1
|
Kruse B, Vasic K, Böker KO, Schilling AF, Lehmann W, Epple M. A particle-filled hydrogel based on alginate and calcium phosphate nanoparticles as bone adhesive. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:63. [PMID: 39400634 PMCID: PMC11473629 DOI: 10.1007/s10856-024-06798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/08/2024] [Indexed: 10/15/2024]
Abstract
The clinical need for bone adhesives as an alternative to osteosynthesis is evident. However, this is a challenging problem due to the moist environment in surgical sites with bone surfaces covered with blood and biomolecules like lipids or proteins. A nanoparticle-loaded hydrogel that is based on a freeze-dried powder of silica-coated calcium phosphate/carboxymethyl cellulose nanoparticles (CaP/CMC/SiO2) and an aqueous solution of sodium alginate (2 wt%) was developed and optimized with respect to the gluing ability in air and in water. The final paste was crosslinked within about one minute by calcium ions released from the calcium phosphate nanoparticles and contained about 20 wt% nanoparticles and 80 wt% water. The mechanical properties of the hydrogel were determined by extensive rheological tests. The thixotropic pasty hydrogel can be applied with a syringe. The adhesion strength was about 84 kPa between moist bone fragments in air. The hydrogel kept fragments of cortical bone well connected for >3 months during complete submersion in water. Besides water, the material consists only of biocompatible and biodegradable components (calcium phosphate, CMC, alginate). It carries only a very low dose of these materials into the bone site (mainly calcium phosphate nanoparticles). In-vitro cell culture with hMSCs that differentiated to osteoblasts confirmed a good biocompatibility of the bone adhesive formulation.
Collapse
Affiliation(s)
- Benedikt Kruse
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany
| | - Katarina Vasic
- Clinic for Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Kai O Böker
- Clinic for Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Arndt F Schilling
- Clinic for Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Wolfgang Lehmann
- Clinic for Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany.
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
2
|
Kuvshinova EA, Petrakova NV, Nikitina YO, Sviridova IK, Akhmedova SA, Kirsanova VA, Karalkin PA, Komlev VS, Sergeeva NS, Kaprin AD. Functionalization of Octacalcium Phosphate Bone Graft with Cisplatin and Zoledronic Acid: Physicochemical and Bioactive Properties. Int J Mol Sci 2023; 24:11633. [PMID: 37511391 PMCID: PMC10380611 DOI: 10.3390/ijms241411633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Bones are the fourth most frequent site of metastasis from malignant tumors, including breast cancer, prostate cancer, melanoma, etc. The bioavailability of bone tissue for chemotherapy drugs is extremely low. This requires a search for new approaches of targeted drug delivery to the tumor growth zone after surgery treatment. The aim of this work was to develop a method for octacalcium phosphate (OCP) bone graft functionalization with the cytostatic drug cisplatin to provide the local release of its therapeutic concentrations into the bone defect. OCP porous ceramic granules (OCP ceramics) were used as a platform for functionalization, and bisphosphonate zoledronic acid was used to mediate the interaction between cisplatin and OCP and enhance their binding strength. The obtained OCP materials were studied using scanning electron and light microscopy, high-performance liquid chromatography, atomic emission spectroscopy, and real-time PCR. In vitro and in vivo studies were performed on normal and tumor cell lines and small laboratory animals. The bioactivity of initial OCP ceramics was explored and the efficiency of OCP functionalization with cisplatin, zoledronic acid, and their combination was evaluated. The kinetics of drug release and changes in ceramics properties after functionalization were studied. It was established that zoledronic acid changed the physicochemical and bioactive properties of OCP ceramics and prolonged cisplatin release from the ceramics. In vitro and in vivo experiments confirmed the biocompatibility, osteoconductivity, and osteoinductivity, as well as cytostatic and antitumor properties of the obtained materials. The use of OCP ceramics functionalized with a cytostatic via the described method seems to be promising in clinics when primary or metastatic tumors of the bone tissue are removed.
