1
|
Yamamoto T, Tanaka S, Takahashi N, Umezawa R, Suzuki Y, Kishida K, Omata S, Takeda K, Harada H, Sato K, Katsuta Y, Kadoya N, Jingu K. Investigation of intrafractional spinal cord and spinal canal movement during stereotactic MR-guided online adaptive radiotherapy for kidney cancer. PLoS One 2024; 19:e0312032. [PMID: 39475854 PMCID: PMC11524472 DOI: 10.1371/journal.pone.0312032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/29/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND AND PURPOSE This study aimed to investigate the intrafractional movement of the spinal cord and spinal canal during MR-guided online adaptive radiotherapy (MRgART) for kidney cancer. MATERIALS AND METHODS All patients who received stereotactic MRgART for kidney cancer between February 2022 and February 2024 were included in this study. Patients received 30-42 Gy in 3-fraction MRgART for kidney cancer using the Elekta Unity, which is equipped with a linear accelerator and a 1.5 Tesla MRI. MRI scans were performed at three points during each fraction: for online planning, position verification, and posttreatment assessment. The spinal cord was contoured from the upper edge of Th12 to the medullary cone, and the spinal canal was contoured from Th12 to L3, using the first MRI. These contours were adjusted to the second and third MR images via deformable image registration, and movements were measured. Margins were determined via the formula "1.3×Σ+0.5×σ" and 95% prediction intervals. RESULTS A total of 22 patients (66 fractions) were analyzed. The median interval between the first and third MRI scans were 38 minutes. The mean ± standard deviation of the spinal cord movements after this interval were -0.01 ± 0.06 for the x-axis (right-left), 0.01 ± 0.14 for the y-axis (caudal-cranial), 0.07 ± 0.05 for the z-axis (posterior-anterior), and 0.15 ± 0.08 for the 3D distance, respectively. The correlation coefficients of the 3D distance between the spinal cord and the spinal canal was high (0.92). The calculated planning organ at risk volume margin for all directions was 0.11 cm for spinal cord. The 95% prediction intervals for the x-axis, y-axis, and z-axis were -0.11-0.09 cm, -0.23-0.25 cm and -0.14-0.03 cm, respectively. CONCLUSIONS Margins are necessary in MRgART to compensate for intrafractional movement and ensure safe treatment delivery.
Collapse
Affiliation(s)
- Takaya Yamamoto
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shohei Tanaka
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriyoshi Takahashi
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rei Umezawa
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Suzuki
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keita Kishida
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - So Omata
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuya Takeda
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hinako Harada
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyokazu Sato
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiyuki Katsuta
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriyuki Kadoya
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Kensen CM, Simões R, Betgen A, Wiersema L, Lambregts DM, Peters FP, Marijnen CA, van der Heide UA, Janssen TM. Incorporating patient-specific information for the development of rectal tumor auto-segmentation models for online adaptive magnetic resonance Image-guided radiotherapy. Phys Imaging Radiat Oncol 2024; 32:100648. [PMID: 39319094 PMCID: PMC11421252 DOI: 10.1016/j.phro.2024.100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Background and purpose In online adaptive magnetic resonance image (MRI)-guided radiotherapy (MRIgRT), manual contouring of rectal tumors on daily images is labor-intensive and time-consuming. Automation of this task is complex due to substantial variation in tumor shape and location between patients. The aim of this work was to investigate different approaches of propagating patient-specific prior information to the online adaptive treatment fractions to improve deep-learning based auto-segmentation of rectal tumors. Materials and methods 243 T2-weighted MRI scans of 49 rectal cancer patients treated on the 1.5T MR-Linear accelerator (MR-Linac) were utilized to train models to segment rectal tumors. As benchmark, an MRI_only auto-segmentation model was trained. Three approaches of including a patient-specific prior were studied: 1. include the segmentations of fraction 1 as extra input channel for the auto-segmentation of subsequent fractions, 2. fine-tuning of the MRI_only model to fraction 1 (PSF_1) and 3. fine-tuning of the MRI_only model on all earlier fractions (PSF_cumulative). Auto-segmentations were compared to the manual segmentation using geometric similarity metrics. Clinical impact was assessed by evaluating post-treatment target coverage. Results All patient-specific methods outperformed the MRI_only segmentation approach. Median 95th percentile Hausdorff (95HD) were 22.0 (range: 6.1-76.6) mm for MRI_only segmentation, 9.9 (range: 2.5-38.2) mm for MRI+prior segmentation, 6.4 (range: 2.4-17.8) mm for PSF_1 and 4.8 (range: 1.7-26.9) mm for PSF_cumulative. PSF_cumulative was found to be superior to PSF_1 from fraction 4 onward (p = 0.014). Conclusion Patient-specific fine-tuning of automatically segmented rectal tumors, using images and segmentations from all previous fractions, yields superior quality compared to other auto-segmentation approaches.
