1
|
Gardin C, Ferroni L, Erdoğan YK, Zanotti F, De Francesco F, Trentini M, Brunello G, Ercan B, Zavan B. Nanostructured Modifications of Titanium Surfaces Improve Vascular Regenerative Properties of Exosomes Derived from Mesenchymal Stem Cells: Preliminary In Vitro Results. NANOMATERIALS 2021; 11:nano11123452. [PMID: 34947800 PMCID: PMC8707709 DOI: 10.3390/nano11123452] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023]
Abstract
(1) Background: Implantation of metal-based scaffolds is a common procedure for treating several diseases. However, the success of the long-term application is limited by an insufficient endothelialization of the material surface. Nanostructured modifications of metal scaffolds represent a promising approach to faster biomaterial osteointegration through increasing of endothelial commitment of the mesenchymal stem cells (MSC). (2) Methods: Three different nanotubular Ti surfaces (TNs manufactured by electrochemical anodization with diameters of 25, 80, or 140 nm) were seeded with human MSCs (hMSCs) and their exosomes were isolated and tested with human umbilical vein endothelial cells (HUVECs) to assess whether TNs can influence the secretory functions of hMSCs and whether these in turn affect endothelial and osteogenic cell activities in vitro. (3) Results: The hMSCs adhered on all TNs and significantly expressed angiogenic-related factors after 7 days of culture when compared to untreated Ti substrates. Nanomodifications of Ti surfaces significantly improved the release of hMSCs exosomes, having dimensions below 100 nm and expressing CD63 and CD81 surface markers. These hMSC-derived exosomes were efficiently internalized by HUVECs, promoting their migration and differentiation. In addition, they selectively released a panel of miRNAs directly or indirectly related to angiogenesis. (4) Conclusions: Preconditioning of hMSCs on TNs induced elevated exosomes secretion that stimulated in vitro endothelial and cell activity, which might improve in vivo angiogenesis, supporting faster scaffold integration.
Collapse
Affiliation(s)
- Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (C.G.); (L.F.)
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (C.G.); (L.F.)
| | - Yaşar Kemal Erdoğan
- Biomedical Engineering Program, Middle East Technical University, Ankara 06800, Turkey; (Y.K.E.); (B.E.)
- Department of Biomedical Engineering, Isparta University of Applied Science, Isparta 32260, Turkey
| | - Federica Zanotti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.)
| | - Francesco De Francesco
- Department of Plastic and Reconstructive Surgery-Hand Surgery Unit, Azienda ‘Ospedali Riuniti’, 60126 Ancona, Italy;
| | - Martina Trentini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.)
| | - Giulia Brunello
- Department of Neurosciences, Dentistry Section, University of Padova, 35128 Padova, Italy;
- Department of Oral Surgery, University Clinic Düsseldorf, 40225 Dusseldorf, Germany
| | - Batur Ercan
- Biomedical Engineering Program, Middle East Technical University, Ankara 06800, Turkey; (Y.K.E.); (B.E.)
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara 06800, Turkey
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.)
- Correspondence: ; Tel.: +39-0532455502
| |
Collapse
|
2
|
Al-Jarsha M, Moulisová V, Leal-Egaña A, Connell A, Naudi KB, Ayoub AF, Dalby MJ, Salmerón-Sánchez M. Engineered Coatings for Titanium Implants To Present Ultralow Doses of BMP-7. ACS Biomater Sci Eng 2018; 4:1812-1819. [PMID: 29862317 PMCID: PMC5973637 DOI: 10.1021/acsbiomaterials.7b01037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/22/2018] [Indexed: 01/11/2023]
Abstract
![]()
The
ongoing research to improve the clinical outcome of titanium
implants has resulted in the implemetation of multiple approches to
deliver osteogenic growth factors accelerating and sustaining osseointegration.
Here we show the presentation of human bone morphogenetic protein
7 (BMP-7) adsorbed to titanium discs coated with poly(ethyl acrylate)
(PEA). We have previously shown that PEA promotes fibronectin organization
into nanonetworks exposing integrin- and growth-factor-binding domains,
allowing a synergistic interaction at the integrin/growth factor receptor
level. Here, titanium discs were coated with PEA and fibronectin and
then decorated with ng/mL doses of BMP-7. Human mesenchymal stem cells
were used to investigate cellular responses on these functionalized
microenvironments. Cell adhesion, proliferation, and mineralization,
as well as osteogenic markers expression (osteopontin and osteocalcin)
revealed the ability of the system to be more potent in osteodifferentiation
of the mesenchymal cells than combinations of titanium and BMP-7 in
absence of PEA coatings. This work represents a novel strategy to
improve the biological activity of titanium implants with BMP-7.
Collapse
Affiliation(s)
- Mohammed Al-Jarsha
- Department of Oral and Maxillofacial Surgery, Dental Hospital and School, Glasgow University, G2 3JZ Glasgow, United Kingdom.,Department of Oral Surgery, College of Dentistry, University of Baghdad, 10001Baghdad, Iraq
| | - Vladimíra Moulisová
- The Centre for the Cellular Microenvironment, University of Glasgow, G12 8LT Glasgow, United Kingdom
| | - Aldo Leal-Egaña
- The Centre for the Cellular Microenvironment, University of Glasgow, G12 8LT Glasgow, United Kingdom
| | - Andrew Connell
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Kurt B Naudi
- Department of Oral and Maxillofacial Surgery, Dental Hospital and School, Glasgow University, G2 3JZ Glasgow, United Kingdom
| | - Ashraf F Ayoub
- Department of Oral and Maxillofacial Surgery, Dental Hospital and School, Glasgow University, G2 3JZ Glasgow, United Kingdom
| | - Matthew J Dalby
- The Centre for the Cellular Microenvironment, University of Glasgow, G12 8LT Glasgow, United Kingdom
| | - Manuel Salmerón-Sánchez
- The Centre for the Cellular Microenvironment, University of Glasgow, G12 8LT Glasgow, United Kingdom
| |
Collapse
|