with different modalities including hyperthermia might further increase anti-tumour effects and diminish normal tissue damage.
Collapse
|
37
|
Kroesen M, Mulder HT, van Rhoon GC, Franckena M. Commentary: The Impact of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in Patients With Locally Advanced Cervical Cancer. Front Oncol 2019; 9:1387. [PMID: 31921644 PMCID: PMC6928195 DOI: 10.3389/fonc.2019.01387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- Michiel Kroesen
- Department of Radiation Oncology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Holland Proton Therapy Center, Delft, Netherlands
| | - H Tim Mulder
- Department of Radiation Oncology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gerard C van Rhoon
- Department of Radiation Oncology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martine Franckena
- Department of Radiation Oncology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
38
|
Minnaar CA, Kotzen JA, Ayeni OA, Naidoo T, Tunmer M, Sharma V, Vangu MDT, Baeyens A. The effect of modulated electro-hyperthermia on local disease control in HIV-positive and -negative cervical cancer women in South Africa: Early results from a phase III randomised controlled trial. PLoS One 2019; 14:e0217894. [PMID: 31216321 PMCID: PMC6584021 DOI: 10.1371/journal.pone.0217894] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/16/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The global burden of cervical cancer remains high with the highest morbidity and mortality rates reported in developing countries. Hyperthermia as a chemo- and radiosensitiser has shown to improve treatment outcomes. This is an analysis of the local control results at six months post-treatment of patients enrolled in an ongoing study investigating the effects of the addition of modulated electro-hyperthermia (mEHT) to chemoradiotherapy for the treatment of HIV-positive and -negative cervical cancer patients in a low-resource setting. METHODS This ongoing Phase III randomised controlled trial, conducted at a state hospital in Johannesburg, South Africa, was registered with the appropriate ethics committee. After signing an informed consent, participants with FIGO stages IIB to IIIB squamous cell carcinoma of the cervix were randomised to receive chemoradiotherapy with/without mEHT using a secure online random-sampling tool (stratum: HIV status) accounting for age and stage. Reporting physicians were blind to treatment allocation. HIV-positive participants on antiretroviral treatment, or with a CD4 count >200cell/μL were included. mEHT was administered 2/weekly immediately before external beam radiation. The primary end point is local disease control (LDC) and secondary endpoints are toxicity; quality of life analysis; and two year survival. We report on six month LDC, including nodes visualised in the radiation field on 18F-FDG PET/CT (censored for six month survival), and six month local disease free survival (LDFS) (based on intention to treat). Trial status: Recruitment closed (ClinicalTrials.gov: NCT03332069). RESULTS 271 participants were recruited between January 2014 and November 2017, of which 210 were randomised for trial and 202 were available for analysis at six months post-treatment (mEHT: n = 101; Control: n = 101). Six month LDFS was higher in the mEHT Group (n = 39[38.6%]), than in the Control Group (n = 20[19.8%]); p = 0.003). LDC was also higher in the mEHT Group (n = 40[45.5%]) than the Control Group (n = 20[24.1%]); (p = 0.003). CONCLUSION Our results show that mEHT is effective as a chemo-radiosensitiser for cervical cancer, even in high risk a patients and resource-constrained settings.
