1
|
Azarkin M, Kirakosyan M, Ryabov V. Microdosimetric Simulation of Gold-Nanoparticle-Enhanced Radiotherapy. Int J Mol Sci 2024; 25:9525. [PMID: 39273472 PMCID: PMC11395083 DOI: 10.3390/ijms25179525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Conventional X-ray therapy (XRT) is commonly applied to suppress cancerous tumors; however, it often inflicts collateral damage to nearby healthy tissue. In order to provide a better conformity of the dose distribution in the irradiated tumor, proton therapy (PT) is increasingly being used to treat solid tumors. Furthermore, radiosensitization with gold nanoparticles (GNPs) has been extensively studied to increase the therapeutic ratio. The mechanism of radiosensitization is assumed to be connected to an enhancement of the absorbed dose due to huge photoelectric cross-sections with gold. Nevertheless, numerous theoretical studies, mostly based on Monte Carlo (MC) simulations, did not provide a consistent and thorough picture of dose enhancement and, therefore, the radiosensitization effect. Radiosensitization by nanoparticles in PT is even less studied than in XRT. Therefore, we investigate the physics picture of GNP-enhanced RT using an MC simulation with Geant4 equipped with the most recent physics models, taking into account a wide range of physics processes relevant for realistic PT and XRT. Namely, we measured dose enhancement factors in the vicinity of GNP, with diameters ranging from 10 nm to 80 nm. The dose enhancement in the vicinity of GNP reaches high values for XRT, while it is very modest for PT. The macroscopic dose enhancement factors for realistic therapeutic GNP concentrations are rather low for all RT scenarios; therefore, other physico-chemical and biological mechanisms should be additionally invoked for an explanation of the radiosensitization effect observed in many experiments.
Collapse
Affiliation(s)
- Maxim Azarkin
- P.N. Lebedev Physical Institute, 119991 Moscow, Russia
| | | | | |
Collapse
|
2
|
Jung KH, Han DH, Lee KY, Kim JO, Ahn WS, Baek CH. Evaluating the performance of thermoplastic 3D bolus used in radiation therapy. Appl Radiat Isot 2024; 209:111329. [PMID: 38701594 DOI: 10.1016/j.apradiso.2024.111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/05/2024] [Accepted: 04/20/2024] [Indexed: 05/05/2024]
Abstract
A 3D-printed bolus is being developed to deliver accurate doses to superficial cancers. In this study, flexible thermoplastic filaments, specifically PLA, TPU, PETG, and HIPS, were fabricated into boluses and then compared to commercial bolus for the variation of the dose elevation region of photon beams. The experimental results indicate that the maximum dose depth is similar, and the consistent trend of the percentage depth dose confirms the potential usage as a build-up bolus.
Collapse
Affiliation(s)
- Kyung Hwan Jung
- Department of Health Medical Science, Kangwon National University, South Korea
| | - Dong Hee Han
- Department of Health Medical Science, Kangwon National University, South Korea
| | - Ki Yoon Lee
- Department of Health Medical Science, Kangwon National University, South Korea
| | - Jang Oh Kim
- Department of Radiological Science, Kangwon National University, South Korea
| | - Woo Sang Ahn
- Department of Radiation Oncology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
| | - Cheol Ha Baek
- Department of Radiological Science, Kangwon National University, South Korea.