Collapse
Affiliation(s)
- Ekaterina A Kuvshinova
- P.A. Herzen Moscow Research Oncology Institute, Branch of FSBI National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinsky Pass. 3, 125284 Moscow, Russia
| | - Nataliya V Petrakova
- A.A. Baikov Institute of Metallurgy and Materials Science RAS, Leninsky Avenue 49, 119334 Moscow, Russia
| | - Yulia O Nikitina
- A.A. Baikov Institute of Metallurgy and Materials Science RAS, Leninsky Avenue 49, 119334 Moscow, Russia
| | - Irina K Sviridova
- P.A. Herzen Moscow Research Oncology Institute, Branch of FSBI National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinsky Pass. 3, 125284 Moscow, Russia
| | - Suraja A Akhmedova
- P.A. Herzen Moscow Research Oncology Institute, Branch of FSBI National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinsky Pass. 3, 125284 Moscow, Russia
| | - Valentina A Kirsanova
- P.A. Herzen Moscow Research Oncology Institute, Branch of FSBI National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinsky Pass. 3, 125284 Moscow, Russia
| | - Pavel A Karalkin
- P.A. Herzen Moscow Research Oncology Institute, Branch of FSBI National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinsky Pass. 3, 125284 Moscow, Russia
- L.L. Levshin Institute of Cluster Oncology, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8-2, 119991 Moscow, Russia
| | - Vladimir S Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science RAS, Leninsky Avenue 49, 119334 Moscow, Russia
| | - Natalia S Sergeeva
- P.A. Herzen Moscow Research Oncology Institute, Branch of FSBI National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinsky Pass. 3, 125284 Moscow, Russia
| | - Andrey D Kaprin
- FSBI National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinsky Pass. 3, 125284 Moscow, Russia
- Department of Urology and Operative Nephrology, Peoples' Friendship University of Russia, Miklukho-Maklay Str., 6, 117198 Moscow, Russia
| |
Collapse
|
3
|
Saginova D, Tashmetov E, Kamyshanskiy Y, Koshanova A, Arutyunyan M, Rustambek I. The histological assessment of new bone formation with zolendronic acid loaded bone allograft in rabbit femoral bone defect. J Med Life 2023; 16:616-622. [PMID: 37305828 PMCID: PMC10251371 DOI: 10.25122/jml-2022-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/24/2023] [Indexed: 06/13/2023] Open
Abstract
The aim of this experimental study was to evaluate the effect of zolendronic acid (ZOL) combined with bone allograft prepared using the Marburg Bone Bank System on bone formation in the implant remodeling zone. Femoral bone defects with a diameter of 5 mm and a depth of 10 mm were created in 32 rabbits. Animals were divided into 2 similar groups: Group 1 (control), where defects were filled with bone allograft, and Group 2, where allograft was combined with ZOL. Eight animals from each group were sacrificed at 14- and 60-days post-surgery and bone defect healing was assessed using histopathological and histomorphometric analyses after 14 and 60 days. The results showed that new bone formation within the bone allograft was significantly greater in the control group than in the ZOL-treated group after 14 and 60 days (p<0.05). In conclusion, local co-administration of ZOL on heat-treated allograft inhibits allograft resorption and new bone formation in the bone defect.
Collapse
Affiliation(s)
- Dina Saginova
- Center for Applied Scientific Research, National Scientific Center of Traumatology and Orthopaedics named after academician N.D.Batpenov, Nur-Sultan, Kazakhstan
| | - Elyarbek Tashmetov
- Department of Surgical Diseases, Karaganda Medical University, Karaganda, Kazakhstan
| | - Yevgeniy Kamyshanskiy
- Institute of Pathology of the University Clinic, Karaganda Medical University, Karaganda, Kazakhstan
| | - Amina Koshanova
- Department of Surgical Diseases, Karaganda Medical University, Karaganda, Kazakhstan
| | - Marietta Arutyunyan
- Department of Surgical Diseases, Karaganda Medical University, Karaganda, Kazakhstan
| | - Ibrahim Rustambek
- Department of Surgical Diseases, Karaganda Medical University, Karaganda, Kazakhstan
| |
Collapse
|
4
|
Development of Injectable Calcium Sulfate and Self-Setting Calcium Phosphate Composite Bone Graft Materials for Minimally Invasive Surgery. Int J Mol Sci 2022; 23:ijms23147590. [PMID: 35886941 PMCID: PMC9323769 DOI: 10.3390/ijms23147590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
The demand of bone grafting is increasing as the population ages worldwide. Although bone graft materials have been extensively developed over the decades, only a few injectable bone grafts are clinically available and none of them can be extruded from 18G needles. To overcome the existing treatment limitations, the aim of this study is to develop ideal injectable implants from biomaterials for minimally invasive surgery. An injectable composite bone graft containing calcium sulfate hemihydrate, tetracalcium phosphate, and anhydrous calcium hydrogen phosphate (CSH/CaP paste) was prepared with different CSH/CaP ratios and different concentrations of additives. The setting time, injectability, mechanical properties, and biocompatibility were evaluated. The developed injectable CSH/CaP paste (CSH/CaP 1:1 supplemented with 6% citric acid and 2% HPMC) presented good handling properties, great biocompatibility, and adequate mechanical strength. Furthermore, the paste was demonstrated to be extruded from a syringe equipped with 18G needles and exerted a great potential for minimally invasive surgery. The developed injectable implants with tissue repairing potentials will provide an ideal therapeutic strategy for minimally invasive surgery to apply in the treatment of maxillofacial defects, certain indications in the spine, inferior turbinate for empty nose syndrome (ENS), or reconstructive rhinoplasty.