Collapse
Affiliation(s)
- Carrie Anne Minnaar
- Department of Radiation Sciences, Radiobiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Jeffrey Allan Kotzen
- Department of Radiation Oncology, Wits Donald Gordon Medical Centre, Johannesburg, South Africa
| | - Olusegun Akinwale Ayeni
- Department of Nuclear Medicine, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Thanushree Naidoo
- Department of Radiation Oncology, Wits Donald Gordon Medical Centre, Johannesburg, South Africa
| | - Mariza Tunmer
- Department of Radiation Oncology, Wits Donald Gordon Medical Centre, Johannesburg, South Africa
- Department of Radiation Sciences, Radiation Oncology, University of the Witwatersrand, Johannesburg, South Africa
| | - Vinay Sharma
- Department of Radiation Sciences, Radiation Oncology, University of the Witwatersrand, Johannesburg, South Africa
| | - Mboyo-Di-Tamba Vangu
- Department of Nuclear Medicine, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
- Department of Radiation Sciences, Nuclear Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Ans Baeyens
- Department of Radiation Sciences, Radiobiology, University of the Witwatersrand, Johannesburg, South Africa
- Department of Human Structure and Repair, Radiobiology, Ghent University, Ghent, Belgium
| |
Collapse
|
39
|
Datta NR, Bodis S. Hyperthermia with radiotherapy reduces tumour alpha/beta: Insights from trials of thermoradiotherapy vs radiotherapy alone. Radiother Oncol 2019; 138:1-8. [PMID: 31132683 DOI: 10.1016/j.radonc.2019.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/16/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Hyperthermia inhibits the repair of irradiation-induced DNA damage and thereby could alter the α/β values of tumours. This study estimates the clinical α/βHTRT values from clinical trials of thermoradiotherapy (HTRT) vs radiotherapy (RT) in recurrent breast (RcBC), head and neck (III/IV) (LAHNC) and cervix cancers (IIB-IVA) (LACC). METHODS Three recently published meta-analyses for HTRT vs RT in RcBC, LAHNC and LACC were evaluated for complete response (CR). Studies with specified RT dose (D), dose/fraction (d) and corresponding CRs were selected. Tumour biological effective dose (BED) for each study with RT (BEDRT) was computed assuming an α/βRT of 10 Gy. As outcomes were favourable with HTRT, thermoradiobiological BED (BEDHTRT) was calculated as a product of BEDRT and %CRHTRT/%CRRT. The α/βHTRT was estimated as Dd/(BEDHTRT - D). RESULTS 12 trials with 864 patients were shortlisted - RcBC (3 studies, n = 259), LAHNC (5 studies, n = 338) and LACC (4 studies, n = 267). Overall risk difference of 0.28 favoured HTRT (p < 0.001). Mean BEDRT and BEDHTRT were 64.7 Gy (SD: ±15.5) and 109.5 Gy (SD: ±32.1) respectively and global α/βHTRT was 2.25 Gy (SD: ±0.79). Mean α/βHTRT for RcBC, LAHNC and LACC were 2.05 Gy, 1.74 Gy and 3.03 Gy respectively. On meta-regression, α/βHTRT was the sole predictor for the corresponding risk differences of the studies (coefficient = -0.096; p = 0.03). CONCLUSION Thermoradiobiological effects on the repair of RT induced DNA damage results in reduction in α/β values of tumours. This should be considered to effectively optimize HTRT dose-fractionation schedules in the clinic.
Collapse
Affiliation(s)
- Niloy R Datta
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Switzerland.
| | - Stephan Bodis
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Switzerland; Department of Radiation Oncology, University Hospital Zurich, Switzerland
| |
Collapse
|
40
|
Crezee H, Kok HP, Oei AL, Franken NAP, Stalpers LJA. The Impact of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in Patients With Locally Advanced Cervical Cancer. Front Oncol 2019; 9:412. [PMID: 31165046 PMCID: PMC6536646 DOI: 10.3389/fonc.2019.00412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/02/2019] [Indexed: 01/22/2023] Open
Affiliation(s)
- Hans Crezee
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - H P Kok
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
41
|
Nytko KJ, Thumser-Henner P, Weyland MS, Scheidegger S, Bley CR. Cell line-specific efficacy of thermoradiotherapy in human and canine cancer cells in vitro. PLoS One 2019; 14:e0216744. [PMID: 31091255 PMCID: PMC6519812 DOI: 10.1371/journal.pone.0216744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/27/2019] [Indexed: 12/17/2022] Open
Abstract
Objective Aims were to investigate sensitivity of various human and canine cancer cell lines to hyperthermia and the influence of particular treatment conditions, and to analyze the DNA-damage response and mode of cell death in cell line radiosensitized by hyperthermia. Additionally, we were interested in the involvement of HSP70 in radiosensitization. Methods Radiosensitization by hyperthermia was determined in a panel of human and canine cancer cell lines using clonogenic cell survival assay, as well as levels of heat shock proteins (HSPs) using immunoblotting. The influence of the hyperthermia-radiotherapy time gap, different temperatures and the order of treatments on clonogenicity of hyperthermia-sensitive A549 cells was investigated. Additionally, DNA damage and cell death were assessed by Comet assay and an apoptosis/necrosis assay. Further we induced transient knockdown in A549 cells to test HSP70’s involvement in radiosensitization. Results Out of eight cell lines tested, only two (A549 and Abrams) showed significant decrease in clonogenic cell survival when pre-treated with hyperthermia at 42°C. Strong induction of HSP70 upon thermoradiotherapy (HT-RT) treatment was found in all cell lines. Transient knockdown of HSP70 in A549 cells did not result in decrease of clonogenic cell survival in response to HT-RT. Conclusion Tumor cell-type, temperature and order of treatment play an important role in radiosensitization by hyperthermia. However, hyperthermia has limited potency to radiosensitize canine cancer cells grown in a 2D cell culture setting presented here. DNA damage and apoptosis/necrosis did not increase upon combined treatment and cytosolic levels of HSP70 appear not to play critical role in the radiosensitization of A549 cells.
