1
|
Shen CJ, Kry SF, Buchsbaum JC, Milano MT, Inskip PD, Ulin K, Francis JH, Wilson MW, Whelan KF, Mayo CS, Olch AJ, Constine LS, Terezakis SA, Vogelius IR. Retinopathy, Optic Neuropathy, and Cataract in Childhood Cancer Survivors Treated With Radiation Therapy: A PENTEC Comprehensive Review. Int J Radiat Oncol Biol Phys 2024; 119:431-445. [PMID: 37565958 DOI: 10.1016/j.ijrobp.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 08/12/2023]
Abstract
PURPOSE Few reports describe the risks of late ocular toxicities after radiation therapy (RT) for childhood cancers despite their effect on quality of life. The Pediatric Normal Tissue Effects in the Clinic (PENTEC) ocular task force aims to quantify the radiation dose dependence of select late ocular adverse effects. Here, we report results concerning retinopathy, optic neuropathy, and cataract in childhood cancer survivors who received cranial RT. METHODS AND MATERIALS A systematic literature search was performed using the PubMed, MEDLINE, and Cochrane Library databases for peer-reviewed studies published from 1980 to 2021 related to childhood cancer, RT, and ocular endpoints including dry eye, keratitis/corneal injury, conjunctival injury, cataract, retinopathy, and optic neuropathy. This initial search yielded abstracts for 2947 references, 269 of which were selected as potentially having useful outcomes and RT data. Data permitting, treatment and outcome data were used to generate normal tissue complication probability models. RESULTS We identified sufficient RT data to generate normal tissue complication probability models for 3 endpoints: retinopathy, optic neuropathy, and cataract formation. Based on limited data, the model for development of retinopathy suggests 5% and 50% risk of toxicity at 42 and 62 Gy, respectively. The model for development of optic neuropathy suggests 5% and 50% risk of toxicity at 57 and 64 Gy, respectively. More extensive data were available to evaluate the risk of cataract, separated into self-reported versus ophthalmologist-diagnosed cataract. The models suggest 5% and 50% risk of self-reported cataract at 12 and >40 Gy, respectively, and 50% risk of ophthalmologist-diagnosed cataract at 9 Gy (>5% long-term risk at 0 Gy in patients treated with chemotherapy only). CONCLUSIONS Radiation dose effects in the eye are inadequately studied in the pediatric population. Based on limited published data, this PENTEC comprehensive review establishes relationships between RT dose and subsequent risks of retinopathy, optic neuropathy, and cataract formation.
Collapse
Affiliation(s)
- Colette J Shen
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| | - Stephen F Kry
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, Texas
| | | | - Michael T Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Peter D Inskip
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, Maryland
| | - Kenneth Ulin
- Imaging and Radiation Oncology Rhode Island QA Center, Lincoln, Rhode Island
| | - Jasmine H Francis
- Ophthalmic Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew W Wilson
- Division of Ophthalmology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kimberly F Whelan
- Pediatric Hematology/Oncology, University of Alabama School of Medicine, Birmingham, Alabama
| | - Charles S Mayo
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Arthur J Olch
- Department of Radiation Oncology, University of Southern California/Children's Hospital Los Angeles, Los Angeles, California
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Stephanie A Terezakis
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ivan R Vogelius
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Zou Z, Gong C, Zeng L, Guan Y, Huang B, Yu X, Liu Q, Zhang M. Invertible and Variable Augmented Network for Pretreatment Patient-Specific Quality Assurance Dose Prediction. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:60-71. [PMID: 38343215 DOI: 10.1007/s10278-023-00930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 03/02/2024]
Abstract
Pretreatment patient-specific quality assurance (prePSQA) is conducted to confirm the accuracy of the radiotherapy dose delivered. However, the process of prePSQA measurement is time consuming and exacerbates the workload for medical physicists. The purpose of this work is to propose a novel deep learning (DL) network to improve the accuracy and efficiency of prePSQA. A modified invertible and variable augmented network was developed to predict the three-dimensional (3D) measurement-guided dose (MDose) distribution of 300 cancer patients who underwent volumetric modulated arc therapy (VMAT) between 2018 and 2021, in which 240 cases were randomly selected for training, and 60 for testing. For simplicity, the present approach was termed as "IVPSQA." The input data include CT images, radiotherapy dose exported from the treatment planning system, and MDose distribution extracted from the verification system. Adam algorithm was used for first-order gradient-based optimization of stochastic objective functions. The IVPSQA model obtained high-quality 3D prePSQA dose distribution maps in head and neck, chest, and abdomen cases, and outperformed the existing U-Net-based prediction approaches in terms of dose difference maps and horizontal profiles comparison. Moreover, quantitative evaluation metrics including SSIM, MSE, and MAE demonstrated that the proposed approach achieved a good agreement with ground truth and yield promising gains over other advanced methods. This study presented the first work on predicting 3D prePSQA dose distribution by using the IVPSQA model. The proposed method could be taken as a clinical guidance tool and help medical physicists to reduce the measurement work of prePSQA.
