1
|
Pan Y, Jiang Z, Ye Y, Zhu D, Li N, Yang G, Wang Y. Role and Mechanism of BMP4 in Regenerative Medicine and Tissue Engineering. Ann Biomed Eng 2023:10.1007/s10439-023-03173-6. [PMID: 37014581 DOI: 10.1007/s10439-023-03173-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/21/2023] [Indexed: 04/05/2023]
Abstract
Bone morphogenetic protein 4 (BMP4) is emerging as a promising cytokine for regenerative medicine and tissue engineering. BMP4 has been shown to promote the regeneration of teeth, periodontal tissue, bone, cartilage, the thymus, hair, neurons, nucleus pulposus, and adipose tissue, as well as the formation of skeletal myotubes and vessels. BMP4 can also contribute to the formation of tissues in the heart, lung, and kidney. However, there are certain deficiencies, including the insufficiency of the mechanism of BMP4 in some fields and an appropriate carrier of BMP4 for clinical use. There has also been a lack of in vivo experiments and orthotopic transplantation studies in some fields. BMP4 has great distance from the clinical application. Therefore, there are many BMP4-related studies waiting to be explored. This review mainly discusses the effects, mechanisms, and applications of BMP4 in regenerative medicine and tissue engineering over the last 10 years in various domains and possible improvements. BMP4 has shown great potential in regenerative medicine and tissue engineering. The research of BMP4 has broad development space and great value.
Collapse
Affiliation(s)
- Yiqi Pan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Yuer Ye
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
2
|
Bougioukli S, Chateau M, Morales H, Vakhshori V, Sugiyama O, Oakes D, Longjohn D, Cannon P, Lieberman JR. Limited potential of AAV-mediated gene therapy in transducing human mesenchymal stem cells for bone repair applications. Gene Ther 2021; 28:729-739. [PMID: 32807899 DOI: 10.1038/s41434-020-0182-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
Adeno-associated viral vectors (AAV) are unique in their ability to transduce a variety of both dividing and nondividing cells, with significantly lower risk of random genomic integration and with no known pathogenicity in humans, but their role in ex vivo regional gene therapy for bone repair has not been definitively established. The goal of this study was to test the ability of AAV vectors carrying the cDNA for BMP-2 to transduce human mesenchymal stem cells (MSCs), produce BMP-2, and induce osteogenesis in vitro as compared with lentiviral gene therapy with a two-step transcriptional amplification system lentiviral vector (LV-TSTA). To this end, we created two AAV vectors (serotypes 2 and 6) expressing the target transgene; eGFP or BMP-2. Transduction of human MSCs isolated from bone marrow (BMSCs) or adipose tissue (ASCs) with AAV2-eGFP and AAV6-eGFP led to low transduction efficiency (BMSCs: 3.57% and 8.82%, respectively, ASCs: 6.17 and 20.2%, respectively) and mean fluorescence intensity as seen with FACS analysis 7 days following transduction, even at MOIs as high as 106. In contrast, strong eGFP expression was detectable in all of the cell types post transduction with LV-TSTA-eGFP. Transduction with BMP-2 producing vectors led to minimal BMP-2 production in AAV-transduced cells 2 and 7 days following transduction. In addition, transduction of ASCs and BMSCs with AAV2-BMP-2 and AAV6-BMP-2 did not enhance their osteogenic potential as seen with an alizarin red assay. In contrast, the LV-TSTA-BMP-2-transduced cells were characterized by an abundant BMP-2 production and induction of the osteogenic phenotype in vitro (p < 0.001 vs. AAV2 and 6). Our results demonstrate that the AAV2 and AAV6 vectors cannot induce a significant transgene expression in human BMSCs and ASCs, even at MOIs as high as 106. The LV-TSTA vector is significantly superior in transducing human MSCs; thus this vector would be preferable when developing an ex vivo regional gene therapy strategy for clinical use in orthopedic surgery applications.