Collapse
Affiliation(s)
- Katarzyna J. Nytko
- Division of Radiation Oncology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich Zurich, Switzerland
- Center for Clinical Studies at the Vetsuisse Faculty of the University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Pauline Thumser-Henner
- Division of Radiation Oncology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich Zurich, Switzerland
- Center for Clinical Studies at the Vetsuisse Faculty of the University of Zurich, Zurich, Switzerland
| | - Mathias S. Weyland
- ZHAW School of Engineering, Zurich University of Applied Sciences, Winterthur, Switzerland
- BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Stephan Scheidegger
- ZHAW School of Engineering, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Carla Rohrer Bley
- Division of Radiation Oncology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich Zurich, Switzerland
- Center for Clinical Studies at the Vetsuisse Faculty of the University of Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Lassche G, Crezee J, Van Herpen CML. Whole-body hyperthermia in combination with systemic therapy in advanced solid malignancies. Crit Rev Oncol Hematol 2019; 139:67-74. [PMID: 31112883 DOI: 10.1016/j.critrevonc.2019.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/03/2019] [Accepted: 04/26/2019] [Indexed: 01/20/2023] Open
Abstract
Whole-body hyperthermia (WBH) might be beneficial for patients with metastasized solid malignancies when combined with systemic therapy. This review identified and summarized the phase I/II studies (n = 13/14) conducted using this combination of therapies. Most of the phase II studies used radiant heating methods in a thermal dose of 41.8 °C (1 h). All studies used classic chemotherapy. Great inter-study heterogeneity was observed regarding treatment regimes, included patients and reported response rates (12-89%). Ovarian cancer, colorectal adenocarcinoma, lung cancer and sarcoma have been studied most. Most reported toxicity (grade 3/4) was myelosuppression. Treatment related mortality was present (4 patients) in three out 14 phase II studies (350 evaluable patients, over 966 cycles of WBH with chemotherapy). Absence of phase III trials makes the additive value of WBH highly speculative. As modern oncology offers many less invasive treatments options, it is unlikely WBH will ever find its way in routine clinical care.
Collapse
Affiliation(s)
- G Lassche
- Department of medical oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Crezee
- Department of radiation oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - C M L Van Herpen
- Department of medical oncology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
43
|
Bellizzi GG, Drizdal T, van Rhoon GC, Crocco L, Isernia T, Paulides MM. Predictive value of SAR based quality indicators for head and neck hyperthermia treatment quality. Int J Hyperthermia 2019; 36:456-465. [PMID: 30973030 DOI: 10.1080/02656736.2019.1590652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Hyperthermia treatment quality determines treatment effectiveness as shown by the clinically derived thermal-dose effect relations. SAR based optimization factors are used as possible surrogate for temperature, since they are not affected by thermal tissue properties uncertainty and variations. Previously, target coverage (TC) at the 25% and 50% iso-SAR level was shown predictive for treatment outcome in superficial hyperthermia and the target-to-hot-spot-quotient (THQ) was shown to highly correlate with predictive temperature in deep pelvic hyperthermia. Here, we investigate the correlation with temperature for THQ and TC using an 'intermediate' scenario: semi-deep hyperthermia in the head & neck region using the HYPERcollar3D. METHODS Fifteen patient-specific models and two different planning approaches were used, including random perturbations to circumvent optimization bias. The predicted SAR indicators were compared to predicted target temperature distribution indicators T50 and T90, i.e., the median and 90th percentile temperature respectively. RESULTS The intra-patient analysis identified THQ, TC25 and TC50 as good temperature surrogates: with a mean correlation coefficient R2T50 = 0.72 and R2T90=0.66. The inter-patient analysis identified the highest correlation with TC25 (R2T50 = 0.76, R2T90=0.54) and TC50 (R2T50 = 0.74, R2T90 = 0.56). CONCLUSION Our investigation confirmed the validity of our current strategy for deep hyperthermia in the head & neck based on a combination of THQ and TC25. TC50 was identified as the best surrogate since it enables optimization and patient inclusion decision making using one single parameter.