Collapse
Affiliation(s)
- Zhongsheng Zou
- Department of Electronic Information Engineering, Nanchang University, Nanchang, China
| | - Changfei Gong
- Department of Radiation Oncology, 1st Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lingpeng Zeng
- Department of Electronic Information Engineering, Nanchang University, Nanchang, China
| | - Yu Guan
- Department of Electronic Information Engineering, Nanchang University, Nanchang, China
| | - Bin Huang
- Department of Electronic Information Engineering, Nanchang University, Nanchang, China
| | - Xiuwen Yu
- Department of Electronic Information Engineering, Nanchang University, Nanchang, China
| | - Qiegen Liu
- Department of Electronic Information Engineering, Nanchang University, Nanchang, China.
| | - Minghui Zhang
- Department of Electronic Information Engineering, Nanchang University, Nanchang, China.
| |
Collapse
|
3
|
Huang Y, Qin T, Yang M, Liu Z. Impact of ovary-sparing treatment planning on plan quality, treatment time and gamma passing rates in intensity-modulated radiotherapy for stage I/II cervical cancer. Medicine (Baltimore) 2023; 102:e36373. [PMID: 38115303 PMCID: PMC10727547 DOI: 10.1097/md.0000000000036373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND This study aimed to investigate the impact of ovary-sparing intensity-modulated radiotherapy (IMRT) on plan quality, treatment time, and gamma passing rates for stage I/II cervical cancer patients. METHODS Fifteen stage I/II cervical cancer patients were retrospectively enrolled, and a pair of clinically suitable IMRT plans were designed for each patient, with (Group A) and without (Group B) ovary-sparing. Plan factors affecting plan quality, treatment time, and gamma passing rates, including the number of segments, monitor units, percentage of small-area segments (field area < 20 cm2), and percentage of small-MU segments (MU < 10), were compared and statistically analyzed. Key plan quality indicators, including ovarian dose, target dose coverage (D98%, D95%, D50%, D2%), conformity index, and homogeneity index, were evaluated and statistically assessed. Treatment time and gamma passing rates collected by IBA MatriXX were also compared. RESULTS The median ovarian dose in Group A and Group B was 7.61 Gy (range 6.71-8.51 Gy) and 38.52 Gy (range 29.84-43.82 Gy), respectively. Except for monitor units, all other plan factors were significantly lower in Group A than in Group B (all P < .05). Correlation coefficients between plan factors, treatment time, and gamma passing rates that were statistically different were all negative. Both Groups of plans met the prescription requirement (D95% ≥ 45.00 Gy) for clinical treatment. D98% was smaller for Group A than for Group B (P < .05); D50% and D2% were larger for Group A than for Group B (P < .05, P < .05). Group A plans had worse conformity index and homogeneity index than Group B plans (P < .05, P < .05). Treatment time did not differ significantly (P > .05). Gamma passing rates in Group A were higher than in Group B with the criteria of 2%/3 mm (P < .05) and 3%/2 mm (P < .05). CONCLUSION Despite the slightly decreased quality of the treatment plans, the ovary-sparing IMRT plans exhibited several advantages including lower ovarian dose and plan complexity, improved gamma passing rates, and a negligible impact on treatment time.