| |
Collapse
|
3
|
De Saint-Hubert M, Caprioli M, de Freitas Nascimento L, Delombaerde L, Himschoot K, Vandenbroucke D, Leblans P, Crijns W. New optically stimulated luminescence dosimetry film optimized for energy dependence guided by Monte Carlo simulations. Phys Med Biol 2024; 69:075005. [PMID: 38394683 DOI: 10.1088/1361-6560/ad2ca2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/23/2024] [Indexed: 02/25/2024]
Abstract
Optically stimulated luminescence (OSL) film dosimeters, based on BaFBr:Eu2+phosphor material, have major dosimetric advantages such as dose linearity, high spatial resolution, film re-usability, and immediate film readout. However, they exhibit an energy-dependent over-response at low photon energies because they are not made of tissue-equivalent materials. In this work, the OSL energy-dependent response was optimized by lowering the phosphor grain size and seeking an optimal choice of phosphor concentration and film thickness to achieve sufficient signal sensitivity. This optimization process combines measurement-based assessments of energy response in narrow x-ray beams with various energy response calculation methods applied to different film metrics. Theoretical approaches and MC dose simulations were used for homogeneous phosphor distributions and for isolated phosphor grains of different dimensions, where the dose in the phosphor grain was calculated. In total 8 OSL films were manufactured with different BaFBr:Eu2+median particle diameters (D50): 3.2μm, 1.5μm and 230 nm and different phosphor concentrations (1.6%, 5.3% and 21.3 %) and thicknesses (from 5.2 to 49μm). Films were irradiated in narrow x-ray spectra (N60, N80, N-150 and N-300) and the signal intensity relative to the nominal dose-to-water value was normalized to Co-60. Finally, we experimentally tested the response of several films in Varian 6MV TrueBeam STx linear accelerator using the following settings: 10 × 10 cm2field, 0deggantry angle, 90 cm SSD, 10 cm depth. The x-ray irradiation experiment reported a reduced energy response for the smallest grain size with an inverse correlation between response and grain size. The N-60 irradiation showed a 43% reduction in the energy over-response when going from 3μm to 230 nm grain size for the 5% phosphor concentration. Energy response calculation using a homogeneous dispersion of the phosphor underestimated the experimental response and was not able to obtain the experimental correlation between grain size and energy response. Isolated grain size modeling combined with MC dose simulations allowed to establish a good agreement with experimental data, and enabled steering the production of optimized OSL-films. The clinical 6 MV beam test confirmed a reduction in energy dependence, which is visible in small-grain films where a decrease in out-of-field over-response was observed.
Collapse
Affiliation(s)
| | - Marco Caprioli
- Department of Oncology, KU Leuven, Herestraat 49, Leuven, Belgium
| | | | - Laurence Delombaerde
- Department of Oncology, KU Leuven, Herestraat 49, Leuven, Belgium
- Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Katleen Himschoot
- Corporate Innovation Office, Agfa N.V., Septestraat 27, Mortsel, B-2640, Belgium
| | - Dirk Vandenbroucke
- Corporate Innovation Office, Agfa N.V., Septestraat 27, Mortsel, B-2640, Belgium
| | - Paul Leblans
- Corporate Innovation Office, Agfa N.V., Septestraat 27, Mortsel, B-2640, Belgium
| | - Wouter Crijns
- Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| |
Collapse
|
4
|
Sánchez‐Artuñedo D, Pié‐Padró S, Hermida‐López M, Duch‐Guillén MA, Beltran‐Vilagrasa M. Validation of an in vivo transit dosimetry algorithm using Monte Carlo simulations and ionization chamber measurements. J Appl Clin Med Phys 2024; 25:e14187. [PMID: 37890864 PMCID: PMC10860462 DOI: 10.1002/acm2.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE Transit dosimetry is a safety tool based on the transit images acquired during treatment. Forward-projection transit dosimetry software, as PerFRACTION, compares the transit images acquired with an expected image calculated from the DICOM plan, the CT, and the structure set. This work aims to validate PerFRACTION expected transit dose using PRIMO Monte Carlo simulations and ionization chamber measurements, and propose a methodology based on MPPG5a report. METHODS The validation process was divided into three groups of tests according to MPPG5a: basic dose validation, IMRT dose validation, and heterogeneity correction validation. For the basic dose validation, the fields used were the nine fields needed to calibrate PerFRACTION and three jaws-defined. For the IMRT dose validation, seven sweeping gaps fields, the MLC transmission and 29 IMRT fields from 10 breast treatment plans were measured. For the heterogeneity validation, the transit dose of these fields was studied using three phantoms: 10 , 30 , and a 3 cm cork slab placed between 10 cm of solid water. The PerFRACTION expected doses were compared with PRIMO Monte Carlo simulation results and ionization chamber measurements. RESULTS Using the 10 cm solid water phantom, for the basic validation fields, the root mean square (RMS) of the difference between PerFRACTION and PRIMO simulations was 0.6%. In the IMRT fields, the RMS of the difference was 1.2%. When comparing respect ionization chamber measurements, the RMS of the difference was 1.0% both for the basic and the IMRT validation. The average passing rate with a γ(2%/2 mm, TH = 20%) criterion between PRIMO dose distribution and PerFRACTION expected dose was 96.0% ± 5.8%. CONCLUSION We validated PerFRACTION calculated transit dose with PRIMO Monte Carlo and ionization chamber measurements adapting the methodology of the MMPG5a report. The methodology presented can be applied to validate other forward-projection transit dosimetry software.