Collapse
Affiliation(s)
- Gennaro G Bellizzi
- a DIIES , Università Mediterranea di Reggio Calabria , Reggio di Calabria , Italy.,b Department of Radiation Oncology, Erasmus Medical Center , Hyperthermia Unit , Rotterdam , The Netherlands.,c Institute for Electromagnetic Sensing of the Environment National Research Council of Italy , Napoli , Italy
| | - Tomas Drizdal
- b Department of Radiation Oncology, Erasmus Medical Center , Hyperthermia Unit , Rotterdam , The Netherlands.,d Department of Biomedical Technology , Czech Technical University in Prague , Prague , Czech Republic
| | - Gerard C van Rhoon
- b Department of Radiation Oncology, Erasmus Medical Center , Hyperthermia Unit , Rotterdam , The Netherlands
| | - Lorenzo Crocco
- c Institute for Electromagnetic Sensing of the Environment National Research Council of Italy , Napoli , Italy
| | - Tommaso Isernia
- a DIIES , Università Mediterranea di Reggio Calabria , Reggio di Calabria , Italy.,c Institute for Electromagnetic Sensing of the Environment National Research Council of Italy , Napoli , Italy
| | - Margarethus M Paulides
- b Department of Radiation Oncology, Erasmus Medical Center , Hyperthermia Unit , Rotterdam , The Netherlands.,e Department of Electrical Engineering , Eindhoven University of Technology , Eindhoven , The Netherlands
| |
Collapse
|
44
|
Kroesen M, Mulder HT, van Holthe JML, Aangeenbrug AA, Mens JWM, van Doorn HC, Paulides MM, Oomen-de Hoop E, Vernhout RM, Lutgens LC, van Rhoon GC, Franckena M. The Effect of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in 400 Locally Advanced Cervical Carcinoma Patients. Front Oncol 2019; 9:134. [PMID: 30906734 PMCID: PMC6418024 DOI: 10.3389/fonc.2019.00134] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/14/2019] [Indexed: 01/10/2023] Open
Abstract
Background: Addition of deep hyperthermia to radiotherapy results in improved local control (LC) and overall survival compared to radiotherapy alone in cervical carcinoma patients. Based on preclinical data, the time interval between radiotherapy, and hyperthermia is expected to influence treatment outcome. Clinical studies addressing the effect of time interval are sparse. The repercussions for clinical applications are substantial, as the time between radiotherapy and hyperthermia should be kept as short as possible. In this study, we therefore investigated the effect of the time interval between radiotherapy and hyperthermia on treatment outcome. Methods: We analyzed all primary cervical carcinoma patients treated between 1996 and 2016 with thermoradiotherapy at our institute. Data on patients, tumors and treatments were collected, including the thermal dose parameters TRISE and CEM43T90. Follow-up data on tumor status and survival as well as late toxicity were collected. Data was analyzed using Cox proportional hazards analysis and Kaplan Meier analysis. Results: 400 patients were included. Kaplan Meier and univariate Cox analysis showed no effect of the time interval (range 30-230 min) on any clinical outcome measure. Besides known prognostic factors, thermal dose parameters TRISE and CEM43T90 had a significant effect on LC. In multivariate analysis, the thermal dose parameter TRISE (HR 0.649; 95% CI 0.501-0.840) and the use of image guided brachytherapy (HR 0.432; 95% CI 0.214-0.972), but not the time interval, were significant predictors of LC and disease specific survival. Conclusions: The time interval between radiotherapy and hyperthermia, up to 4 h, has no effect on clinical outcome. These results are re-ensuring for our current practice of delivering hyperthermia within maximal 4 h after radiotherapy.