Collapse
Affiliation(s)
- Yangyang Huang
- Department of Radiotherapy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Tingting Qin
- Department of Radiotherapy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Menglin Yang
- Department of Radiotherapy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zongwen Liu
- Department of Radiotherapy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
4
|
Zeng L, Zhang M, Zhang Y, Zou Z, Guan Y, Huang B, Yu X, Ding S, Liu Q, Gong C. TransQA: deep hybrid transformer network for measurement-guided volumetric dose prediction of pre-treatment patient-specific quality assurance. Phys Med Biol 2023; 68:205010. [PMID: 37714191 DOI: 10.1088/1361-6560/acfa5e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
Objective. Performing pre-treatment patient-specific quality assurance (prePSQA) is considered an essential, time-consuming, and resource-intensive task for volumetric modulated arc radiotherapy (VMAT) which confirms the dose accuracy and ensure patient safety. Most current machine learning and deep learning approaches stack excessive convolutional/pooling operations (CPs) to predict prePSQA with two-dimensional or one-dimensional information input. However, these models generally present limitations in explicitly modeling long-range dependency for volumetric dose prediction due to the loss of spatial dose features and the inherent locality of CPs. The purpose of this work is to construct a deep hybrid network by combining the self-attention mechanism-based Transformer with modified U-Net for predicting measurement-guided volumetric dose (MDose) of prePSQA.Approach. The enrolled 307 cancer patients underwent VMAT were randomly divided into 246 and 61 cases for training and testing the model. The input data included computed tomography images, radiotherapy dose images exported from the treatment planning system, as well as the MDose distribution from the verification system. The output was the predicted high-quality voxel-wise prePSQA dose distribution.Main results: qualitative and quantitative experimental results show that the proposed prediction method could achieve comparable or better performance on MDose prediction over other approaches in terms of spatial dose distribution, dose-volume histogram metrics, gamma passing rates, mean absolute error, root mean square error, and structural similarity.Significance. The preliminary results on multiple cancer sites show that our approach can be taken as a clinical guidance tool and help medical physicists to reduce the measurement work of prePSQA.
Collapse
Affiliation(s)
- Lingpeng Zeng
- Department of Electronic Information Engineering, Nanchang University, Nanchang, People's Republic of China
| | - Minghui Zhang
- Department of Electronic Information Engineering, Nanchang University, Nanchang, People's Republic of China
| | - Yun Zhang
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, People's Republic of China
| | - Zhongsheng Zou
- Department of Electronic Information Engineering, Nanchang University, Nanchang, People's Republic of China
| | - Yu Guan
- Department of Electronic Information Engineering, Nanchang University, Nanchang, People's Republic of China
| | - Bin Huang
- Department of Electronic Information Engineering, Nanchang University, Nanchang, People's Republic of China
| | - Xiuwen Yu
- Department of Electronic Information Engineering, Nanchang University, Nanchang, People's Republic of China
| | - Shenggou Ding
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, People's Republic of China
| | - Qiegen Liu
- Department of Electronic Information Engineering, Nanchang University, Nanchang, People's Republic of China
| | - Changfei Gong
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, People's Republic of China
| |
Collapse
|
5
|
Zhang Y, Huang Y, Lin J, Ding S, Gong X, Liu Q, Gong C. Multi-isocenter VMAT craniospinal irradiation using feasibility dose-volume histogram-guided auto-planning technique. JOURNAL OF RADIATION RESEARCH 2023:7150737. [PMID: 37141634 DOI: 10.1093/jrr/rrad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2022] [Indexed: 05/06/2023]
Abstract
