1
|
Calvo-Ortega JF, Laosa-Bello C, Moragues-Femenía S, Pozo-Massó M, Jones A. Experience with patient-specific quality assurance of dosimetrist-led online adaptive prostate SBRT. J Med Imaging Radiat Sci 2024; 55:101719. [PMID: 39084157 DOI: 10.1016/j.jmir.2024.101719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION The aim of this study was to assess the results of the local pre-treatment verifications of online adaptive prostate SBRT plans performed by dosimetrists METHODS AND MATERIALS: Prostate SBRT treatments are planned in our department using an online adaptive method developed and validated by our group. The adaptive plans were computed on the daily CBCT scan using the Acuros XB v. 16.1 algorithm of the Varian Eclipse treatment planning system. Adaptive plans consisted of a single VMAT with 6 MV flattening-filter-free (FFF) energy performed on a Varian TrueBeam linac. Pre-treatment verification of the adaptive "plan-of-the-day" (POD) created in each treatment session was performed using the Mobius 3D v. 3.1 secondary dose calculation program (M3D). Commissioning of M3D included the tuning of the dosimetric leaf gap correction (DLGc) parameter. Generic and specific DLGc values were then derived using a set of plans for typical sites (prostate, head and neck, brain, lung and bone palliative) and another set were determined for specific online SBRT PODs (gDLGc and sDLGc, respectively). The first 50 prostate patients treated with the PACE-B schedule (5 × 7.25 Gy) were included, i.e., 250 adaptive SBRT PODs were collected in this study. For each online adaptive POD, a global 3D gamma comparison between the Eclipse 3D dose and the M3D dose in the patient CBCT was performed. Gamma passing rates (GPRs) for the whole external patient contour (Body) and the PTV were recorded, using the 5 % global /3 mm criteria. The target mean dose and target coverage differences between the Eclipse and M3D doses were also analyzed (ΔDmean and ΔD90 %, respectively). The accuracy of M3D was assessed against PRIMO Monte Carlo software. Twenty-five online prostate SBRT PODs were randomly selected from the set of 250 adaptive plans and simulated with PRIMO. RESULTS Values of -1 mm and -0.14 mm were found as optimal gDLGc and sDLGc, respectively. Over the 250 online adaptive PODs, excellent GPR values ∼ 100 % were obtained for the Body and PTV structures, regardless the type of DLGc used. The use of the sDLGc instead of the gDLGc provided better results for ΔDmean (0.1 % ± 0.5% vs. -1.9 ± 0.7 %) and ΔD90 % (-1.0 % ± 0.5 %. vs. -3.5 % ± 0.8 %). This issue was also observed when M3D calculations were compared to PRIMO simulations. CONCLUSIONS M3D can be effectively used for independent pre-treatment verifications of online adaptive prostate SBRT plans. The use of a specific DLGc value is advised for this SBRT online adaptive technique.
Collapse
Affiliation(s)
- Juan-Francisco Calvo-Ortega
- Hospital Quirónsalud Barcelona. Servicio de Oncología Radioterápica, Plaza Alfonso Comín 5, 08023 Barcelona, Spain; Hospital Quirónsalud Málaga. Servicio de Oncología Radioterápica, Calle Pilar Lorengar 1, 29004 Málaga, Spain.