Collapse
Affiliation(s)
- M Kroesen
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - H T Mulder
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - J M L van Holthe
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - A A Aangeenbrug
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - J W M Mens
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - H C van Doorn
- Department of Obstetrics and Gynaecology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - M M Paulides
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - E Oomen-de Hoop
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - R M Vernhout
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - L C Lutgens
- Department of Radiation oncology, University Medical Centre Maastricht (MAASTRO), Maastricht, Netherlands
| | - G C van Rhoon
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - M Franckena
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
45
|
Elming PB, Sørensen BS, Oei AL, Franken NAP, Crezee J, Overgaard J, Horsman MR. Hyperthermia: The Optimal Treatment to Overcome Radiation Resistant Hypoxia. Cancers (Basel) 2019; 11:E60. [PMID: 30634444 PMCID: PMC6356970 DOI: 10.3390/cancers11010060] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/14/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation resistance as well as playing a significant role in malignant progression. Consequently, numerous pre-clinical and clinical attempts have been made to try and overcome this hypoxia. These approaches involve improving oxygen availability, radio-sensitizing or killing the hypoxic cells, or utilizing high LET (linear energy transfer) radiation leading to a lower OER (oxygen enhancement ratio). Interestingly, hyperthermia (heat treatments of 39⁻45 °C) induces many of these effects. Specifically, it increases blood flow thereby improving tissue oxygenation, radio-sensitizes via DNA repair inhibition, and can kill cells either directly or indirectly by causing vascular damage. Combining hyperthermia with low LET radiation can even result in anti-tumor effects equivalent to those seen with high LET. The various mechanisms depend on the time and sequence between radiation and hyperthermia, the heating temperature, and the time of heating. We will discuss the role these factors play in influencing the interaction between hyperthermia and radiation, and summarize the randomized clinical trials showing a benefit of such a combination as well as suggest the potential future clinical application of this combination.
Collapse
Affiliation(s)
- Pernille B Elming
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | - Brita S Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | - Arlene L Oei
- Department of Radiation Oncology, Academic University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands.
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Academic University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands.
| | - Johannes Crezee
- Department of Radiation Oncology, Academic University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands.
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | - Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
46
|
Hyperthermic chest wall re-irradiation in recurrent breast cancer: a prospective observational study. Strahlenther Onkol 2019; 195:318-326. [PMID: 30607453 DOI: 10.1007/s00066-018-1414-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE To prospectively investigate the role of re-irradiation (re-RT) combined with hyperthermia (HT) in a contemporary cohort of patients affected by recurrent breast cancer (RBC). METHODS Within the prospective registry HT03, patients with resected RBC and previous irradiation were included. Re-RT was applied to the recurrence region with doses of 50-50.4 Gy, with a boost up to 60-60.4 Gy to the microscopically or macroscopically positive resection margins (R1/R2) region. Concurrent HT was performed at 40-42 ℃. Primary endpoint was LC. Acute and late toxicity, overall survival, cancer-specific survival (CSS), and progression-free survival (PFS) were also evaluated. RESULTS 20 patients and 21 RBC were analyzed. Median re-RT dose was 50.4 Gy and a median of 11 HT fractions were applied. Re-RT+HT was well tolerated, with three patients who experienced a grade (G) 3 acute skin toxicity and no cases of ≥G3 late toxicity. With a median follow up of 24.7 months, two local relapses occurred. Ten patients experienced regional and/or distant disease progression. Five patients died, four of them from breast cancer. PFS was favorable in patients treated with re-RT+HT for the first recurrence with doses of 60 Gy. A trend towards better CSS was found in patients with negative or close margins and after doses of 60 Gy. CONCLUSION Full-dose re-RT+HT for RBC is well tolerated, provides good LC, and seems to be more effective when applied at the time of the first relapse and after doses of 60 Gy. The registry will be continued for validation in a larger cohort and with longer follow-up.