Collapse
|
5
|
Fadeeva IV, Trofimchuk ES, Forysenkova AA, Ahmed AI, Gnezdilov OI, Davydova GA, Kozlova SG, Antoniac A, Rau JV. Composite Polyvinylpyrrolidone-Sodium Alginate-Hydroxyapatite Hydrogel Films for Bone Repair and Wound Dressings Applications. Polymers (Basel) 2021; 13:polym13223989. [PMID: 34833286 PMCID: PMC8621946 DOI: 10.3390/polym13223989] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Today, the synthesis of biocompatible and bioresorbable composite materials such as “polymer matrix-mineral constituent,” which stimulate the natural growth of living tissues and the restoration of damaged parts of the body, is one of the challenging problems in regenerative medicine. In this study, composite films of bioresorbable polymers of polyvinylpyrrolidone (PVP) and sodium alginate (SA) with hydroxyapatite (HA) were obtained. HA was introduced by two different methods. In one of them, it was synthesized in situ in a solution of polymer mixture, and in another one, it was added ex situ. Phase composition, microstructure, swelling properties and biocompatibility of films were investigated. The crosslinked composite PVP-SA-HA films exhibit hydrogel swelling characteristics, increasing three times in mass after immersion in a saline solution. It was found that composite PVP-SA-HA hydrogel films containing HA synthesized in situ exhibited acute cytotoxicity, associated with the presence of HA synthesis reaction byproducts—ammonia and ammonium nitrate. On the other hand, the films with HA added ex situ promoted the viability of dental pulp stem cells compared to the films containing only a polymer PVP-SA blend. The developed composite hydrogel films are recommended for such applications, such as membranes in osteoplastic surgery and wound dressing.
Collapse
Affiliation(s)
- Inna V. Fadeeva
- Baikov Institute of Metallurgy and Material Science RAS, Leninsky, 49, 119334 Moscow, Russia;
- Correspondence: (I.V.F.); (J.V.R.)
| | - Elena S. Trofimchuk
- Department of High-Molecular Compounds, Lomonosov Moscow State University, GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia;
| | - Anna A. Forysenkova
- Baikov Institute of Metallurgy and Material Science RAS, Leninsky, 49, 119334 Moscow, Russia;
| | - Abdulrahman I. Ahmed
- Department of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia; (A.I.A.); (O.I.G.)
- Department of Physics, University of Al-Hamadaniya, Mosul 41001, Iraq
| | - Oleg I. Gnezdilov
- Department of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia; (A.I.A.); (O.I.G.)
| | - Galina A. Davydova
- Institute of Theoretical and Experimental Biophysics of RAS, Institutskaya 3, 142290 Pushchino, Moscow reg., Russia;
- National Medical Research Center of Obstetrics, Gynecology and Perinatology, Academician Oparin Str., 117997 Moscow, Russia
| | - Svetlana G. Kozlova
- Department of Natural Science, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia;
| | - Aurora Antoniac
- Department of Metallic Materials Science and Physical Metallurgy, University Politehnica of Bucharest, Street Splaiul Independentei, 060042 Bucharest, Romania;
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 00133 Rome, Italy
- Department of Analytical, Physical and Colloid Chemistry, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street, Build. 8/2, 119991 Moscow, Russia
- Correspondence: (I.V.F.); (J.V.R.)