Collapse
Affiliation(s)
- David Sánchez‐Artuñedo
- Servei de Física i Protecció RadiològicaHospital Universitari Vall d'HebronBarcelonaSpain
| | - Savannah Pié‐Padró
- Servei de Física i Protecció RadiològicaHospital Universitari Vall d'HebronBarcelonaSpain
| | | | | | | |
Collapse
|
5
|
Altuwayrish A, Ghorbani M, Bakhshandeh M, Roozmand Z, Hoseini-Ghahfarokhi M. Comparison of PRIMO Monte Carlo code and Eclipse treatment planning system in calculation of dosimetric parameters in brain cancer radiotherapy. Rep Pract Oncol Radiother 2022; 27:863-874. [PMID: 36523800 PMCID: PMC9746651 DOI: 10.5603/rpor.a2022.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background It is important to evaluate the dose calculated by treatment planning systems (TPSs) and dose distribution in tumor and organs at risk (OARs). The aim of this study is to compare dose calculated by the PRIMO Monte Carlo code and Eclipse TPS in radiotherapy of brain cancer patients. Materials and methods PRIMO simulation code was used to simulate a Varian Clinac 600C linac. The simulations were validated for the linac by comparison of the simulation and measured results. In the case of brain cancer patients, the dosimetric parameters obtained by the PRIMO code were compared with those calculated by Eclipse TPS. Gamma function analysis with 3%, 3 mm criteria was utilized to compare the dose distributions. The evaluations were based on the dosimetric parameters for the planning target volume (PTV) and OAR including D min, D mean, and D max, homogeneity index (HI), and conformity index (CI). Results The gamma function analysis showed a 98% agreement between the results obtained by the PRIMO code and measurement for the percent depth dose (PDD) and dose profiles. The corresponding value in comparing the dosimetric parameters from PRIMO code and Eclipse TPS for the brain patients was 94%, on average. The results of the PRIMO simulation were in good agreement with the measured data and Eclipse TPS calculations. Conclusions Based on the results of this study, the PRIMO code can be utilized to simulate a medical linac with good accuracy and to evaluate the accuracy of treatment plans for patients with brain cancer.
Collapse
Affiliation(s)
- Ali Altuwayrish
- Biomedical Engineering and Medical Physics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Ghorbani
- Biomedical Engineering and Medical Physics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Bakhshandeh
- Department of Radiation Technology, Faculty of Allied Radiation Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Roozmand
- Medical Physics Department, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
6
|
Torres-Díaz J, Grad GB, Bonzi EV. Measurement of linear accelerator spectra, reconstructed from percentage depth dose curves by neural networks. Phys Med 2022; 96:81-89. [DOI: 10.1016/j.ejmp.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022] Open
|
7
|
Almatani T, Hugtenburg RP, Smakovs A. A Monte Carlo model of an agility head for a 10-MV photon beam. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2050097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Richard P. Hugtenburg
- College of Medicine, Swansea University, Swansea, UK
- Department of Medical Physics and Clinical Engineering, Swansea Bay University Health Board, Swansea, UK
| | - Artjoms Smakovs
- Department of Medical Physics and Clinical Engineering, Swansea Bay University Health Board, Swansea, UK
| |
Collapse
|
8
|
Costa PR, Nersissian DY, Umisedo NK, Gonzales AHL, Fernández-Varea JM. A comprehensive Monte Carlo study of CT dose metrics proposed by the AAPM Reports 111 and 200. Med Phys 2021; 49:201-218. [PMID: 34800303 DOI: 10.1002/mp.15306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 09/22/2021] [Accepted: 10/10/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE A Monte Carlo (MC) modeling of single axial and helical CT scan modes has been developed to compute single and accumulated dose distributions. The radiation emission characteristics of an MDCT scanner has been modeled and used to evaluate the dose deposition in infinitely long head and body PMMA phantoms. The simulated accumulated dose distributions determined the approach to equilibrium function, H(L). From these H ( L ) curves, dose-related information was calculated for different head and body clinical protocols. METHODS The PENELOPE/penEasy package has been used to model the single axial and helical procedures and the radiation transport of photons and electrons in the phantoms. The bowtie filters, heel effect, focal-spot angle, and fan-beam geometry were incorporated. Head and body protocols with different pitch values were modeled for x-ray spectra corresponding