| | - Coral Laosa-Bello
- Hospital Quirónsalud Barcelona. Servicio de Oncología Radioterápica, Plaza Alfonso Comín 5, 08023 Barcelona, Spain
| | - Sandra Moragues-Femenía
- Hospital Quirónsalud Barcelona. Servicio de Oncología Radioterápica, Plaza Alfonso Comín 5, 08023 Barcelona, Spain
| | - Miguel Pozo-Massó
- Hospital Quirónsalud Barcelona. Servicio de Oncología Radioterápica, Plaza Alfonso Comín 5, 08023 Barcelona, Spain
| | - Adam Jones
- Hospital Quirónsalud Barcelona. Servicio de Oncología Radioterápica, Plaza Alfonso Comín 5, 08023 Barcelona, Spain; Hospital Quirónsalud Barcelona. Servicio de Radiofísica y Protección Radiológica. Plaza Alfonso Comín 5, 08023 Barcelona, Spain
| |
Collapse
|
2
|
Sánchez‐Artuñedo D, Pié‐Padró S, Hermida‐López M, Duch‐Guillén MA, Beltran‐Vilagrasa M. Validation of an in vivo transit dosimetry algorithm using Monte Carlo simulations and ionization chamber measurements. J Appl Clin Med Phys 2024; 25:e14187. [PMID: 37890864 PMCID: PMC10860462 DOI: 10.1002/acm2.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE Transit dosimetry is a safety tool based on the transit images acquired during treatment. Forward-projection transit dosimetry software, as PerFRACTION, compares the transit images acquired with an expected image calculated from the DICOM plan, the CT, and the structure set. This work aims to validate PerFRACTION expected transit dose using PRIMO Monte Carlo simulations and ionization chamber measurements, and propose a methodology based on MPPG5a report. METHODS The validation process was divided into three groups of tests according to MPPG5a: basic dose validation, IMRT dose validation, and heterogeneity correction validation. For the basic dose validation, the fields used were the nine fields needed to calibrate PerFRACTION and three jaws-defined. For the IMRT dose validation, seven sweeping gaps fields, the MLC transmission and 29 IMRT fields from 10 breast treatment plans were measured. For the heterogeneity validation, the transit dose of these fields was studied using three phantoms: 10 , 30 , and a 3 cm cork slab placed between 10 cm of solid water. The PerFRACTION expected doses were compared with PRIMO Monte Carlo simulation results and ionization chamber measurements. RESULTS Using the 10 cm solid water phantom, for the basic validation fields, the root mean square (RMS) of the difference between PerFRACTION and PRIMO simulations was 0.6%. In the IMRT fields, the RMS of the difference was 1.2%. When comparing respect ionization chamber measurements, the RMS of the difference was 1.0% both for the basic and the IMRT validation. The average passing rate with a γ(2%/2 mm, TH = 20%) criterion between PRIMO dose distribution and PerFRACTION expected dose was 96.0% ± 5.8%. CONCLUSION We validated PerFRACTION calculated transit dose with PRIMO Monte Carlo and ionization chamber measurements adapting the methodology of the MMPG5a report. The methodology presented can be applied to validate other forward-projection transit dosimetry software.
Collapse
Affiliation(s)
- David Sánchez‐Artuñedo
- Servei de Física i Protecció RadiològicaHospital Universitari Vall d'HebronBarcelonaSpain
| | - Savannah Pié‐Padró
- Servei de Física i Protecció RadiològicaHospital Universitari Vall d'HebronBarcelonaSpain
| | | | | | | |
Collapse
|
3
|
Rezzoug M, Zerfaoui M, Oulhouq Y, Rrhioua A. Using PRIMO to determine the initial beam parameters of Elekta Synergy linac for electron beam energies of 6, 9, 12, and 15 MeV. Rep Pract Oncol Radiother 2023; 28:592-600. [PMID: 38179294 PMCID: PMC10764041 DOI: 10.5603/rpor.96865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/28/2023] [Indexed: 01/06/2024] Open
Abstract
Background The purpose of this research was to establish the primary electron beam characteristics for an Elekta Synergy linear accelerator. In this task, we take advantage of the PRIMO Monte Carlo software, where the model developed contains the majority of the component materials of the Linac. Materials and methods For all energies, the Elekta Linac electron mode and 14 × 14 cm2 applicator were chosen. To obtain percentage depth dose (PDD) curves, a homogeneous water phantom was voxelized in a 1 × 1 × 0.1 cm3 grid along the central axis. At the reference depth, the dose profile was recorded in 0.1 × 1 × 1 cm3 voxels. Iterative changes were made to the initial beams mean energy and full width at half maximum (FWHM) of energy in order to keep the conformity of the simulated and measured dose curves within. To confirm simulation results, the Gamma analysis was performed with acceptance criteria of 2 mm - 2%. From the validated calculation, the parameters of the PDD and profile curve (R100, R50, Rp, and field size) were collected. Results Initial mean energies of 7.3, 9.85, 12.9, and 15.7 MeV were obtained for nominal energies of 6, 9, 12, and 15, respectively. The PRIMO Monte Carlo model for Elekta Synergy was precisely validated. Conclusions PRIMO is an easy-to-use software program that can calculate dose distribution in water phantoms.