Collapse
Affiliation(s)
- Chavelli M. Kensen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Rita Simões
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Anja Betgen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Lisa Wiersema
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Doenja M.J. Lambregts
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Femke P. Peters
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Corrie A.M. Marijnen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Uulke A. van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Tomas M. Janssen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| |
Collapse
|
3
|
Xin X, Tang B, Wu F, Lang J, Li J, Wang X, Liu M, Zhang Q, Liao X, Yang F, Orlandini LC. Dose tracking assessment for magnetic resonance guided adaptive radiotherapy of rectal cancers. Radiat Oncol 2024; 19:114. [PMID: 39218934 PMCID: PMC11367860 DOI: 10.1186/s13014-024-02508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Magnetic resonance-guided adaptive radiotherapy (MRgART) at MR-Linac allows for plan optimisation on the MR-based synthetic CT (sCT) images, adjusting the target and organs at risk according to the patient's daily anatomy. Conversely, conventional linac image-guided radiotherapy (IGRT) involves rigid realignment of regions of interest to the daily anatomy, followed by the delivery of the reference computed tomography (CT) plan. This study aims to evaluate the effectiveness of MRgART versus IGRT for rectal cancer patients undergoing short-course radiotherapy, while also assessing the dose accumulation process to support the findings and determine its usefulness in enhancing treatment accuracy. METHODS Nineteen rectal cancer patients treated with a 1.5 Tesla MR-Linac with a prescription dose of 25 Gy (5 Gy x 5) and undergoing daily adapted radiotherapy by plan optimization based on online MR-based sCT images, were included in this retrospective study. For each adapted plan ([Formula: see text]), a second plan ([Formula: see text]) was generated by recalculating the reference CT plan on the daily MR-based sCT images after rigid registration with the reference CT images to simulate the IGRT workflow. Dosimetry of [Formula: see text] and[Formula: see text]was compared for each fraction. Cumulative doses on the first and last fractions were evaluated for both workflows. The dosimetry per single fraction and the cumulative doses were compared using dose-volume histogram parameters. RESULTS Ninety-five fractions delivered with MRgART were compared to corresponding simulated IGRT fractions. All MRgART fractions fulfilled the target clinical requirements. IGRT treatments did not meet the expected target coverage for 63 out of 94 fractions (67.0%), with 13 fractions showing a V95 median point percentage decrease of 2.78% (range, 1.65-4.16%), and 55 fractions exceeding the V107% threshold with a median value of 15.4 cc (range, 6.0-43.8 cc). For the bladder, the median [Formula: see text] values were 18.18 Gy for the adaptive fractions and 19.60 Gy for the IGRT fractions. Similarly the median [Formula: see text] values for the small bowel were 23.40 Gy and 25.69 Gy, respectively. No statistically significant differences were observed in the doses accumulated on the first or last fraction for the adaptive workflow, with results consistent with the single adaptive fractions. In contrast, accumulated doses in the IGRT workflow showed significant variations mitigating the high dose constraint, nevertheless, more than half of the patients still did not meet clinical requirements. CONCLUSIONS MRgART for short-course rectal cancer treatments ensures that the dose delivered matches each fraction of the planned dose and the results are confirmed by the dose accumulation process, which therefore seems redundant. In contrast, IGRT may lead to target dose discrepancies and non-compliance with organs at risk constraints and dose accumulation can still highlight notable dosimetric differences.
Collapse
Affiliation(s)
- Xin Xin
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, No.1 East 3 road ErXian bridge, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Bin Tang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China.
| | - Fan Wu
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Jinyi Lang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Jie Li
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Xianliang Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Min Liu
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Qingxian Zhang
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, No.1 East 3 road ErXian bridge, Chengdu, China
| | - Xiongfei Liao
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Feng Yang
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, No.1 East 3 road ErXian bridge, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| | - Lucia Clara Orlandini
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, the 4th Section, Chengdu Renmin South Road, Chengdu, China
| |
Collapse
|
4
|
Akdag O, Borman PTS, Mandija S, Woodhead PL, Uijtewaal P, Raaymakers BW, Fast MF. Experimental demonstration of real-time cardiac physiology-based radiotherapy gating for improved cardiac radioablation on an MR-linac. Med Phys 2024; 51:2354-2366. [PMID: 38477841 DOI: 10.1002/mp.17024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Cardiac radioablation is a noninvasive stereotactic body radiation therapy (SBRT) technique to treat patients with refractory ventricular tachycardia (VT) by delivering a single high-dose fraction to the VT isthmus. Cardiorespiratory motion induces position uncertainties resulting in decreased dose conformality. Electocardiograms (ECG) are typically used during cardiac MRI (CMR) to acquire images in a predefined cardiac phase, thus mitigating cardiac motion during image acquisition. PURPOSE We demonstrate real-time cardiac physiology-based radiotherapy beam gating within a preset cardiac phase on an MR-linac. METHODS MR images were acquired in healthy volunteers (n = 5, mean age = 29.6 years, mean heart-rate (HR) = 56.2 bpm) on the 1.5 T Unity MR-linac (Elekta AB, Stockholm, Sweden) after obtaining written informed consent. The images were acquired using a