Collapse
Affiliation(s)
- Sofia Bougioukli
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Morgan Chateau
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heidy Morales
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Venus Vakhshori
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Oakes
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Donald Longjohn
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paula Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Wang X, Wang G, Zingales S, Zhao B. Biomaterials Enabled Cell-Free Strategies for Endogenous Bone Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:463-481. [PMID: 29897021 DOI: 10.1089/ten.teb.2018.0012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Repairing bone defects poses a major orthopedic challenge because current treatments are constrained by the limited regenerative capacity of human bone tissue. Novel therapeutic strategies, such as stem cell therapy and tissue engineering, have the potential to enhance bone healing and regeneration, and hence may improve quality of life for millions of people. However, the ex vivo expansion of stem cells and their in vivo delivery pose technical difficulties that hamper clinical translation and commercial development. A promising alternative to cell delivery-based strategies is to stimulate or augment the inherent self-repair mechanisms of the patient to promote endogenous restoration of the lost/damaged bone. There is growing evidence indicating that increasing the endogenous regenerative potency of bone tissues for therapeutics will require the design and development of new generations of biomedical devices that provide key signaling molecules to instruct cell recruitment and manipulate cell fate for in situ tissue regeneration. Currently, a broad range of biomaterial-based deployment technologies are becoming available, which allow for controlled spatial presentation of biological cues required for endogenous bone regeneration. This article aims to explore the proposed concepts and biomaterial-enabled strategies involved in the design of cell-free endogenous techniques in bone regenerative medicine.
Collapse
Affiliation(s)
- Xiaojing Wang
- 1 Dental Implant Center, Affiliated Hospital of Qingdao University , Qingdao, P.R. China .,2 School of Stomatology, Qingdao University , Qingdao, Shandong, P.R. China
| | - Guowei Wang
- 3 Department of Stomatology, Laoshan Branch of No. 401 Hospital of the Chinese Navy , Qingdao, Shandong, P.R. China
| | - Sarah Zingales
- 4 Department of Chemistry and Biochemistry, Georgia Southern University , Savannah, Georgia
| | - Baodong Zhao
- 1 Dental Implant Center, Affiliated Hospital of Qingdao University , Qingdao, P.R. China .,2 School of Stomatology, Qingdao University , Qingdao, Shandong, P.R. China
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the recent advances in gene therapy as a treatment for bone regeneration. While most fractures heal spontaneously, patients who present with fracture nonunion suffer from prolonged pain, disability, and often require additional operations to regain musculoskeletal function. RECENT FINDINGS In the last few years, BMP gene delivery by means of electroporation and sonoporation resulted in repair of nonunion bone defects in mice, rats, and minipigs. Ex vivo transfection of porcine mesenchymal stem cells (MSCs) resulted in bone regeneration following implantation in vertebral defects of minipigs. Sustained release of VEGF gene from a collagen-hydroxyapatite scaffold to the mandible of a human patient was shown to be safe and osteoinductive. In conclusion, gene therapy methods for bone regeneration are systematically becoming more efficient and show proof-of-concept in clinically relevant animal models. Yet, on the pathway to clinical use, more investigation is needed to determine the safety aspects of the various techniques in terms of biodistribution, toxicity, and tumorigenicity.
Collapse
Affiliation(s)
- Galina Shapiro
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, 91120, Jerusalem, Israel
| | - Raphael Lieber
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, 91120, Jerusalem, Israel
| | - Dan Gazit
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, 91120, Jerusalem, Israel
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP-8304, Los Angeles, CA, 90048, USA
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, 90048, USA
| | - Gadi Pelled
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, 91120, Jerusalem, Israel.
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP-8304, Los Angeles, CA, 90048, USA.
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, 90048, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, 90048, USA.