Collapse
Affiliation(s)
- Mohammed Rezzoug
- LPMR, Mohammed First University, Faculty of Science, Oujda-Angad, Morocco
| | - Mustapha Zerfaoui
- LPMR, Mohammed First University, Faculty of Science, Oujda-Angad, Morocco
| | - Yassine Oulhouq
- LPMR, Mohammed First University, Faculty of Science, Oujda-Angad, Morocco
| | - Abdeslem Rrhioua
- LPMR, Mohammed First University, Faculty of Science, Oujda-Angad, Morocco
| |
Collapse
|
4
|
Calvo-Ortega JF, Hermida-López M. PRIMO Monte Carlo software as a tool for commissioning of an external beam radiotherapy treatment planning system. Rep Pract Oncol Radiother 2023; 28:529-540. [PMID: 37795225 PMCID: PMC10547427 DOI: 10.5603/rpor.a2023.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/24/2023] [Indexed: 10/06/2023] Open
Abstract
Background The purpose was to validate the PRIMO Monte Carlo software to be used during the commissioning of a treatment planning system (TPS). Materials and methods The Acuros XB v. 16.1 algorithm of the Eclipse was configured for 6 MV and 6 MV flattening-filter-free (FFF) photon beams, from a TrueBeam linac equipped with a high-definition 120-leaf multileaf collimator (MLC). PRIMO v. 0.3.64.1814 software was used with the phase space files provided by Varian and benchmarked against the reference dosimetry dataset published by the Imaging and Radiation Oncology Core-Houston (IROC-H). Thirty Eclipse clinical intensity-modulated radiation therapy (IMRT)/volumetric modulated arc therapy (VMAT) plans were verified in three ways: 1) using the PTW Octavius 4D (O4D) system; 2) the Varian Portal Dosimetry system and 3) the PRIMO software. Clinical validation of PRIMO was completed by comparing the simulated dose distributions on the O4D phantom against dose measurements for these 30 clinical plans. Agreement evaluations were performed using a 3% global/2 mm gamma index analysis. Results PRIMO simulations agreed with the benchmark IROC-H data within 2.0% for both energies. Gamma passing rates (GPRs) from the 30 clinical plan verifications were (6 MV/6MV FFF): 99.4% ± 0.5%/99.9% ± 0.1%, 99.8% ± 0.4%/98.9% ± 1.4%, 99.7% ± 0.4%/99.7% ± 0.4%, for the 1), 2) and 3) verification methods, respectively. Agreement between PRIMO simulations on the O4D phantom and 3D dose measurements resulted in GPRs of 97.9% ± 2.4%/99.7% ± 0.4%. Conclusion The PRIMO software is a valuable tool for dosimetric verification of clinical plans during the commissioning of the primary TPS.
Collapse
Affiliation(s)
- Juan-Francisco Calvo-Ortega
- Oncología Radioterápica, Hospital Quirónsalud Barcelona, Barcelona, Spain
- Oncología Radioterápica, Hospital Quirónsalud Málaga, Malaga, Spain
| | - Marcelino Hermida-López
- Servei de Física i Protecció Radiològica, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
5
|
Li Y, Sun X, Liang Y, Hu Y, Liu C. Monte Carlo simulation of linac using PRIMO. Radiat Oncol 2022; 17:185. [PMID: 36384637 PMCID: PMC9667592 DOI: 10.1186/s13014-022-02149-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Background Monte Carlo simulation is considered as the most accurate method for dose calculation in radiotherapy. PRIMO is a Monte-Carlo program with a user-friendly graphical interface. Material and method A VitalBeam with 6MV and 6MV flattening filter free (FFF), equipped with the 120 Millennium multileaf collimator was simulated by PRIMO. We adjusted initial energy, energy full width at half maximum (FWHM), focal spot FWHM, and beam divergence to match the measurements. The water tank and ion-chamber were used in the measurement. Percentage depth dose (PDD) and off axis ratio (OAR) were evaluated with gamma passing rates (GPRs) implemented in PRIMO. PDDs were matched at different widths of standard square fields. OARs were matched at five depths. Transmission factor and dose leaf gap (DLG) were simulated. DLG was measured by electronic portal imaging device using a sweeping gap method. Result For the criterion of 2%/2 mm, 1%/2 mm and 1%/1 mm, the GPRs of 6MV PDD were 99.33–100%, 99–100%, and 99–100%, respectively; the GPRs of 6MV FFF PDD were 99.33–100%, 98.99–99.66%, and 97.64–98.99%, respectively; the GPRs of 6MV OAR were 96.4–100%, 90.99–100%, and 85.12–98.62%, respectively; the GPRs of 6MV FFF OAR were 95.15–100%, 89.32–100%, and 87.02–99.74%, respectively. The calculated DLG matched well with the measurement (6MV: 1.36 mm vs. 1.41 mm; 6MV FFF: 1.07 mm vs. 1.03 mm, simulation vs measurement). The transmission factors were similar (6MV: 1.25% vs. 1.32%; 6MV FFF: 0.8% vs. 1.12%, simulation vs measurement). Conclusion The calculated PDD, OAR, DLG and transmission factor were all in good agreement with measurements. PRIMO is an independent (with respect to analytical dose calculation algorithm) and accurate Monte Carlo tool. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-022-02149-5.