single-slice balance steady-state free precession (bSSFP) sequence in the coronal or sagittal plane (TR/TE = 3/1.48 ms, flip angle = 48∘ $^{\circ }$ , SENSE = 1.5,field-of-view = 400 × 207 $\text{field-of-view} = {400}\times {207}$ mm 2 ${\text{mm}}^{2}$ , voxel size =3 × 3 × 15 $3\times 3\times 15$ mm 3 ${\rm mm}^{3}$ , partial Fourier factor = 0.65, frame rate = 13.3 Hz). In parallel, a 4-lead ECG-signal was acquired using MR-compatible equipment. The feasibility of ECG-based beam gating was demonstrated with a prototype gating workflow using a Quasar MRI4D motion phantom (IBA Quasar, London, ON, Canada), which was deployed in the bore of the MR-linac. Two volunteer-derived combined ECG-motion traces (n = 2, mean age = 26 years, mean HR = 57.4 bpm, peak-to-peak amplitude = 14.7 mm) were programmed into the phantom to mimic dose delivery on a cardiac target in breath-hold. Clinical ECG-equipment was connected to the phantom for ECG-voltage-streaming in real-time using research software. Treatment beam gating was performed in the quiescent phase (end-diastole). System latencies were compensated by delay time correction. A previously developed MRI-based gating workflow was used as a benchmark in this study. A 15-beam intensity-modulated radiotherapy (IMRT) plan (1 × 6.25 ${1}\times {6.25}$ Gy) was delivered for different motion scenarios onto radiochromic films. Next, cardiac motion was then estimated at the basal anterolateral myocardial wall via normalized cross-correlation-based template matching. The estimated motion signal was temporally aligned with the ECG-signal, which were then used for position- and ECG-based gating simulations in the cranial-caudal (CC), anterior-posterior (AP), and right-left (RL) directions. The effect of gating was investigated by analyzing the differences in residual motion at 30, 50, and 70% treatment beam duty cycles. RESULTS ECG-based (MRI-based) beam gating was performed with effective duty cycles of 60.5% (68.8%) and 47.7% (50.4%) with residual motion reductions of 62.5% (44.7%) and 43.9% (59.3%). Local gamma analyses (1%/1 mm) returned pass rates of 97.6% (94.1%) and 90.5% (98.3%) for gated scenarios, which exceed the pass rates of 70.3% and 82.0% for nongated scenarios, respectively. In average, the gating simulations returned maximum residual motion reductions of 88%, 74%, and 81% at 30%, 50%, and 70% duty cycles, respectively, in favor of MRI-based gating. CONCLUSIONS Real-time ECG-based beam gating is a feasible alternative to MRI-based gating, resulting in improved dose delivery in terms of highγ -pass $\gamma {\text{-pass}}$ rates, decreased dose deposition outside the PTV and residual motion reduction, while by-passing cardiac MRI challenges.
Collapse
Affiliation(s)
- Osman Akdag
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pim T S Borman
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefano Mandija
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MR Diagnostics and Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter L Woodhead
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
- Elekta AB, Stockholm, Sweden
| | - Prescilla Uijtewaal
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bas W Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martin F Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
5
|
Bai F, Hu Q, Yao X, Cheng M, Zhao L, Xu L. A prospective comparative study on bladder volume measurement with portable ultrasound scanner and CT simulator in pelvic tumor radiotherapy. Phys Eng Sci Med 2024; 47:87-97. [PMID: 38019446 DOI: 10.1007/s13246-023-01344-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/04/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVE The consistency of bladder volume is very important in pelvic tumor radiotherapy, and portable bladder scanner is a promising device to measure bladder volume. The purpose of this study was to investigate whether the bladder volume of patients with pelvic tumor treated with radiotherapy can be accurately measured using the Meike Palm Bladder Scanner PBSV3.2 manufactured in China and the accuracy of its measurement under different influencing factors. METHODS A total of 165 patients with pelvic tumor undergoing radiotherapy were prospectively collected. The bladder volume was measured with PBSV3.2 before simulated localization. CT simulated localization was performed when the bladder volume was 200-400ml. The bladder volume was measured with PBSV3.2 immediately after localization and recorded. The bladder volume was then delineated on CT simulation images and recorded. To compare the consistency of CT simulation bladder volume and bladder volume measured by PBSV3.2. To investigate the accuracy of PBSV3.2 in different sex, age, treatment purpose, and bladder volume. RESULTS There was a significant positive correlation with bladder volume on CT and PBSV3.2 (r = 0.874; p < 0.001). The mean difference between CT measured values and PBSV3.2 was (-0.14 ± 50.17) ml. The results of the different variables showed that the overall mean of PBSV3.2 and CT measurements were statistically different in the age ≥ 65 years, bladder volumes > 400ml and ≤ 400ml groups (p = 0.028, 0.002, 0.001). There was no statistical significance between the remaining variables. The volume difference between PBSV3.2 measurement and CT was 12.87ml in male patients, which was larger than that in female patients 3.27ml. Pearson correlation analysis showed that the correlation coefficient was 0.473 for bladder volume greater than 400ml and 0.868 for bladder volume less than 400ml; the correlation coefficient of the other variables ranged from 0.802 to 0.893. CONCLUSION This is the first large-sample study to evaluate the accuracy of PBSV3.2 in a pelvic tumor radiotherapy population using the convenient bladder scanner PBSV3.2 made in China. PBSV3.2 provides an acceptable indicator for monitoring bladder volume in patients with pelvic radiotherapy. It is recommended to monitor bladder volume with PBSV3.2 when the planned bladder volume is 200-400ml. For male and patients ≥ 65 years old, at least two repeat measurements are required when using a bladder scanner and the volume should be corrected by using a modified feature to improve bladder volume consistency.