to 80, 100, 120, and 140 kV. The analytical formulation for the single dose distributions and experimental measurements of single and accumulated dose distributions were employed to validate the MC results. The experimental dose distributions were measured with OSLDs and a thimble ion chamber inserted into PMMA phantoms. Also, the experimental values of the C T D I 100 along the center and peripheral axes of the CTDI phantom served to calibrate the simulated single and accumulated dose distributions. RESULTS The match of the simulated dose distributions with the reference data supports the correct modeling of the heel effect and the radiation transport in the phantom material reflected in the tails of the dose distributions. The validation of the x-ray source model was done comparing the CTDI ratios between simulated, measured and CTDosimetry data. The average difference of these ratios for head and body protocols between the simulated and measured data was in the range of 13-17% and between simulated and CTDosimetry data varied 10-13%. The distributions of simulated doses and those measured with the thimble ion chamber are compatible within 3%. In this study, it was demonstrated that the efficiencies of the C T D I 100 measurements in head phantoms with nT = 20 mm and 120 kV are 80.6% and 87.8% at central and peripheral axes, respectively. In the body phantoms with n T = 40 mm and 120 kV, the efficiencies are 56.5% and 86.2% at central and peripheral axes, respectively. In general terms, the clinical parameters such as pitch, beam intensity, and voltage affect the Deq values with the increase of the pitch decreasing the Deq and the beam intensity and the voltage increasing its value. The H(L) function does not change with the pitch values, but depends on the phantom axis (central or peripheral). CONCLUSIONS The computation of the pitch-equilibrium dose product, D ̂ eq , evidenced the limitations of the C T D I 100 method to determine the dose delivered by a CT scanner. Therefore, quantities derived from the C T D I 100 propagate this limitation. The developed MC model shows excellent compatibility with both measurements and literature quantities defined by AAPM Reports 111 and 200. These results demonstrate the robustness and versatility of the proposed modeling method.
Collapse
Affiliation(s)
- Paulo R Costa
- Institute of Physics, University of São Paulo, São Paulo, SP, Brazil
| | | | - Nancy K Umisedo
- Institute of Physics, University of São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
9
|
Sempau J, Kazantsev P, Izewska J, Brualla L. Monte Carlo verification of the holder correction factors for the radiophotoluminescent glass dosimeter used by the IAEA in international dosimetry audits. Phys Med 2021; 86:1-5. [PMID: 34044284 DOI: 10.1016/j.ejmp.2021.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
The International Atomic Energy Agency (IAEA), jointly with the World Health Organization (WHO), has operated a postal dosimetry audit program for radiotherapy centers worldwide since 1969. In 2017 the IAEA introduced a new methodology based on radiophotoluminescent dosimetry (RPLD) for these audits. The detection system consists of a phosphate glass dosimeter inserted in a plastic capsule that is kept in measuring position with a PMMA holder during irradiation. Correction factors for this holder were obtained using experimental methods. In this work these methods are described and the resulting factors are verified by means of Monte Carlo simulation with the general-purpose code PENELOPE for a range of photon beam qualities relevant in radiotherapy. The study relies on a detailed geometrical representation of the experimental setup. Various photon beams were obtained from faithful modeling of the corresponding linacs. Monte Carlo simulation transport parameters are selected to ensure subpercent accuracy. The simulated correction factors fall in the interval 1.005-1.008 (±0.2%), with deviations with respect to experimental values not larger than 0.2(2)%. This study corroborates the validity of the holder correction factors currently used for the IAEA audits.
Collapse
Affiliation(s)
- J Sempau
- Universitat Politècnica de Catalunya, E-08028 Barcelona, Spain; Centros de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), E-28029 Madrid, Spain
| | - P Kazantsev
- International Atomic Energy Agency, A-1400 Vienna, Austria
| | - J Izewska
- International Atomic Energy Agency, A-1400 Vienna, Austria
| | - L Brualla
- West German Proton Therapy Centre WPE, D-45147 Essen, Germany; University of Duisburg-Essen, Faculty of Medicine, D-45147 Essen, Germany; University Hospital Essen, West German Cancer Center WTZ, D-45147 Essen, Germany.