Collapse
|
6
|
Mahur M, Singh M, Gurjar OP, Semwal MK. Assessment of Surface and Build-up Doses for a 6 MV Photon Beam using Parallel Plate Chamber, EBT3 Gafchromic Films, and PRIMO Monte Carlo Simulation Code. J Biomed Phys Eng 2022; 12:455-464. [PMID: 36313413 PMCID: PMC9589075 DOI: 10.31661/jbpe.v0i0.2101-1274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/25/2021] [Indexed: 11/06/2022]
Abstract
Background: Accurate assessment of surface and build-up doses has a key role in radiotherapy, especially for the superficial lesions with uncertainties involved while performing measurements in the build-up region. Objective: This study aimed to assess surface and build-up doses for 6 MV photon beam from linear accelerator using parallel plate ionization chamber, EBT3 Gafchromic films, and PRIMO Monte Carlo (MC) simulation code. Material and Methods: In this experimental study, parallel plate chamber (PPC05) and EBT3 Gafchromic films were used to measure doses in a build-up region for 6 MV beam from the linear accelerator for different field sizes at various depths ranging from 0 to 2 cm from the surface with 100 cm source to surface distance (SSD) in a solid water phantom. Measured results were compared with Monte Carlo simulated results using PENELOPE-based PRIMO simulation code for the same setup conditions. Effect of gantry angle incidence and SSD were also analyzed for depth doses at the surface and build-up regions using PPC05 ion chamber and EBT3 Gafchromic films. Results: Doses measured at the surface were 14.78%, 19.87%, 25.83%, and 31.54% for field sizes of 5×5, 10×10, 15×15, and 20×20 cm2, respectively for a 6 MV photon beam with a parallel plate chamber and 14.20%, 19.14%, 25.149%, and 30.90%, respectively for EBT3 Gafchromic films. Both measurement sets were in good agreement with corresponding simulated results from the PRIMO MC simulation code; doses increase with the increase in field sizes. Conclusion: Good agreement was observed between the measured depth doses using parallel plate ionization chamber, EBT3 Gafchromic films, and the simulated depth doses using PRIMO Monte Carlo simulation code.