Collapse
Affiliation(s)
- Fei Bai
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, China
| | - Qiuxia Hu
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, China
| | - Xiaowei Yao
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, China
| | - Ming Cheng
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, China
| | - Lina Zhao
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, China.
| | - Linlin Xu
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Byrne M, Teh AYM, Archibald-Heeren B, Hu Y, Rijken J, Luo S, Aland T, Greer P. Intrafraction Motion and Margin Assessment for Ethos Online Adaptive Radiotherapy Treatments of the Prostate and Seminal Vesicles. Adv Radiat Oncol 2024; 9:101405. [PMID: 38304111 PMCID: PMC10831186 DOI: 10.1016/j.adro.2023.101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/27/2023] [Indexed: 02/03/2024] Open
Abstract
Purpose Online adaptive radiation therapy (OART) uses daily imaging to identify changes in the patient's anatomy and generate a new treatment plan adapted to these changes for each fraction. The aim of this study was to determine the intrafraction motion and planning target volume (PTV) margins required for an OART workflow on the Varian Ethos system. Methods and Materials Sixty-five fractions from 13 previously treated OART patients were analyzed for this retrospective study. The prostate and seminal vesicles were contoured by a radiation oncologist on 2 cone beam computed tomography scans (CBCT) for each fraction, the initial CBCT at the start of the treatment session, and the verification CBCT immediately before beam-on. In part 1 of the study, PTVs of different sizes were defined on the initial CBCT, and the geometric overlap with the clinical target volume (CTV) on the verification CBCT was used to determine the optimal OART margin. This was performed with and without a patient realignment shift by registering the verification CBCT to the initial CBCT. In part 2 of the study, the margins determined in part 1 were used for simulated Ethos OART treatments on all 65 fractions. The resultant coverage to the CTV on the verification CBCT, was compared with an image guided radiation therapy (IGRT) workflow with 7-mm margins. Results Part 1 of the study found, if a verification CBCT and shift is performed, a 4-mm margin on the prostate and 5 mm on the seminal vesicles resulted in 95% of the CTV covered by the PTV in >90% of fractions, and 98% of the CTV covered by the PTV in >80% of fractions. Part 2 of the study found when these margins were used in an Ethos OART workflow, they resulted in CTV coverage that was superior to an IGRT workflow with 7-mm margins. Conclusions A 4mm prostate margin and 5-mm seminal vesicles margin in an OART workflow with verification imaging are adequate to ensure coverage on the Varian Ethos system. Larger margins may be required if using an OART workflow without verification imaging.
Collapse
Affiliation(s)
- Mikel Byrne
- Icon Cancer Centre, South Brisbane, Queensland, Australia
- School of Information and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia
- Sydney Adventist Hospital, Wahroonga, New South Wales, Australia
| | - Amy Yuen Meei Teh
- Icon Cancer Centre, South Brisbane, Queensland, Australia
- Sydney Adventist Hospital, Wahroonga, New South Wales, Australia
- ANU College of Health and Medicine, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Yunfei Hu
- Icon Cancer Centre, South Brisbane, Queensland, Australia
| | - James Rijken
- Icon Cancer Centre, South Brisbane, Queensland, Australia
| | - Suhuai Luo
- School of Information and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Trent Aland
- Icon Cancer Centre, South Brisbane, Queensland, Australia
| | - Peter Greer
- School of Information and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia
- Calvary Mater Newcastle Hospital, Newcastle, New South Wales, Australia
| |
Collapse
|
7
|
Abstract
Magnetic resonance imaging-guided radiation therapy (MRIgRT) has improved soft tissue contrast over computed tomography (CT) based image-guided RT. Superior visualization of the target and surrounding radiosensitive structures has the potential to improve oncological outcomes partly due to safer dose-escalation and adaptive planning. In this review, we highlight the workflow of adaptive MRIgRT planning, which includes simulation imaging, daily MRI, identifying isocenter shifts, contouring, plan optimization, quality control, and delivery. Increased utilization of MRIgRT will depend on addressing technical limitations of this technology, while addressing treatment efficacy, cost-effectiveness, and workflow training.
Collapse
Affiliation(s)
- Cecil M Benitez
- Department of Radiation Oncology, UCLA Medical Center, Los Angeles, CA
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida; Miami, FL
| | - Luise A Künzel
- National Center for Tumor Diseases (NCT), Dresden; German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.; OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden Rossendorf, Dresden, Germany
| | - Daniela Thorwarth
- Department of Radiation Oncology, Section for Biomedical Physics, University of Tübingen, Tübingen, Germany..
| |
Collapse
|
8
|
Dassen MG, Janssen T, Kusters M, Pos F, Kerkmeijer LGW, van der Heide UA, van der Bijl E. Comparing adaptation strategies in MRI-guided online adaptive radiotherapy for prostate cancer: Implications for treatment margins. Radiother Oncol 2023; 186:109761. [PMID: 37348607 DOI: 10.1016/j.radonc.2023.109761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
PURPOSE To quantify the difference in accuracy of adapt-to-position (ATP), adapt-to-rotation (ATR) and adapt-to-shape (ATS) workflows used in MRI-guided online adaptive radiotherapy for prostate carcinoma (PCa) by evaluating the margins required to accommodate intra-fraction motion of the clinical target volumes for prostate (CTVpros), prostate including seminal vesicles (CTVpros + sv) and gross tumor volume (GTV). MATERIALS AND METHODS Clinical delineations of the CTVpros, CTVpros + sv and GTV of 24 patients with intermediate- and high-risk PCa, treated using ATS on a 1.5 T MR-Linac, were used for analysis. Delineations were available pre- and during beam-on. To simulate ATP and ATR workflows, we automatically generated the structures associated with these workflows using rigid transformations from the planning-MRI to the daily online MRIs. Clinical GTVs were analyzed as ATR GTVs and only ATP GTVs were simulated. Planning target volumes (PTVs) were generated with isotropic margins ranging 0.0-5.0 mm. The volumetric overlap was calculated between these PTVs and their corresponding clinical delineation on the MRI acquired during beam-on and averaged over all treatment fractions. RESULTS The PTV margin required to cover > 95% of the CTVpros was equal (2.5 mm) for all workflows. For the CTVpros + sv, this margin increased to 5.0, 4.0 and 3.5 mm in the ATP, ATR and ATS workflow, respectively. GTV coverage improved from ATP to ATR for margins up to 4.0 mm. CONCLUSION ATP, ATR and ATS workflows ensure equal coverage of the CTVpros for the current clinical margins. For the CTVpros + sv, ATS showed optimal performance. GTV coverage improves by additional adaptations to prostate rotations.