| |
Collapse
|
10
|
Niemelä J, Partanen M, Ojala J, Kapanen M, Keyriläinen J. Dose-area product ratio in external small-beam radiotherapy: beam shape, size and energy dependencies in clinical photon beams. Biomed Phys Eng Express 2021; 7. [PMID: 33836522 DOI: 10.1088/2057-1976/abf6aa] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/09/2021] [Indexed: 11/12/2022]
Abstract
In small-field radiotherapy (RT), a significant challenge is to define the amount of radiation dose absorbed in the patient where the quality of the beam has to be measured with high accuracy. The properties of a proposed new beam quality specifier, namely the dose-area-product ratio at 20 and 10 cm depths in water or DAPR20,10, were studied to yield more information on its feasibility over the conventional quality specifier tissue-phantom ratio or TPR20,10. The DAPR20,10may be measured with a large-area ionization chamber (LAC) instead of small volume chambers or semi-conductors where detector, beam and water phantom positioning and beam perturbations introduce uncertainties. The effects of beam shape, size and energy on the DAPR20,10were studied and it was shown that the DAPR20,10increases with increasing beam energy similarly to TPR20,10but in contrast exhibits a small beam size and shape dependence. The beam profile outside the beam limiting devices has been shown to have a large contribution to the DAPR20,10. There is potential in large area chambers to be used in DAPR measurement and its use in dosimetry of small-beam RT for beam quality measurements.
Collapse
Affiliation(s)
- Jarkko Niemelä
- University of Turku, Department of Physics and Astronomy, FI-20014 Turku, Finland.,Department of Medical Physics, Turku University Hospital, PO Box 52, FI-20521 Turku, Finland.,Department of Oncology and Radiotherapy, Turku University Hospital, PO Box 52, FI-20521 Turku, Finland
| | - Mari Partanen
- Department of Oncology, Unit of Radiotherapy, Tampere University Hospital, PO Box 2000, FI-33521 Tampere, Finland.,Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, PO Box 2000, FI-33521 Tampere, Finland
| | - Jarkko Ojala
- Department of Oncology, Unit of Radiotherapy, Tampere University Hospital, PO Box 2000, FI-33521 Tampere, Finland.,Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, PO Box 2000, FI-33521 Tampere, Finland
| | - Mika Kapanen
- Department of Oncology, Unit of Radiotherapy, Tampere University Hospital, PO Box 2000, FI-33521 Tampere, Finland.,Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, PO Box 2000, FI-33521 Tampere, Finland
| | - Jani Keyriläinen
- Department of Medical Physics, Turku University Hospital, PO Box 52, FI-20521 Turku, Finland.,Department of Oncology and Radiotherapy, Turku University Hospital, PO Box 52, FI-20521 Turku, Finland
| |
Collapse
|
11
|
Sarrut D, Etxebeste A, Krah N, Létang JM. Modeling complex particles phase space with GAN for Monte Carlo SPECT simulations: a proof of concept. Phys Med Biol 2021; 66:055014. [PMID: 33477121 DOI: 10.1088/1361-6560/abde9a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A method is proposed to model by a generative adversarial network the distribution of particles exiting a patient during Monte Carlo simulation of emission tomography imaging devices. The resulting compact neural network is then able to generate particles exiting the patient, going towards the detectors, avoiding costly particle tracking within the patient. As a proof of concept, the method is evaluated for single photon emission computed tomography (SPECT) imaging and combined with another neural network modeling the detector response function (ARF-nn). A complete rotating SPECT acquisition can be simulated with reduced computation time compared to conventional Monte Carlo simulation. It also allows the user to perform simulations with several imaging systems or parameters, which is useful for imaging system design.
Collapse
Affiliation(s)
- D Sarrut
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard 69373, France
| | | | | | | |
Collapse
|
12
|
Giménez-Alventosa V, Giménez V, Ballester F, Vijande J, Andreo P. Monte Carlo calculation of beam quality correction factors for PTW cylindrical ionization chambers in photon beams. ACTA ACUST UNITED AC 2020; 65:205005. [DOI: 10.1088/1361-6560/ab9501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Apaza Veliz DG, Wilches Visbal JH, Abrego FC, Vega Ramírez JL. Monte Carlo Calculation of the Energy Spectrum of a 6 MeV Electron Beam using PENetration and Energy Loss of Positrons and Electrons Code. J Med Phys 2020; 45:116-122. [PMID: 32831494 PMCID: PMC7416870 DOI: 10.4103/jmp.jmp_104_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 11/11/2022] Open
Abstract
Background: The limited bibliographic existence of research works on the use of Monte Carlo simulation to determine the energy spectra of electron beams compared to the information available regarding photon beams is a scientific task that should be resolved. Aims: In this work, Monte Carlo simulation was performed through the PENELOPE code of the Sinergy Elekta accelerator head to obtain the spectrum of a 6 MeV electron beam and its characteristic dosimetric parameters. Materials and Methods: The central-axis energy spectrum and the percentage depth dose curve of a 6 MeV electron beam of an Elekta Synergy linear accelerator were obtained by using Monte Carlo PENELOPE code v2014. For this, the linear accelerator head geometry, electron applicators, and water phantom were simplified. Subsequently, the interaction process between the electron beam and head components was simulated in a time of 86.4x104 s. Results: From this simulation, the energy spectrum at the linear accelerator exit window and the surface of the phantom was obtained, as well as the associated percentage depth dose curves. The validation of the Monte Carlo simulation was performed by comparing the simulated and the measured percentage depth dose curves via the gamma index criterion. Measured percentage depth- dose was determined by using a Markus electron ionization chamber, type T23343. Characteristic parameters of the beam related with the PDD curves such as the maximum dose depth (R100), 90% dose depth (R90), 90% dose depth or therapeutic range (R85), half dose depth (R50), practical range (Rp), maximum range (Rmax), surface dose (Ds), normalized dose gradient (G0) and photon contamination dose (Dx) were determined. Parameters related with the energy spectrum, namely, the most probable energy of electrons at the surface (Ep,0) and electron average energy (E– 0) were also determined. Conclusion: It was demonstrated that PENELOPE is an attractive and accurate tool for the obtaining of dosimetric parameters of a medical linear accelerator since it can reliably reproduce important clinical data such as the energy spectrum, depth dose, and dose profile.