Collapse
Affiliation(s)
- Mamta Mahur
- MSc, Department of Radiation Oncology, Delhi State Cancer Institute, Dilshad Garden, Delhi, India
- MSc, Department of Physics, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Munendra Singh
- PhD, Department of Physics, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Om Prakash Gurjar
- PhD, Government Cancer Hospital, Mahatma Gandhi Memorial Medical College, Indore-452001, India
| | - Manoj Kumar Semwal
- PhD, Department of Radiation Oncology, Army Hospital (Research & Referral), Delhi Cantonment New Delhi-110010, India
| |
Collapse
|
7
|
De Saint-Hubert M, Suesselbeck F, Vasi F, Stuckmann F, Rodriguez M, Dabin J, Timmermann B, Thierry-Chef I, Schneider U, Brualla L. Experimental Validation of an Analytical Program and a Monte Carlo Simulation for the Computation of the Far Out-of-Field Dose in External Beam Photon Therapy Applied to Pediatric Patients. Front Oncol 2022; 12:882506. [PMID: 35875147 PMCID: PMC9300838 DOI: 10.3389/fonc.2022.882506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe out-of-the-field absorbed dose affects the probability of primary second radiation-induced cancers. This is particularly relevant in the case of pediatric treatments. There are currently no methods employed in the clinical routine for the computation of dose distributions from stray radiation in radiotherapy. To overcome this limitation in the framework of conventional teletherapy with photon beams, two computational tools have been developed—one based on an analytical approach and another depending on a fast Monte Carlo algorithm. The purpose of this work is to evaluate the accuracy of these approaches by comparison with experimental data obtained from anthropomorphic phantom irradiations.Materials and MethodsAn anthropomorphic phantom representing a 5-year-old child (ATOM, CIRS) was irradiated considering a brain tumor using a Varian TrueBeam linac. Two treatments for the same planned target volume (PTV) were considered, namely, intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). In all cases, the irradiation was conducted with a 6-MV energy beam using the flattening filter for a prescribed dose of 3.6 Gy to the PTV. The phantom had natLiF : Mg, Cu, P (MCP-N) thermoluminescent dosimeters (TLDs) in its 180 holes. The uncertainty of the experimental data was around 20%, which was mostly attributed to the MCP-N energy dependence. To calculate the out-of-field dose, an analytical algorithm was implemented to be run from a Varian Eclipse TPS. This algorithm considers that all anatomical structures are filled with water, with the exception of the lungs which are made of air. The fast Monte Carlo code dose planning method was also used for computing the out-of-field dose. It was executed from the dose verification system PRIMO using a phase-space file containing 3x109 histories, reaching an average standard statistical uncertainty of less than 0.2% (coverage factor k = 1 ) on all voxels scoring more than 50% of the maximum dose. The standard statistical uncertainty of out-of-field voxels in the Monte Carlo simulation did not exceed 5%. For the Monte Carlo simulation the actual chemical composition of the materials used in ATOM, as provided by the manufacturer, was employed.ResultsIn the out-of-the-field region, the absorbed dose was on average four orders of magnitude lower than the dose at the PTV. For the two modalities employed, the discrepancy between the central values of the TLDs located in the out-of-the-field region and the corresponding positions in the analytic model were in general less than 40%. The discrepancy in the lung doses was more pronounced for IMRT. The same comparison between the experimental and the Monte Carlo data yielded differences which are, in general, smaller than 20%. It was observed that the VMAT irradiation produces the smallest out-of-the-field dose when compared to IMRT.ConclusionsThe proposed computational methods for the routine calculation of the out-of-the-field dose produce results that are similar, in most cases, with the experimental data. It has been experimentally found that the VMAT irradiation produces the smallest out-of-the-field dose when compared to IMRT for a given PTV.
Collapse
Affiliation(s)
- Marijke De Saint-Hubert
- Research in Dosimetric Applications, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Finja Suesselbeck
- Westdeutsches Protonentherapiezentrum Essen (WPE), Essen, Germany
- Faculty of Mathematics and Science Institute of Physics and Medical Physics, Heinrich-Heine University, Düsseldorf, Germany
| | - Fabiano Vasi
- Physik Institut, Universität Zürich, Zürich, Switzerland
| | - Florian Stuckmann
- Westdeutsches Protonentherapiezentrum Essen (WPE), Essen, Germany
- Klinikum Fulda GAG, Universitätsmedizin Marburg, Fulda, Germany
| | - Miguel Rodriguez
- Hospital Paitilla, Panama City, Panama
- Instituto de Investigaciones Cient´ıficas y de Alta Tecnología INDICASAT-AIP, Panama City, Panama
| | - Jérémie Dabin
- Research in Dosimetric Applications, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Beate Timmermann