Collapse
Affiliation(s)
- Mathijs G Dassen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Tomas Janssen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Martijn Kusters
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Floris Pos
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Linda G W Kerkmeijer
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Erik van der Bijl
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
9
|
Hooshangnejad H, Miles D, Hill C, Narang A, Ding K, Han-Oh S. Inter-Breath-Hold Geometric and Dosimetric Variations in Organs at Risk during Pancreatic Stereotactic Body Radiotherapy: Implications for Adaptive Radiation Therapy. Cancers (Basel) 2023; 15:4332. [PMID: 37686608 PMCID: PMC10486406 DOI: 10.3390/cancers15174332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related death, with nearly 60,000 cases each year and less than a 10% 5-year overall survival rate. Radiation therapy (RT) is highly beneficial as a local-regional anticancer treatment. As anatomical variation is of great concern, motion management techniques, such as DIBH, are commonly used to minimize OARs toxicities; however, the variability between DIBHs has not been well studied. Here, we present an unprecedented systematic analysis of patients' anatomical reproducibility over multiple DIBH motion-management technique uses for pancreatic cancer RT. We used data from 20 patients; four DIBH scans were available for each patient to design 80 SBRT plans. Our results demonstrated that (i) there is considerable variation in OAR geometry and dose between same-subject DIBH scans; (ii) the RT plan designed for one scan may not be directly applicable to another scan; (iii) the RT treatment designed using a DIBH simulation CT results in different dosimetry in the DIBH treatment delivery; and (iv) this confirms the importance of adaptive radiation therapy (ART), such as MR-Linacs, for pancreatic RT delivery. The ART treatment delivery technique can account for anatomical variation between referenced and scheduled plans, and thus avoid toxicities of OARs because of anatomical variations between DIBH patient setups.
Collapse
Affiliation(s)
- Hamed Hooshangnejad
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; (D.M.); (C.H.); (A.N.); (K.D.)
| | - Devin Miles
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; (D.M.); (C.H.); (A.N.); (K.D.)
| | - Colin Hill
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; (D.M.); (C.H.); (A.N.); (K.D.)
| | - Amol Narang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; (D.M.); (C.H.); (A.N.); (K.D.)
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; (D.M.); (C.H.); (A.N.); (K.D.)
| | - Sarah Han-Oh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; (D.M.); (C.H.); (A.N.); (K.D.)
| |
Collapse
|
10
|
Feng X, Tang B, Yao X, Liu M, Liao X, Yuan K, Peng Q, Orlandini LC. Effectiveness of bladder filling control during online MR-guided adaptive radiotherapy for rectal cancer. Radiat Oncol 2023; 18:136. [PMID: 37592338 PMCID: PMC10436664 DOI: 10.1186/s13014-023-02315-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Magnetic resonance-guided adaptive radiotherapy (MRgART) treatment sessions at MR-Linac are time-consuming and changes in organs at risk volumes can impact the treatment dosimetry. This study aims to evaluate the feasibility to control bladder filling during the rectum MRgART online session and its effectiveness on plan dosimetry. METHODS A total of 109 online adaptive sessions of 24 rectum cancer patients treated at Unity 1.5 T MR-Linac with a short course radiotherapy (25 Gy, 5 Gy × 5) for whom the adaptive plan was optimized and recalculated online based on the daily magnetic resonance imaging (MRI) were analysed. Patients were fitted with a bladder catheter to control bladder filling; the bladder is emptied and then partially filled with a known amount of saline at the beginning and end of the online session. A first MRI ([Formula: see text]) acquired at the beginning of the session was used for plan adaptation and the second ([Formula: see text]) was acquired while approving the adapted plan and rigidly registered with the first to ensure the appropriateness of the isodoses on the ongoing delivery treatment. For each fraction, the time interval between the two MRIs and potential bladder changes were assessed with independent metrics, and the impact on the plan dosimetry was evaluated by comparing target and organs at risk dose volume histogram cut-off points of the plan adapted on [Formula: see text] and recalculated on [Formula: see text]. RESULTS Median bladder volume variations, DSC, and HD of 8.17%, 0.922, and 2.92 mm were registered within a median time of 38 min between [Formula: see text] and [Formula: see text]; dosimetric differences < 0.65% were registered for target coverage, and < 0.5% for bladder, small bowel and femoral heads constraints, with a p value > 0.05. CONCLUSION The use of a bladder filling control procedure can help ensure the dosimetric accuracy of the online adapted treatment delivered.