Collapse
|
47
|
Gurushankara HP, Venu R, Vasudev V. Hyperthermia enhances methyl methanesulfonate-induced adaptive response in meiotic cells of grasshopper Poecilocerus pictus. Mutagenesis 2018; 33:215-224. [PMID: 29986047 DOI: 10.1093/mutage/gey009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/06/2018] [Indexed: 11/13/2022] Open
Abstract
To understand the role of hyperthermia (HT) in adaptive response, methyl methanesulfonate (MMS) adapted meiotic cells of Poecilocerus pictus were used. Poecilocerus pictus were treated with conditioning (L) or challenging (H) dose of MMS and 2-h time lag (TL) between these doses (L-2h-H) (combined) was employed. Different treatment schedules were used to analyse the influence of HT on MMS-induced adaptive response namely pre; inter; post-treatment and cross-adaptation. After each treatment schedules, chromosomal anomalies were analysed. The frequencies of chromosomal anomalies induced by conditioning and challenging doses of MMS were significantly higher (P < 0.0001) compared to that of the control or HT groups. The combined treatments resulted in significant reduction of chromosomal anomalies compared to additive effect of MMS (P < 0.0001). The pre, inter, post and cross-adaptation treatments with HT reduced the frequencies of chromosomal anomalies compared to the challenge and combined treatments with MMS. There is a protection against MMS-induced chromosomal anomalies by HT in in vivo P.pictus. This is the first report to demonstrate that HT enhances the MMS-induced adaptive response in in vivo meiotic cells.
Collapse
Affiliation(s)
| | - Ramamurthy Venu
- Department of P.G. Studies and Research in Applied Zoology, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka, India
| | - Venkateshaiah Vasudev
- Department of Zoology, Davanagere University, Shivagangothri, Davanagere, Karnataka, India
| |
Collapse
|
48
|
Chang D, Lim M, Goos JACM, Qiao R, Ng YY, Mansfeld FM, Jackson M, Davis TP, Kavallaris M. Biologically Targeted Magnetic Hyperthermia: Potential and Limitations. Front Pharmacol 2018; 9:831. [PMID: 30116191 PMCID: PMC6083434 DOI: 10.3389/fphar.2018.00831] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
Hyperthermia, the mild elevation of temperature to 40–43°C, can induce cancer cell death and enhance the effects of radiotherapy and chemotherapy. However, achievement of its full potential as a clinically relevant treatment modality has been restricted by its inability to effectively and preferentially heat malignant cells. The limited spatial resolution may be circumvented by the intravenous administration of cancer-targeting magnetic nanoparticles that accumulate in the tumor, followed by the application of an alternating magnetic field to raise the temperature of the nanoparticles located in the tumor tissue. This targeted approach enables preferential heating of malignant cancer cells whilst sparing the surrounding normal tissue, potentially improving the effectiveness and safety of hyperthermia. Despite promising results in preclinical studies, there are numerous challenges that must be addressed before this technique can progress to the clinic. This review discusses these challenges and highlights the current understanding of targeted magnetic hyperthermia.