- Westdeutsches Protonentherapiezentrum Essen (WPE), Essen, Germany
- Medizinische Fakultät, Universität Duisbug-Essen, Essen, Germany
- West German Cancer Center (WTZ), Essen, Germany
- Department of Particle Therapy, University Hospital Essen, Essen, Germany
- Radiation Oncology and Imaging, German Cancer Consortium DKTK, Heidelberg, Germany
| | - Isabelle Thierry-Chef
- Radiation Programme, Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Uwe Schneider
- Physik Institut, Universität Zürich, Zürich, Switzerland
| | - Lorenzo Brualla
- Westdeutsches Protonentherapiezentrum Essen (WPE), Essen, Germany
- Medizinische Fakultät, Universität Duisbug-Essen, Essen, Germany
- West German Cancer Center (WTZ), Essen, Germany
- *Correspondence: Lorenzo Brualla,
| |
Collapse
|
8
|
Huang Z, Qiao J, Yang C, Liu M, Wang J, Han X, Hu W. Quality Assurance for Small-Field VMAT SRS and Conventional-Field IMRT Using the Exradin W1 Scintillator. Technol Cancer Res Treat 2021; 20:15330338211036542. [PMID: 34328800 PMCID: PMC8327019 DOI: 10.1177/15330338211036542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Plastic scintillator detector (PSD) Exradin W1 has shown promising performance in small field dosimetry due to its water equivalence and small sensitive volume. However, few studies reported its capability in measuring fields of conventional sizes. Therefore, the purpose of this study is to assess the performance of W1 in measuring point dose of both conventional IMRT plans and VMAT SRS plans. METHODS Forty-seven clinical plans (including 29 IMRT plans and 18 VMAT SRS plans with PTV volume less than 8 cm3) from our hospital were included in this study. W1 and Farmer-Type ionization chamber Exradin A19 were used in measuring IMRT plans, and W1 and microchamber Exradin A16 were used in measuring SRS plans. The agreement between the results of different types of detectors and TPS was evaluated. RESULTS For IMRT plans, the average differences between measurements and TPS in high-dose regions were 0.27% ± 1.66% and 0.90% ± 1.78% (P = 0.056), and were -0.76% ± 1.47% and 0.37% ± 1.34% in low-dose regions (P = 0.000), for W1 and A19, respectively. For VMAT SRS plans, the average differences between measurements and TPS were -0.19% ± 0.96% and -0.59% ± 1.49% for W1 and A16 with no statistical difference (P = 0.231). CONCLUSION W1 showed comparable performance with application-dedicated detectors in point dose measurements for both conventional IMRT and VMAT SRS techniques. It is a potential one-stop solution for general radiotherapy platforms that deliver both IMRT and SRS plans.
Collapse
Affiliation(s)
- Zike Huang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Qiao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cui Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiazhou Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xu Han
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weigang Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Calvo‐Ortega J, Greer PB, Hermida‐López M, Moragues‐Femenía S, Laosa‐Bello C, Casals‐Farran J. Validation of virtual water phantom software for pre-treatment verification of single-isocenter multiple-target stereotactic radiosurgery. J Appl Clin Med Phys 2021; 22:241-252. [PMID: 34028955 PMCID: PMC8200437 DOI: 10.1002/acm2.13269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 02/05/2021] [Accepted: 04/13/2021] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to benchmark the accuracy of the VIrtual Phantom Epid dose Reconstruction (VIPER) software for pre-treatment dosimetric verification of multiple-target stereotactic radiosurgery (SRS). VIPER is an EPID-based method to reconstruct a 3D dose distribution in a virtual phantom from in-air portal images. Validation of the VIPER dose calculation was assessed using several MLC-defined fields for a 6 MV photon beam. Central axis percent depth doses (PDDs) and output factors were measured with an ionization chamber in a water tank, while dose planes at a depth of 10 cm in a solid flat phantom were acquired with radiochromic films. The accuracy of VIPER for multiple-target SRS plan verification was benchmarked against Monte Carlo simulations. Eighteen multiple-target SRS plans designed with the Eclipse treatment planning system were mapped to a cylindrical water phantom. For each plan, the 3D dose distribution reconstructed by VIPER within the phantom was compared with the Monte Carlo simulation, using a 3D gamma analysis. Dose differences (VIPER vs. measurements) generally within 2% were found for the MLC-defined fields, while film dosimetry revealed gamma passing rates (GPRs) ≥95% for a 3%/1 mm criteria. For the 18 multiple-target SRS plans, average 3D GPRs greater than 93% and 98% for the 3%/2 mm and 5%/2 mm criteria, respectively. Our results validate the use of VIPER as a dosimetric verification tool for pre-treatment QA of single-isocenter multiple-target SRS plans. The method requires no setup time on the linac and results in an accurate 3D characterization of the delivered dose.