Collapse
Affiliation(s)
- Xi Feng
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Bin Tang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Xinghong Yao
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Min Liu
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
- Institute of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, China
| | - Xiongfei Liao
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Ke Yuan
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Qian Peng
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Lucia Clara Orlandini
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| |
Collapse
|
11
|
Rossi L, Breedveld S, Heijmen B. Per-fraction planning to enhance optimization degrees of freedom compared to the conventional single-plan approach. Phys Med Biol 2023; 68:175014. [PMID: 37524087 DOI: 10.1088/1361-6560/acec27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Objective. In conventional radiotherapy, a single treatment plan is generated pre-treatment, and delivered in daily fractions. In this study, we propose to generate different treatment plans for all fractions ('Per-fraction' planning) to reduce cumulative organs at risk (OAR) doses. Per-fraction planning was compared to the 'Conventional' single-plan approach for non-coplanar 4 × 9.5 Gy prostate stereotactic body radiation therapy (SBRT).Approach. An in-house application for fully automated, non-coplanar multi-criterial treatment planning with integrated beam angle and fluence optimization was used for plan generations. For the Conventional approach, a single 12-beam non-coplanar IMRT plan with individualized beam angles was generated for each of the 20 included patients. In Per-fraction planning, four fraction plans were generated for each patient. For each fraction, a different set of patient-specific 12-beam configurations could be automatically selected. Per-fraction plans were sequentially generated by adding dose to already generated fraction plan(s). For each fraction, the cumulative- and fraction dose were simultaneously optimized, allowing some minor constraint violations in fraction doses, but not in cumulative.Main results. In the Per-fraction approach, on average 32.9 ± 3.1 [29;39] unique beams per patient were used. PTV doses in the separate Per-fraction plans were acceptable and highly similar to those in Conventional plans, while also fulfilling all OAR hard constraints. When comparing total cumulative doses, Per-fraction planning showed improved bladder sparing for all patients with reductions in Dmean of 22.6% (p= 0.0001) and in D1cc of 2.0% (p= 0.0001), reductions in patient volumes receiving 30% and 50% of the prescribed dose of 54.7% and 6.3%, respectively, and a 3.1% lower rectum Dmean (p= 0.007). Rectum D1cc was 4.1% higher (p= 0.0001) and Urethra dose was similar.Significance. In this proof-of-concept paper, Per-fraction planning resulted in several dose improvements in healthy tissues compared to the Conventional single-plan approach, for similar PTV dose. By keeping the number of beams per fraction the same as in Conventional planning, reported dosimetric improvements could be obtained without increase in fraction durations. Further research is needed to explore the full potential of the Per-fraction planning approach.
Collapse
Affiliation(s)
- Linda Rossi
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Sebastiaan Breedveld
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Ben Heijmen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
12
|
Peng H, Zhang J, Xu N, Zhou Y, Tan H, Ren T. Fan beam CT-guided online adaptive external radiotherapy of uterine cervical cancer: a dosimetric evaluation. BMC Cancer 2023; 23:588. [PMID: 37365516 DOI: 10.1186/s12885-023-11089-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
PURPOSE To discuss the dosimetric advantages and reliability of the accurate delivery of online adaptive radiotherapy(online ART) for uterine cervical cancer(UCC). METHODS AND MATERIALS Six UCC patients were enrolled in this study. 95% of the planning target volume (PTV) reached 100% of the prescription dose (50.4 Gy/28fractions/6weeks) was required. The patients were scanned with uRT-Linac 506c KV-FBCT then the target volume (TV) and organs at risk (OARs) were delineated by doctors. The dosimeters designed and obtained a routine plan (Plan0). KV-FBCT was used for image guidance before subsequent fractional treatment. The online ART was processed after registration, which acquired a virtual nonadaptive radiotherapy plan (VPlan) and an adaptive plan (APlan). VPlan was the direct calculation of Plan0 on the fractional image, while APlan required adaptive optimization and calculation. In vivo dose monitoring and three-dimensional dose reconstruction were required during the implementation of APlan. RESULTS The inter-fractional volumes of the bladder and rectum changed greatly among the treatments. These changes influenced the primary gross tumor volume (GTVp) and the position deviation of GTVp and PTV and positively affected the prescription dose coverage of TV. GTVp decreased gradually along with dose accumulation. The Dmax, D98, D95, D50, and D2 of APlan were superior to those of VPlan in target dose distribution. APlan had good conformal index, homogeneity index and target coverage. The rectum V40 and Dmax, bladder V40, the small bowel V40 and Dmax of APlan were better than that of VPlan. The APlan's fractional mean γ passing rate was significantly higher than the international standard and the mean γ passing rate of all cases after the three-dimensional reconstruction was higher than 97.0%. CONCLUSION Online ART in external radiotherapy of UCC significantly improved the dose distribution and can become an ideal technology to achieve individualized precise radiotherapy.
Collapse
Affiliation(s)
- Haibo Peng
- Oncology Department, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
- Key Clinical Specialty of Sichuan Province (Oncology Department), The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
- Clinical Medical School, Chengdu Medical College, Chengdu, 610500, China
| | - Jie Zhang
- Oncology Department, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
- Key Clinical Specialty of Sichuan Province (Oncology Department), The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
- Clinical Medical School, Chengdu Medical College, Chengdu, 610500, China
| | - Ningyue Xu
- Oncology Department, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Yangang Zhou
- Oncology Department, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Huigang Tan
- Oncology Department, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Tao Ren
- Oncology Department, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China.