| |
Collapse
|
5
|
Ball AN, Donahue SW, Wojda SJ, McIlwraith CW, Kawcak CE, Ehrhart N, Goodrich LR. The challenges of promoting osteogenesis in segmental bone defects and osteoporosis. J Orthop Res 2018; 36:1559-1572. [PMID: 29280510 PMCID: PMC8354209 DOI: 10.1002/jor.23845] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 02/04/2023]
Abstract
Conventional clinical management of complex bone healing scenarios continues to result in 5-10% of fractures forming non-unions. Additionally, the aging population and prevalence of osteoporosis-related fractures necessitate the further exploration of novel ways to augment osteogenesis in this special population. This review focuses on the current clinical modalities available, and the ongoing clinical and pre-clinical research to promote osteogenesis in segmental bone defects, delayed unions, and osteoporosis. In summary, animal models of fracture repair are often small animals as historically significant large animal models, like the dog, continue to gain favor as companion animals. Small rodents have well-documented limitations in comparing to fracture repair in humans, and few similarities exist. Study design, number of studies, and availability of funding continue to limit large animal studies. Osteoinduction with rhBMP-2 results in robust bone formation, although long-term quality is scrutinized due to poor bone mineral quality. PTH 1-34 is the only FDA approved osteo-anabolic treatment to prevent osteoporotic fractures. Limited to 2 years of clinical use, PTH 1-34 has further been plagued by dose-related ambiguities and inconsistent results when applied to pathologic fractures in systematic human clinical studies. There is limited animal data of PTH 1-34 applied locally to bone defects. Gene therapy continues to gain popularity among researchers to augment bone healing. Non-integrating viral vectors and targeted apoptosis of genetically modified therapeutic cells is an ongoing area of research. Finally, progenitor cell therapies and the content variation of patient-side treatments (e.g., PRP and BMAC) are being studied. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1559-1572, 2018.
Collapse
Affiliation(s)
- Alyssa N. Ball
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678
| | - Seth W. Donahue
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678,,Department of Mechanical Engineering, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Samantha J. Wojda
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678,,Department of Mechanical Engineering, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - C. Wayne McIlwraith
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678
| | - Christopher E. Kawcak
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678
| | - Nicole Ehrhart
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Laurie R. Goodrich
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678
| |
Collapse
|
6
|
Wang Y, He T, Liu J, Liu H, Zhou L, Hao W, Sun Y, Wang X. Synergistic effects of overexpression of BMP‑2 and TGF‑β3 on osteogenic differentiation of bone marrow mesenchymal stem cells. Mol Med Rep 2016; 14:5514-5520. [PMID: 27878265 PMCID: PMC5355709 DOI: 10.3892/mmr.2016.5961] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 08/22/2016] [Indexed: 02/07/2023] Open
Abstract
Bone morphogenetic protein 2 (BMP-2) and transforming growth factor β (TGF-β) isoforms are important in advancing bone regeneration. The aim of the present study was to investigate the positive and reciprocal effect of TGF-β3, one of the three TGF-β isoforms, on BMP-2 in promoting osteogenic differentiation. Exogenous BMP-2 and TGF-β3 genes were separately, and in combination, overexpressed in rabbit bone marrow-derived mesenchymal stem cells (rBMSCs). Expression levels of BMP-2 and TGF-β3 were evaluated using reverse-transcription-polymerase chain reaction (RT-PCR) and Western blotting assays. Furthermore, the osteogenic differentiation capacities of BMSCs were assessed by measuring Alizarin Red S staining, an alkaline phosphatase activity assay, and quantification of the osteogenic-specific genes, Runt-related transcription factor 2 (Runx2) and Osterix (Osx). Using lentiviral-mediated transfection, robust co-transfection efficiency of >90% was achieved. RT-PCR and immunoblotting results indicated a marked elevated expression of BMP-2 and TGF-β3 in rBMSCs undergoing co-transfection, compared with transfection with BMP-2 or TGF-β3 alone, indicating that BMP-2 and TGF-β3 are synergistically expressed in rBMSCs. Furthermore, enhanced osteogenic differentiation was observed in rBMSCs co-transfected with BMP-2/TGF-β3. The present study successfully delivered BMP-2 together with TGF-β3 into rBMSCs with high efficiency for the first time. Furthermore, TGF-β3 overexpression was demonstrated to enhance the osteogenic efficacy of BMP-2 in rBMSCs, and vice versa. This provides a potential clinical therapeutic approach for regenerating the function of osseous tissue, and may present a promising strategy for bone defect healing.
Collapse
Affiliation(s)
- Yilin Wang
- Department of Biochip Laboratory, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Tian He
- Department of Orthopedic Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Jie Liu
- Department of Biochip Laboratory, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Hongzhi Liu
- Department of Orthopedic Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Lugang Zhou
- Department of Orthopedic Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Wei Hao
- Department of Orthopedic Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Yujie Sun
- Department of Orthopedic Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Xin Wang
- Department of Orthopedic Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| |
Collapse
|