Collapse
Affiliation(s)
- Juan‐Francisco Calvo‐Ortega
- Servicio de Oncología RadioterápicaHospital QuirónsaludBarcelonaSpain
- Servicio de Oncología RadioterápicaHospital Universitari DexeusBarcelonaSpain
| | - Peter B. Greer
- Department of Radiation OncologyCalvary Mater Newcastle HospitalNewcastleNSW2298Australia
- School of Mathematical and Physical SciencesUniversity of NewcastleNewcastleNSW2300Australia
| | | | - Sandra Moragues‐Femenía
- Servicio de Oncología RadioterápicaHospital QuirónsaludBarcelonaSpain
- Servicio de Oncología RadioterápicaHospital Universitari DexeusBarcelonaSpain
| | - Coral Laosa‐Bello
- Servicio de Oncología RadioterápicaHospital QuirónsaludBarcelonaSpain
- Servicio de Oncología RadioterápicaHospital Universitari DexeusBarcelonaSpain
| | - Joan Casals‐Farran
- Servicio de Oncología RadioterápicaHospital QuirónsaludBarcelonaSpain
- Servicio de Oncología RadioterápicaHospital Universitari DexeusBarcelonaSpain
| |
Collapse
|
10
|
Hermida-López M, Sánchez-Artuñedo D, Rodríguez M, Brualla L. Monte Carlo simulation of conical collimators for stereotactic radiosurgery with a 6 MV flattening-filter-free photon beam. Med Phys 2021; 48:3160-3171. [PMID: 33715167 DOI: 10.1002/mp.14837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Conical collimators, or cones, are tertiary collimators that attach to a radiotherapy linac and are suited for the stereotactic radiosurgery treatment of small brain lesions. The small diameter of the most used cones makes difficult the acquisition of the dosimetry data needed for the commissioning of treatment planning systems. Although many publications report dosimetric data of conical collimators for stereotactic radiosurgery, most of the works use different setups, which complicates comparisons. In other cases, the cone output factors reported do not take into account the effect of the small cone diameter on the detector response. Finally, few data exist on the dosimetry of cones with flattening-filter-free (FFF) beams from modern linac models. This work aims at obtaining a dosimetric characterization of the conical collimators manufactured by Brainlab AG (Munich, Germany) in a 6 MV FFF beam from a TrueBeam STx linac (Varian Medical Systems). METHODS Percentage depth dose curves, lateral dose profiles and cone output factors were obtained using Monte Carlo simulations for the cones with diameters of 4, 5, 6, 7.5, 8, 10, 12.5, 15, 17.5, 20, 25, and 30 mm. The simulation of the linac head was carried out with the PRIMO Monte Carlo software, and the simulations of the cones and the water phantom were run with the general-purpose Monte Carlo code PENELOPE. The Monte Carlo model was validated by comparing the simulation results with measurements performed for the cones of 4, 5, and 7.5 mm of diameter using a stereotactic field diode, a microDiamond detector and EBT3 radiochromic film. In addition, for those cones, simulations and measurements were done for comparison purposes, by reproducing the experimental setups from the available publications. RESULTS The experimental data acquired for the cones of 4, 5, and 7.5 mm validated the developed Monte Carlo model. The simulations accurately reproduced the experimental depths of maximum dose and the dose ratio at 20- and 10-cm depth (PDD20/10 ). A good agreement was obtained between simulated and experimental lateral dose profiles: The differences in the full-width at half-maximum were smaller than 0.2 mm, and the differences in the penumbra 80%-20% were smaller than 0.25 mm. The difference between the simulated and the average of the experimental output factors for the cones of 4, 5, and 7.5 mm of diameter was 0.0%, 0.0%, and 3.0%, respectively, well within the statistical uncertainty of the simulations (4.4% with coverage factor k = 2). It was also found that the simulated cone output factors agreed within 2% with the average of output factors reported in the literature for a variety of setup conditions, detectors, beam qualities, and cone manufacturers. CONCLUSION A Monte Carlo model of cones for stereotactic radiosurgery has been developed and validated. The cone dosimetry dataset obtained in this work, consisting of percentage depth doses, lateral dose profiles and output factors, is useful to benchmark data acquired for the commissioning of cone-based radiosurgery treatment planning systems.