- Key Clinical Specialty of Sichuan Province (Oncology Department), The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China.
- Clinical Medical School, Chengdu Medical College, Chengdu, 610500, China.
| |
Collapse
|
13
|
Couwenberg AM, Varvoglis DN, Grieb BC, Marijnen CA, Ciombor KK, Guillem JG. New Opportunities for Minimizing Toxicity in Rectal Cancer Management. Am Soc Clin Oncol Educ Book 2023; 43:e389558. [PMID: 37307515 PMCID: PMC10450577 DOI: 10.1200/edbk_389558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Advances in multimodal management of locally advanced rectal cancer (LARC), consisting of preoperative chemotherapy and/or radiotherapy followed by surgery with or without adjuvant chemotherapy, have improved local disease control and patient survival but are associated with significant risk for acute and long-term morbidity. Recently published trials, evaluating treatment dose intensification via the addition of preoperative induction or consolidation chemotherapy (total neoadjuvant therapy [TNT]), have demonstrated improved tumor response rates while maintaining acceptable toxicity. In addition, TNT has led to an increased number of patients achieving a clinical complete response and thus eligible to pursue a nonoperative, organ-preserving, watch and wait approach, thereby avoiding toxicities associated with surgery, such as bowel dysfunction and stoma-related complications. Ongoing trials using immune checkpoint inhibitors in patients with mismatch repair-deficient tumors suggest that this subgroup of patients with LARC could potentially be treated with immunotherapy alone, sparing them the toxicity associated with preoperative treatment and surgery. However, the majority of rectal cancers are mismatch repair-proficient and less responsive to immune checkpoint inhibitors and require multimodal management. The synergy noted in preclinical studies between immunotherapy and radiotherapy on immunogenic tumor cell death has led to the design of ongoing clinical trials that explore the benefit of combining radiotherapy, chemotherapy, and immunotherapy (mainly of immune checkpoint inhibitors) and aim to increase the number of patients eligible for organ preservation.
Collapse
Affiliation(s)
- Alice M. Couwenberg
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Brian C. Grieb
- Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Corrie A.M. Marijnen
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kristen K. Ciombor
- Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Jose G. Guillem
- Department of Surgery, Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC
| |
Collapse
|
14
|
Kensen CM, Betgen A, Wiersema L, Peters FP, Kayembe MT, Marijnen CAM, van der Heide UA, Janssen TM. Online Adaptive MRI-Guided Radiotherapy for Primary Tumor and Lymph Node Boosting in Rectal Cancer. Cancers (Basel) 2023; 15:1009. [PMID: 36831354 PMCID: PMC9953931 DOI: 10.3390/cancers15041009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The purpose of this study was to characterize the motion and define the required treatment margins of the pathological mesorectal lymph nodes (GTVln) for two online adaptive MRI-guided strategies for sequential boosting. Secondly, we determine the margins required for the primary gross tumor volume (GTVprim). Twenty-eight patients treated on a 1.5T MR-Linac were included in the study. On T2-weighted images for adaptation (MRIadapt) before and verification after irradiation (MRIpost) of five treatment fractions per patient, the GTVln and GTVprim were delineated. With online adaptive MRI-guided radiotherapy, daily plan adaptation can be performed through the use of two different strategies. In an adapt-to-shape (ATS) workflow the interfraction motion is effectively corrected by redelineation and the only relevant motion is intrafraction motion, while in an adapt-to-position (ATP) workflow the margin (for GTVln) is dominated by interfraction motion. The margin required for GTVprim will be identical to the ATS workflow, assuming each fraction would be perfectly matched on GTVprim. The intrafraction motion was calculated between MRIadapt and MRIpost for the GTVln and GTVprim separately. The interfraction motion of the GTVln was calculated with respect to the position of GTVprim, assuming each fraction would be perfectly matched on GTVprim. PTV margins were calculated for each strategy using the Van Herk recipe. For GTVln we randomly sampled the original dataset 20 times, with each subset containing a single randomly selected lymph node for each patient. The resulting margins for ATS ranged between 3 and 4 mm (LR), 3 and 5 mm (CC) and 5 and 6 mm (AP) based on the 20 randomly sampled datasets for GTVln. For ATP, the margins for GTVln were 10-12 mm in LR and AP and 16-19 mm in CC. The margins for ATS for GTVprim were 1.7 mm (LR), 4.7 mm (CC) and 3.2 mm anterior and 5.6 mm posterior. Daily delineation using ATS of both target volumes results in the smallest margins and is therefore recommended for safe dose escalation to the primary tumor and lymph nodes.