Collapse
Affiliation(s)
- David Chang
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,Department of Radiation Oncology, Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, NSW, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, Australia
| | - May Lim
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Jeroen A C M Goos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Yun Yee Ng
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Friederike M Mansfeld
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Michael Jackson
- Department of Radiation Oncology, Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
49
|
Zhao YY, Wu Q, Wu ZB, Zhang JJ, Zhu LC, Yang Y, Ma SL, Zhang SR. Microwave hyperthermia promotes caspase‑3-dependent apoptosis and induces G2/M checkpoint arrest via the ATM pathway in non‑small cell lung cancer cells. Int J Oncol 2018; 53:539-550. [PMID: 29901106 PMCID: PMC6017221 DOI: 10.3892/ijo.2018.4439] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/04/2018] [Indexed: 12/12/2022] Open
Abstract
Post-operative microwave (MW) hyperthermia has been applied as an important adjuvant therapy to enhance the efficacy of traditional cancer treatment. A better understanding of the molecular mechanisms of MW hyperthermia may provide guided and further information on clinical hyperthermia treatment. In this study, we examined the effects of MW hyperthermia on non-small cell lung carcinoma (NSCLC) cells in vitro, as well as the underlying mechanisms. In order to mimic clinical treatment, we developed special MW heating equipment for this study. Various NSCLC cells (H460, PC-9 and H1975) were exposed to hyperthermia treatment using a water bath or MW heating system. The results revealed that MW hyperthermia significantly inhibited cell growth compared with the water bath heating system. Furthermore, MW hyperthermia increased the production of reactive oxygen species (ROS), decreased the levels of mitochondrial membrane potential (MMP) and induced caspase-3 dependent apoptosis. It also induced G2/M phase arrest through the upregulation of the expression of phosphorylated (p-) ataxia telangiectasia mutated (ATM), p-checkpoint kinase 2 (Chk2) and p21, and the downregulation of the expression of cdc25c, cyclin B1 and cdc2. On the whole, the findings of this study indicate that the exposure of NSCLC cells to MW hyper-thermia promotes caspase-3 dependent apoptosis and induces G2/M cell cycle arrest via the ATM pathway. This preclinical study may help to provide laboratory-based evidence for MW hyperthermia treatment in clinical practice.
Collapse
Affiliation(s)
- Yan-Yan Zhao
- Center for Translational Medicine, Affiliated Hangzhou First People's Hospital of Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Qiong Wu
- Center for Translational Medicine, Affiliated Hangzhou First People's Hospital of Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Zhi-Bing Wu
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Jing-Jing Zhang
- Center for Translational Medicine, Affiliated Hangzhou First People's Hospital of Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Lu-Cheng Zhu
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Yang Yang
- Department of Radiation Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Sheng-Lin Ma
- Center for Translational Medicine, Affiliated Hangzhou First People's Hospital of Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Shi-Rong Zhang
- Center for Translational Medicine, Affiliated Hangzhou First People's Hospital of Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
50
|
van Leeuwen CM, Crezee J, Oei AL, Franken NAP, Stalpers LJA, Bel A, Kok HP. The effect of time interval between radiotherapy and hyperthermia on planned equivalent radiation dose. Int J Hyperthermia 2018; 34:901-909. [PMID: 29749270 DOI: 10.1080/02656736.2018.1468930] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Thermoradiotherapy is an effective treatment for locally advanced cervical cancer. However, the optimal time interval between radiotherapy and hyperthermia, resulting in the highest therapeutic gain, remains unclear. This study aims to evaluate the effect of time interval on the therapeutic gain using biological treatment planning. METHODS Radiotherapy and hyperthermia treatment plans were created for 15 cervical cancer patients. Biological modeling was used to calculate the equivalent radiation dose, that is, the radiation dose that results in the same biological effect as the thermoradiotherapy treatment, for different time intervals ranging from 0-4 h. Subsequently, the thermal enhancement ratio (TER, i.e. the ratio of the dose for the thermoradiotherapy and the radiotherapy-only plan) was calculated for the gross tumor volume (GTV) and the organs at risk (OARs: bladder, rectum, bowel), for each time interval. Finally, the therapeutic gain factor (TGF, i.e. TERGTV/TEROAR) was calculated for each OAR. RESULTS The median TERGTV ranged from 1.05 to 1.16 for 4 h and 0 h time interval, respectively. Similarly, for bladder, rectum and bowel, TEROARs ranged from 1-1.03, 1-1.04 and 1-1.03, respectively. Radiosensitization in the OARs was much less than in the GTV, because temperatures were lower, fractionation sensitivity was higher (lower α/β) and direct cytotoxicity was assumed negligible in normal tissue. TGFs for the three OARs were similar, and were highest (around 1.12) at 0 h time interval. CONCLUSION This planning study indicates that the largest therapeutic gain for thermoradiotherapy in cervical cancer patients can be obtained when hyperthermia is delivered immediately before or after radiotherapy.
Collapse
Affiliation(s)
- C M van Leeuwen
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - J Crezee
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - A L Oei
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands.,b Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental Molecular Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - N A P Franken
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands.,b Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental Molecular Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - L J A Stalpers
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - A Bel
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - H P Kok
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| |
Collapse
|