This study aims to propose a novel treatment planning methodology for multi-isocenter volumetric modulated arc therapy (VMAT) craniospinal irradiation (CSI) using the special feasibility dose-volume histogram (FDVH)-guided auto-planning (AP) technique. Three different multi-isocenter VMAT -CSI plans were created, including manually based plans (MUPs), conventional AP plans (CAPs) and FDVH-guided AP plans (FAPs). The CAPs and FAPs were specially designed by combining multi-isocenter VMAT and AP techniques in the Pinnacle treatment planning system. Specially, the personalized optimization parameters for FAPs were generated using the FDVH function implemented in PlanIQ software, which provides the ideal organs at risk (OARs) sparing for the specific anatomical geometry based on the valuable assumption of the dose fall-off. Compared to MUPs, CAPs and FAPs significantly reduced the dose for most of the OARs. FAPs achieved the best homogeneity index (0.092 ± 0.013) and conformity index (0.980 ± 0.011), while CAPs were slightly inferior to the FAPs but superior to the MUPs. As opposed to MUPs, FAPs delivered a lower dose to OARs, whereas the difference between FAPs and CAPs was not statistically significant except for the optic chiasm and inner ear_L. The two AP approaches had similar MUs, which were significantly lower than the MUPs. The planning time of FAPs (145.00 ± 10.25 min) was slightly lower than that of CAPs (149.83 ± 14.37 min) and was substantially lower than that of MUPs (157.92 ± 16.11 min) with P < 0.0167. Overall, introducing the multi-isocenter AP technique into VMAT-CSI yielded positive outcomes and may play an important role in clinical CSI planning in the future.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Qingshanhu District, Nanchang 330029, China
| | - Yuling Huang
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Qingshanhu District, Nanchang 330029, China
| | - Jiafan Lin
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Qingshanhu District, Nanchang 330029, China
| | - Shenggou Ding
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Qingshanhu District, Nanchang 330029, China
| | - Xiaochang Gong
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Qingshanhu District, Nanchang 330029, China
| | - Qiegen Liu
- Department of Electronic Information Engineering, 999 Xuefu Dadao, Honggutan District, Nanchang 330031, China
| | - Changfei Gong
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Qingshanhu District, Nanchang 330029, China
| |
Collapse
|
6
|
Zuro DM, Vidal G, Cantrell JN, Chen Y, Han C, Henson C, Ahmad S, Hui S, Ali I. Treatment planning of total marrow irradiation with intensity-modulated spot-scanning proton therapy. Front Oncol 2022; 12:955004. [PMID: 35965505 PMCID: PMC9365973 DOI: 10.3389/fonc.2022.955004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose The goal of this study is to investigate treatment planning of total marrow irradiation (TMI) using intensity-modulated spot-scanning proton therapy (IMPT). The dosimetric parameters of the intensity-modulated proton plans were evaluated and compared with the corresponding TMI plans generated with volumetric modulated arc therapy (VMAT) using photon beams. Methods Intensity-modulated proton plans for TMI were created using the Monte Carlo dose-calculation algorithm in the Raystation 11A treatment planning system with spot-scanning proton beams from the MEVION S250i Hyperscan system. Treatment plans were generated with four isocenters placed along the longitudinal direction, each with a set of five beams for a total of 20 beams. VMAT-TMI plans were generated with the Eclipse-V15 analytical anisotropic algorithm (AAA) using a Varian Trilogy machine. Three planning target volumes (PTVs) for the bones, ribs, and spleen were covered by 12 Gy. The dose conformity index, D80, D50, and D10, for PTVs and organs at risk (OARs) for the IMPT plans were quantified and compared with the corresponding VMAT plans. Results The mean dose for most of the OARs was reduced substantially (5% and more) in the IMPT plans for TMI in comparison with VMAT plans except for the esophagus and thyroid, which experienced an increase in dose. This dose reduction is due to the fast dose falloff of the distal Bragg peak in the proton plans. The conformity index was found to be similar (0.78 vs 0.75) for the photon and proton plans. IMPT plans provided superior superficial dose coverage for the skull and ribs in comparison with VMAT because of increased entrance dose deposition by the proton beams. Conclusion Treatment plans for TMI generated with IMPT were superior to VMAT plans mainly due to a large reduction in the OAR dose. Although the current IMPT-TMI technique is not clinically practical due to the long overall treatment time, this study presents an enticing alternative to conventional TMI with photons by providing superior dose coverage of the targets, increased sparing of the OARs, and enhanced radiobiological effects associated with proton therapy.