Collapse
Affiliation(s)
- Chavelli M. Kensen
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Anja Betgen
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Lisa Wiersema
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Femke P. Peters
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Mutamba T. Kayembe
- Department of Scientific Administration, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Corrie A. M. Marijnen
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Uulke A. van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Tomas M. Janssen
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
15
|
Snyder J, Smith B, St-Aubin J, Dunkerley D, Shepard A, Caster J, Hyer D. Intra-fraction motion of pelvic oligometastases and feasibility of PTV margin reduction using MRI guided adaptive radiotherapy. Front Oncol 2023; 13:1098593. [PMID: 37152034 PMCID: PMC10154517 DOI: 10.3389/fonc.2023.1098593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose This study assesses the impact of intra-fraction motion and PTV margin size on target coverage for patients undergoing radiation treatment of pelvic oligometastases. Dosimetric sparing of the bowel as a function of the PTV margin is also evaluated. Materials and methods Seven patients with pelvic oligometastases previously treated on our MR-linac (35 Gy in 5 fractions) were included in this study. Retrospective adaptive plans were created for each fraction on the daily MRI datasets using PTV margins of 5 mm, 3 mm, and 2 mm. Dosimetric constraint violations and GTV coverage were measured as a function of PTV margin size. The impact of intra-fraction motion on GTV coverage was assessed by tracking the GTV position on the cine MR images acquired during treatment delivery and creating an intra-fraction dose distribution for each IMRT beam. The intra-fraction dose was accumulated for each fraction to determine the total dose delivered to the target for each PTV size. Results All OAR constraints were achieved in 85.7%, 94.3%, and 100.0% of fractions when using 5 mm, 3 mm, and 2 mm PTV margins while scaling to 95% PTV coverage. Compared to plans with a 5 mm PTV margin, there was a 27.4 ± 12.3% (4.0 ± 2.2 Gy) and an 18.5 ± 7.3% (2.7 ± 1.4 Gy) reduction in the bowel D0.5cc dose for 2 mm and 3 mm PTV margins, respectively. The target dose (GTV V35 Gy) was on average 100.0 ± 0.1% (99.6 - 100%), 99.6 ± 1.0% (97.2 - 100%), and 99.0 ± 1.4% (95.0 - 100%), among all fractions for the 5 mm, 3 mm, and 2 mm PTV margins on the adaptive plans when accounting for intra-fraction motion, respectively. Conclusion A 2 mm PTV margin achieved a minimum of 95% GTV coverage while reducing the dose to the bowel for all patients.
Collapse
|
16
|
Sun X, Dai Z, Xu M, Guo X, Su H, Li Y. Quantifying 6D tumor motion and calculating PTV margins during liver stereotactic radiotherapy with fiducial tracking. Front Oncol 2022; 12:1021119. [DOI: 10.3389/fonc.2022.1021119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
ObjectiveOur study aims to estimate intra-fraction six-dimensional (6D) tumor motion with rotational correction and the related correlations between motions of different degrees of freedom (DoF), as well as quantify sufficient anisotropic clinical target volume (CTV) to planning target volume (PTV) margins during stereotactic body radiotherapy (SBRT) of liver cancer with fiducial tracking technique.MethodsA cohort of 12 patients who were implanted with 3 or 4 golden markers were included in this study, and 495 orthogonal kilovoltage (kV) pairs of images acquired during the first fraction were used to extract the spacial position of each golden marker. Translational and rotational motions of tumor were calculated based on the marker coordinates by using an iterative closest point (ICP) algorithm. Moreover, the Pearson product-moment correlation coefficients (r) were applied to quantify the correlations between motions with different degrees of freedom (DoFs). The population mean displacement (MP¯), systematic error (Σ) and random error (σ) were obtained to calculate PTV margins based on published recipes.ResultsThe mean translational variability of tumors were 0.56, 1.24 and 3.38 mm in the left-right (LR, X), anterior-posterior (AP, Y), and superior-inferior (SI, Z) directions, respectively. The average rotational angles θX , θY and θZ around the three coordinate axes were 0.88, 1.24 and 1.12, respectively. (|r|>0.4) was obtainted between Y -Z , Y - θZ , Z -θZ and θX - θY . The PTV margins calculated based on 13 published recipes in X, Y, and Z directions were 1.08, 2.26 and 5.42 mm, and the 95% confidence interval (CI) of them were (0.88,1.28), (1.99,2.53) and (4.78,6.05), respectively.ConclusionsThe maximum translational motion was in SI direction, and the largest correlation coefficient of Y-Z was obtained. We recommend margins of 2, 3 and 7 mm in LR, AP and SI directions, respectively.
Collapse
|
17
|
van der Bijl E, Remeijer P, Sonke JJ, van der Heide UA, Janssen T. Adaptive margins for online adaptive radiotherapy. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac9175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. In online adaptive radiotherapy a new plan is generated every fraction based on the organ and clinical target volume (CTV) delineations of that fraction. This allows for a planning target volume margin that does not need to be constant over the whole course of treatment, as is the case in conventional radiotherapy. This work aims to introduce an approach to update the margins each fraction based on the per-patient treatment history and explore the potential benefits of such adaptive margins. Approach. We introduce a novel methodology to implement adaptive margins, isotropic and anisotropic, during a treatment course based on the accumulated dose to the CTV. We then simulate treatment histories for treatments delivered in up to 20 fractions using various choices for the standard deviations of the systematic and random errors and homogeneous and inhomogeneous dose distributions. The treatment-averaged adaptive margin was compared to standard constant margins. The change in the minimum dose delivered to the CTV was compared on a patient and a population level. All simulations were performed within the van Herk approach and its known limitations. Main results. The population mean treatment-averaged margins are down to 70% and 55% of the corresponding necessary constant margins for the isotropic and anisotropic approach. The reduction increases with longer fractionation schemes and an inhomogeneous target dose distribution. Most of the benefit can be attributed to the elimination of the effective systematic error over the course of treatment. Interpatient differences in treatment-averaged margins were largest for the isotropic margins. For the 10% of patients that would receive a lower than prescribed dose to the CTV this minimum dose to the CTV is increased using the adaptive margin approaches. Significance. Adaptive margins can allow to reduce margins in most patients without compromising patients with greater than average target motion.
Collapse
|