| |
Collapse
|
6
|
Samirah, Budiatin AS, Mahyudin F, Khotib J. Fabrication and characterization of bovine hydroxyapatite-gelatin-alendronate scaffold cross-linked by glutaraldehyde for bone regeneration. J Basic Clin Physiol Pharmacol 2021; 32:555-560. [PMID: 34214349 DOI: 10.1515/jbcpp-2020-0422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/05/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Alendronate are widely used in the treatment of bone disorders characterized by inhibit osteoclast-mediated bone resorption such as Paget's disease, fibrous dysplasia, myeloma, bone metastases and osteoporosis. In recent studies alendronate improves proliferation and differentiation of osteoblasts, thereby facilitating for bone regeneration. The disadvantages of this class are their poor bioavailability and side effects on oral and intravenous application such as stomach irritation and osteonecrosis in jaw. Thus, local treatment of alendronate is needed in order to achieve high concentration of drug. Bovine hydroxyapatite-gelatin scaffold with alendronate was studied. Glutaraldehyde was used as cross-linking agent, increase the characteristics of this scaffold. The objectives of this study were to manufacture and characterize alendronate scaffold using bovine hydroxyapatite-gelatin and crosslinked by glutaraldehyde. METHODS Preparation of cross-linked bovine hydroxyapatite-gelatin and alendronate scaffold with different concentration of glutaraldehyde (0.00, 0.50, 0.75, and 1.00%). The scaffolds were characterized for compressive strength, porosity, density, swelling ratio, in vitro degradation, and cytotoxicity (the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay, shorted as MTT assay). RESULTS Bovine hydroxyapatite-gelatin-alendronate scaffold cross-linked with glutaraldehyde showed lower density than without glutaraldehyde. As glutaraldehyde concentration increased, porosity also increased. Eventually, it reduced compressive strength. Swelling ratio and in vitro degradation was negatively dependent on glutaraldehyde concentration. In addition, the scaffold has a good safety by MTT assay. CONCLUSIONS Bovine hydroxyapatite-gelatin-alendronate scaffold was fabricated with various concentrations of glutaraldehyde. The presence of glutaraldehyde on bovine hydroxyapatite-gelatin-alendronate is safe and suitable candidate scaffold for bone regeneration.
Collapse
Affiliation(s)
- Samirah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Aniek Setiya Budiatin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Ferdiansyah Mahyudin
- Department of Orthopaedic and Traumatology, Faculty of Medicines, Airlangga University, Surabaya, Indonesia
| | - Junaidi Khotib
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
7
|
Effect of zoledronic acid and graphene oxide on the physical and in vitro properties of injectable bone substitutes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111758. [PMID: 33545899 DOI: 10.1016/j.msec.2020.111758] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 12/26/2022]
Abstract
The aim of this work was to develop injectable bone substitutes (IBS) consisting of zoledronic acid (ZOL) and graphene oxide (GO) for the treatment of osteoporosis and metastasis. The powder phase was consisting of tetra calcium phosphate (TTCP), dicalcium phosphate dihyrate (DCPD) and calcium sulfate dihyrate (CSD), while the liquid phase comprised of methylcellulose (MC), gelatin and sodium citrate dihyrate (SC), ZOL and GO. The structural analysis of IBS samples was performed by Fourier Transform Infrared Spectroscopy (FTIR). Injectability, setting time and mechanical strength were investigated. Additionally, in vitro properties of synthesized IBS were analyzed by means of bioactivity, ZOL release, degradation, pH variation, PO43- ion release and cell studies. Overall, all IBS exhibited excellent injectability results with no phase separation. The setting time of the IBS was prolonged with ZOL incorporation while the prolonging effect decreased with GO incorporation. The mechanical properties decreased with ZOL addition and increased with the incorporation of GO. The maximum compressive strength was found as 25.73 MPa for 1.5GO0ZOL incorporated IBS. In vitro results showed that ZOL and GO loaded IBS also revealed clinically suitable properties with controlled release of ZOL, pH value and PO43- ions. In in vitro cell studies, both the inhibitory effect of ZOL and GO loaded IBS on MCF-7 cells and proliferative effect on osteoblast cells were observed. Moreover, the prepared IBS led to proliferation, differentiation and mineralization of osteoblasts. The results are encouraging and support the conclusion that developed IBS have promising physical and in vitro properties which needs to be further validated by gene expression and in vivo studies.