Collapse
Affiliation(s)
- Danny Giancarlo Apaza Veliz
- Department of Physics, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Brazil.,Department of Physics, National University of San Agustín, Arequipa, Peru
| | - Jorge Homero Wilches Visbal
- Department of Basic Biomedical Sciences, Faculty of Health Sciences, University of Magdalena, Santa Marta, Colombia
| | - Felipe Chen Abrego
- Center for Natural and Human Sciences, Federal University of ABC, Brazil
| | | |
Collapse
|
14
|
Andreo P, Burns DT, Kapsch RP, McEwen M, Vatnitsky S, Andersen CE, Ballester F, Borbinha J, Delaunay F, Francescon P, Hanlon MD, Mirzakhanian L, Muir B, Ojala J, Oliver CP, Pimpinella M, Pinto M, de Prez LA, Seuntjens J, Sommier L, Teles P, Tikkanen J, Vijande J, Zink K. Determination of consensus k Q values for megavoltage photon beams for the update of IAEA TRS-398. ACTA ACUST UNITED AC 2020; 65:095011. [DOI: 10.1088/1361-6560/ab807b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Sarrut D, Krah N, Létang JM. Generative adversarial networks (GAN) for compact beam source modelling in Monte Carlo simulations. ACTA ACUST UNITED AC 2019; 64:215004. [DOI: 10.1088/1361-6560/ab3fc1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Ese Z, Zylka W. Influence of 12-bit and 16-bit CT values of metals on dose calculation in radiotherapy using PRIMO, a Monte Carlo code for clinical linear accelerators. CURRENT DIRECTIONS IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1515/cdbme-2019-0150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
In this paper, the effect of computed tomography (CT) values of metals in 12-bit and 16-bit extended Hounsfield Unit (EHU) scale on dose calculations in radiotherapy treatment planning systems (TPS) were quantified. Dose simulations for metals in water environment were performed with the software PRIMO in 6MV photon mode. The depth dose profiles were analysed and the relative dose differences between the metals determined with 12-bit and 16-bit CT imaging, respectively, were calculated. Maximum dose differences of ΔAl = 3.0%, ΔTi = 4.5%, ΔCr = 6.2% and ΔCu = 11.6% were measured. In order to increase the accuracy of dose calculation on patients with implants, CT imaging in the EHU scale is recommended.
Collapse
Affiliation(s)
- Zehra Ese
- Department of Electrical Engineering and Applied Natural Science, Westphalian University, Campus Gelsenkirchen , Germany
- Department of General and Theoretical Electrical Engineering, University of Duisburg- Essen and CENIDE - Center of Nanointegration Duisburg-Essen, Bismarckstr. 81, Duisburg , Germany
| | - Waldemar Zylka
- Department of Electrical Engineering and Applied Natural Science, Westphalian University, Campus Gelsenkirchen , Germany
| |
Collapse
|
17
|
Zeghari A, Saaidi R, Cherkaoui El Moursli R. Investigation of variance reduction techniques parameters to enhance the efficiency for a 12 MV photon beam. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1080/16878507.2019.1623573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- A. Zeghari
- Faculty of Sciences, Mohammed 5 University, Rabat, Morocco
| | - R. Saaidi
- Faculty of Sciences, Mohammed 5 University, Rabat, Morocco
| | | |
Collapse
|