Collapse
Affiliation(s)
- Darren M. Zuro
- Department of Radiation Oncology, University of Oklahoma Health Science Center (HSC), Oklahoma City, OK, United States
| | - Gabriel Vidal
- Department of Radiation Oncology, University of Oklahoma Health Science Center (HSC), Oklahoma City, OK, United States
| | - James Nathan Cantrell
- Department of Radiation Oncology, University of Oklahoma Health Science Center (HSC), Oklahoma City, OK, United States
| | - Yong Chen
- Department of Radiation Oncology, University of Oklahoma Health Science Center (HSC), Oklahoma City, OK, United States
| | - Chunhui Han
- Department of Radiation Oncology, City of Hope, Durate, CA, United States
| | - Christina Henson
- Department of Radiation Oncology, University of Oklahoma Health Science Center (HSC), Oklahoma City, OK, United States
| | - Salahuddin Ahmad
- Department of Radiation Oncology, University of Oklahoma Health Science Center (HSC), Oklahoma City, OK, United States
| | - Susanta Hui
- Department of Radiation Oncology, City of Hope, Durate, CA, United States
| | - Imad Ali
- Department of Radiation Oncology, University of Oklahoma Health Science Center (HSC), Oklahoma City, OK, United States
| |
Collapse
|
7
|
Wall PDH, Hirata E, Morin O, Valdes G, Witztum A. Prospective clinical validation of virtual patient-specific quality assurance of VMAT radiation therapy plans. Int J Radiat Oncol Biol Phys 2022; 113:1091-1102. [PMID: 35533908 DOI: 10.1016/j.ijrobp.2022.04.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Performing measurement-based patient-specific quality assurance (PSQA) is recognized as a resource-intensive and time inefficient task in the radiotherapy treatment workflow. Paired with technological refinements in modern radiotherapy, research towards measurement-free PSQA has seen increased interest over the last five years. However, these efforts have not been clinically implemented or prospectively validated in the U.S. We propose a virtual QA (VQA) system and workflow to assess the safety and workload reduction of measurement-free PSQA. METHODS An XGBoost machine learning model was designed to predict PSQA outcomes of VMAT plans, represented as percent differences between the measured ion chamber point dose in a phantom and the corresponding planned dose. The final model was deployed within a web application to predict PSQA outcomes of clinical plans within an existing clinical workflow. The application also displays relevant feature importance and plan-specific distribution analyses relative to database plans for documentation and to aid physicist interpretation and evaluation. VQA predictions were prospectively validated over three months of measurements at our clinic to assess safety and efficiency gains. RESULTS Over three months, VQA predictions for 445 VMAT plans were prospectively validated at our institution. VQA predictions for these plans had a mean absolute error of 1.08 +/- 0.77%, with a maximum absolute error of 2.98%. Employing a 1% prediction threshold (i.e. plans predicted to have an absolute error of less than 1% would not require a measurement) would yield a 69.2% reduction in QA workload - saving 32.5 hours per month on average - with 81.5%/72.4%/0.81 sensitivity/specificity/AUC at a 3% clinical threshold and 100%/70%/0.93 sensitivity/specificity/AUC at a 4% clinical threshold. CONCLUSION This is the first prospective clinical implementation and validation of VQA in the U.S., which we observed to be efficient. Using a conservative threshold, VQA can substantially reduce the number of required measurements for PSQA, leading to more effective allocation of clinical resources.
Collapse
Affiliation(s)
- Phillip D H Wall
- Department of Radiation Oncology, University of California, San Francisco, USA.
| | - Emily Hirata
- Department of Radiation Oncology, University of California, San Francisco, USA
| | - Olivier Morin
- Department of Radiation Oncology, University of California, San Francisco, USA
| | - Gilmer Valdes
- Department of Radiation Oncology, University of California, San Francisco, USA
| | - Alon Witztum
- Department of Radiation Oncology, University of California, San Francisco, USA
| |
Collapse
|
8
|
Absorbed dose distribution in human eye simulated by FOTELP-VOX code and verified by volumetric modulated arc therapy treatment plan. NUCLEAR TECHNOLOGY AND RADIATION PROTECTION 2022. [DOI: 10.2298/ntrp2201078z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This paper illustrates the potential of the FOTELP-VOX code, a modification
of the general-purpose FOTELP code, combining Monte Carlo techniques to
simulate particle transportation from an external source through the
internal organs, resulting in a 3-D absorbed dose distribution. The study
shows the comparison of results obtained by FOTELP software and the
volumetric modulated arc therapy technique. This planning technique with two
full arcs was applied, and the plan was created to destroy the diseased
tissue in the eye tumor bed and avoid damage to surrounding healthy tissue,
for one patient. The dose coverage, homogeneity index, conformity index of
the target, and the dose volumes of critical structures were calculated.