Collapse
Affiliation(s)
- Marcelino Hermida-López
- Servei de Física i Protecció Radiològica, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - David Sánchez-Artuñedo
- Servei de Física i Protecció Radiològica, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - Miguel Rodríguez
- Centro Médico Paitilla, Calle 53 y ave. Balboa, Panama City, Panama.,Instituto de Investigaciones Científicas y de Alta Tecnología, INDICASAT-AIP, City of Knowledge, Building 219, Panama City, Panama
| | - Lorenzo Brualla
- West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen, 45147, Germany.,West German Cancer Centre (WTZ), Hufelandstr. 55, Essen, 45147, Germany.,Faculty of Medicine, University of Duisburg-Essen, Hufelandstr. 55, Essen, 45147, Germany
| |
Collapse
|
11
|
Öllers MC, Swinnen ACC, Verhaegen F. Acuros
®
dose verification of ultrasmall lung lesions with EBT‐XD film in a homogeneous and heterogeneous anthropomorphic phantom setup. Med Phys 2020; 47:5829-5837. [DOI: 10.1002/mp.14485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 02/01/2023] Open
Affiliation(s)
- Michel C. Öllers
- Department of Radiation Oncology (Maastro) GROW School for Oncology Maastricht University Medical Centre+ Maastricht The Netherlands
| | - Ans C. C. Swinnen
- Department of Radiation Oncology (Maastro) GROW School for Oncology Maastricht University Medical Centre+ Maastricht The Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro) GROW School for Oncology Maastricht University Medical Centre+ Maastricht The Netherlands
| |
Collapse
|
12
|
Paganini L, Reggiori G, Stravato A, Palumbo V, Mancosu P, Lobefalo F, Gaudino A, Fogliata A, Scorsetti M, Tomatis S. MLC parameters from static fields to VMAT plans: an evaluation in a RT-dedicated MC environment (PRIMO). Radiat Oncol 2019; 14:216. [PMID: 31791355 PMCID: PMC6889207 DOI: 10.1186/s13014-019-1421-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/15/2019] [Indexed: 11/10/2022] Open
Abstract
Background PRIMO is a graphical environment based on PENELOPE Monte Carlo (MC) simulation of radiotherapy beams able to compute dose distribution in patients, from plans with different techniques. The dosimetric characteristics of an HD-120 MLC (Varian), simulated using PRIMO, were here compared with measurements, and also with Acuros calculations (in the Eclipse treatment planning system, Varian). Materials and methods A 10 MV FFF beam from a Varian EDGE linac equipped with the HD-120 MLC was used for this work. Initially, the linac head was simulated inside PRIMO, and validated against measurements in a water phantom. Then, a series of different MLC patterns were established to assess the MLC dosimetric characteristics. Those tests included: i) static fields: output factors from MLC shaped fields (2 × 2 to 10 × 10 cm2), alternate open and closed leaf pattern, MLC transmitted dose; ii) dynamic fields: dosimetric leaf gap (DLG) evaluated with sweeping gaps, tongue and groove (TG) effect assessed with profiles across alternate open and closed leaves moving across the field. The doses in the different tests were simulated in PRIMO and then compared with EBT3 film measurements in solid water phantom, as well as with Acuros calculations. Finally, MC in PRIMO and Acuros were compared in some clinical cases, summarizing the clinical complexity in view of a possible use of PRIMO as an independent dose calculation check. Results Static output factor MLC tests showed an agreement between MC calculated and measured OF of 0.5%. The dynamic tests presented DLG values of 0.033 ± 0.003 cm and 0.032 ± 0.006 cm for MC and measurements, respectively. Regarding the TG tests, a general agreement between the dose distributions of 1–2% was achieved, except for the extreme patterns (very small gaps/field sizes and high TG effect) were the agreement was about 4–5%. The analysis of the clinical cases, the Gamma agreement between MC in PRIMO and Acuros dose calculation in Eclipse was of 99.5 ± 0.2% for 3%/2 mm criteria of dose difference/distance to agreement. Conclusions MC simulations in the PRIMO environment were in agreement with measurements for the HD-120 MLC in a 10 MV FFF beam from a Varian EDGE linac. This result allowed to consistently compare clinical cases, showing the possible use of PRIMO as an independent dose calculation check tool.
Collapse
Affiliation(s)
- Lucia Paganini
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Giacomo Reggiori
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy.
| | - Antonella Stravato
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Valentina Palumbo
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Pietro Mancosu
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Francesca Lobefalo
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Anna Gaudino
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Antonella Fogliata
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, (Milan), Italy
| | - Stefano Tomatis
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| |
Collapse
|