Good agreement of the results for absorbed dose in the human eye was
obtained using these two techniques.
Collapse
|
9
|
The status of medical physics in radiotherapy in China. Phys Med 2021; 85:147-157. [PMID: 34010803 DOI: 10.1016/j.ejmp.2021.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To present an overview of the status of medical physics in radiotherapy in China, including facilities and devices, occupation, education, research, etc. MATERIALS AND METHODS: The information about medical physics in clinics was obtained from the 9-th nationwide survey conducted by the China Society for Radiation Oncology in 2019. The data of medical physics in education and research was collected from the publications of the official and professional organizations. RESULTS By 2019, there were 1463 hospitals or institutes registered to practice radiotherapy and the number of accelerators per million population was 1.5. There were 4172 medical physicists working in clinics of radiation oncology. The ratio between the numbers of radiation oncologists and medical physicists is 3.51. Approximately, 95% of medical physicists have an undergraduate or graduate degrees in nuclear physics and biomedical engineering. 86% of medical physicists have certificates issued by the Chinese Society of Medical Physics. There has been a fast growth of publications by authors from mainland of China in the top international medical physics and radiotherapy journals since 2018. CONCLUSIONS Demand for medical physicists in radiotherapy increased quickly in the past decade. The distribution of radiotherapy facilities in China became more balanced. High quality continuing education and training programs for medical physicists are deficient in most areas. The role of medical physicists in the clinic has not been clearly defined and their contributions have not been fully recognized by the community.
Collapse
|
10
|
Dosimetric comparison of different radiotherapy techniques for the treatment of Retinoblastoma. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396920000990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Aim:
This study aims to compare the dosimetric parameters among four different external beam radiotherapy techniques used for the treatment of retinoblastoma.
Materials and methods:
Computed tomography (CT) sets of five retinoblastoma patients who required radiotherapy to one globe were included. Four different plans were generated for each patient using three dimensional conformal radiotherapy (3DCRT), intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and VMAT using flattening filter free (VMAT-FFF) beam techniques. Plans were compared for target coverage and organs at risk (OARs) sparing.
Results:
The target coverage of planning target volume (PTV) for all the four modalities were clinically acceptable with a V95 of 95 ± 0%, 97·6 ± 1·87%, 99·3 ± 0·5% and 99·17 ± 0·45% for 3DCRT, IMRT, VMAT and VMAT-FFF respectively. The VMAT and IMRT plans had better target coverage than the 3DCRT plans (p = 0·001 and p = 0·07 respectively). IMRT and VMAT plans were also found superior to 3DCRT plans in terms of OAR sparing like brainstem, optic chiasm, brain (p < 0·05). VMAT delivered significantly lower dose to the brainstem and contralateral optic nerve in comparison to IMRT. Use of VMAT-FFF beams did not show any benefit over VMAT in target coverage and OAR sparing.
Conclusion:
VMAT should be preferred over 3DCRT and IMRT for treatment of retinoblastoma owing to better target coverage and less dose to most of the OARs. However, IMRT and VMAT should be used with caution because of the increased low dose volumes to the OARs like contralateral lens and eyeball.
Collapse
|
11
|
Zhou Y, Xiang X, Xiong J, Gong C. Comprehensive Comparison of Progressive Optimization Algorithm Based Automatic Plan and Manually Planned Treatment Technique for Cervical-Thoracic Esophageal Cancers. Technol Cancer Res Treat 2020; 19:1533033820973283. [PMID: 33176589 PMCID: PMC7672719 DOI: 10.1177/1533033820973283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose: The purpose of the present study was first to apply the progressive optimization algorithm based automatic volumetric modulated arc therapy (POA-VMAT) technology to accelerate and improve the radiotherapy of cervicothoracic esophageal cancer (CTEC). We comprehensive analyze the feasibility, normal tissue complication probability (NTCP) and dosimetric results of POA-VMAT, manual based VMAT and step-shoot intensity-modulated radiation therapy (IMRT) plans in the treatment of CTEC. Methods: Sixty patients with CTEC with or without concomitant chemotherapy at our institution between 2017 and 2019 were retrospectively identified. The manual 7field-IMRT (7f-IMRT), Single-arc-VMAT and Double-arc-VMAT (Single-Arc/Double-Arc) plans were generated in all cases. The POA-VMAT was designed using the automatic dual-arc VMAT technology of Pinnacle3 9.10 planning system based on progressive optimization algorithm. Specially, it includes the selection of treatment techniques, the running of automated planning scripts, and the evaluation of the final radiotherapy regimen. Subsequently, quantitative evaluation of plans was performed by means of standard dose–volume histograms, homogeneity index (HI) and conformity index (CI). Results: Target dose conformity of the 7f-IMRT plan was inferior to all plans, whereas the Double-Arc plan was slightly inferior to the POA-VMAT but superior to the Single-Arc and 7f-IMRT plan. The HI for 7f-IMRT, Single-Arc, Double-Arc and POA-VMAT were 0.17 ± 0.08, 0.28 ± 0.06, 0.29 ± 0.06 and 0.28 ± 0.03, respectively. For the NTCP results, there was significant statistical difference among POA-VMAT, IMRT and VMAT plans. The total MU was reduced by 48.3% and 42.1% in Single-Arc and POA-VMAT plans compare to IMRT plans. Conclusions: By comprehensive consideration, POA-VMAT efficiently generate acceptable treatment plans for CTEC without dose escalation to OARs and overall superior to manual planning which is a good option for treating CTEC.
Collapse
Affiliation(s)
- Yongqiang Zhou
- Department of Radiation and Medical Oncology, 89657Wenzhou Medical University 1st Affiliated Hospital, Wenzhou, China
| | - Xiaojun Xiang
- Department of Oncology, 117970The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Xiong
- Department of Oncology, 117970The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Changfei Gong
- Department of Oncology, 117970The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Gong C, Shen M, Zheng X, Han C, Zhou Y, Xie C, Jin X. Precise delineation and tumor localization based on novel image registration strategy between optical coherence tomography and computed tomography in the radiotherapy of intraocular cancer. Phys Med Biol 2019; 64:125009. [PMID: 30844768 DOI: 10.1088/1361-6560/ab0ddf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiation-associated toxicities due to sophisticated ocular anatomy and shape variability of organs at risk (OARs) are major concerns during external beam radiation therapy (EBRT) of patients with intraocular cancer. A novel two-step image registration strategy between optical coherence tomography (OCT) and computed tomography (CT) images was proposed and validated to precisely localize the target in the EBRT of patients with intraocular cancer. Specifically, multiple features from OCT and CT images were extracted automatically, then spatial transformation based on thin-plate spline function was performed iteratively to achieve feature alignment between the CT and OCT images. Finally, an exclusive OR (XOR) algorithm was applied for precise 3D registration using a 3D-mesh model generated from OCT and CT volumes. The accuracy of the proposed novel registration strategy was validated and tested in a schematic-eye phantom with an artificially introduced tumor and in ten patients with confirmed primary and/or secondary intraocular cancer. There was an average registration error and computational time of 0.21 ± 0.05° and 259 ± 5 s, together with an average Dice similarity coefficient and Hausdorff distance of 88.4 ± 0.65 and 0.89 ± 0.09, respectively. The preliminary experimental results demonstrated that the proposed novel strategy to overcome current limitations on eye modeling and to localize precisely the tumor target during EBRT of intraocular cancer is promising.
Collapse
Affiliation(s)
- Changfei Gong
- Department of Radiation and Medical Oncology, Wenzhou Medical University 1st Affiliated Hospital, Wenzhou 325000, People's Republic of China. The authors contributed equally to this study
| | | | | | | | | | | | | |
Collapse
|