Collapse
|
8
|
Keppler AM, Saller MM, Alberton P, Westphal I, Heidenau F, Schönitzer V, Böcker W, Kammerlander C, Schieker M, Aszodi A, Neuerburg C. Bone defect reconstruction with a novel biomaterial containing calcium phosphate and aluminum oxide reinforcement. J Orthop Surg Res 2020; 15:287. [PMID: 32727506 PMCID: PMC7391532 DOI: 10.1186/s13018-020-01801-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 07/14/2020] [Indexed: 01/09/2023] Open
Abstract
Background Reconstruction of metaphyseal fractures represents a clinical challenge for orthopedic surgeons. Especially in osteoporotic bone, these fractures are frequently accompanied by osseous substance defects. In order to ensure rapid mobilization of patients, high stability requirements must be met by osteosynthesis. Various bone graft materials have been introduced in the past, such as autologous bone or exogenous bone substitute materials. These are used as bone void fillers or as augmentation techniques to ensure safe fixation of osteosynthesis. New calcium phosphate-based bone void-filling materials could be a promising alternative to autologous bone or to the currently and widely used polymethylmethacrylate (PMMA)-based cement. The aim of this study was to evaluate a novel paste-like bone void filler in vivo and in vitro with regard to biocompatibility and osteoconductivity. Methods In addition to in vitro testing of cell compatibility using pre-osteoblasts (MC3T3-E1), 35 Wistar rats were treated in vivo with implantation of various material mixtures based on calcium phosphate and aluminum oxide reinforcement in a metaphyseal drill hole defect. After 4 weeks, an examination by micro-computed tomography (μCT) and histology was performed. Results The in vitro analysis showed good biocompatibility with a high cell survival of osteoblasts. In the in vivo experiments, a significantly higher bone ingrowth compared to the empty defect was shown by μCT and histological analysis. Here, the group receiving material reinforced with aluminum oxide (Al2O3) showed a bone volume/tissue volume (BV/TV) of 89.19% compared to a BV/TV of 83.14% for the empty defect (p = 0.0013). In the group treated with a polysaccharide matrix, no increase in BV/TV was observed given a mean ratio of 80.14%. Scoring of histological sections did not reveal a significant difference between CaP and CaP that was substituted with Al2O3. Conclusion The results of this study show an encouraging first step towards the development of new pasty, bone void-filling materials. We demonstrated that a new paste-like bone-filling material, based on calcium phosphate granulates and aluminum oxide to provide strength, exhibits good biocompatibility and osteoconductivity. Further biomechanical test in an osteoporotic animal model will have to be performed, to prove feasibility in metaphyseal defects.
Collapse
Affiliation(s)
- Alexander M Keppler
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany
| | - Maximilian M Saller
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany
| | - Paolo Alberton
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany
| | - Ines Westphal
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany.,LivImplant GmbH, Starnberg, Germany
| | | | - Veronika Schönitzer
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany
| | - Wolfgang Böcker
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany
| | - Christian Kammerlander
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany
| | - Matthias Schieker
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany.,Novartis Institute for Biomedical Research, Basel, Switzerland.,LivImplant GmbH, Starnberg, Germany
| | - Attila Aszodi
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany
| | - Carl Neuerburg
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany.
| |
Collapse
|
9
|
Savi FM, Lawrence F, Hutmacher DW, Woodruff MA, Bray LJ, Wille ML. Histomorphometric Evaluation of Critical-Sized Bone Defects Using Osteomeasure and Aperio Image Analysis Systems. Tissue Eng Part C Methods 2019; 25:732-741. [PMID: 31663423 DOI: 10.1089/ten.tec.2019.0179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Most histological evaluations of critical-sized bone defects are limited to the analysis of a few regions of interest at a time. Manual and semiautomated histomorphometric approaches often have intra- and interobserver subjectivity, as well as variability in image analysis methods. Moreover, the production of large image data sets makes histological assessment and histomorphometric analysis labor intensive and time consuming. Herein, we tested and compared two image segmentation methods: thresholding (automated) and region-based (manual) modes, for quantifying complete image sets across entire critical-sized bone defects, using the widely used Osteomeasure system and the freely downloadable Aperio Image Scope software. A comparison of bone histomorphometric data showed strong agreement between the automated segmentation mode of the Osteomeasure software with the manual segmentation mode of Aperio Image Scope analysis (bone formation R2 = 0.9615 and fibrous tissue formation R2 = 0.8734). These results indicate that Aperio is capable of handling large histological images, with excellent speed performance in producing highly consistent histomorphometric evaluations compared with the Osteomeasure image analysis system. The statistical evaluation of these two major bone parameters demonstrated that Aperio Image Scope is as capable as Osteomeasure. This study developed a protocol to improve the quality of results and reduce analysis time, while also promoting the standardization of image analysis protocols for the histomorphometric analysis of critical-sized bone defect samples. Impact Statement Despite bone tissue engineering innovations increasing over the last decade, histomorphometric analysis of large bone defects used to study such approaches continues to pose a challenge for pathological assessment. This is due to the resulting large image data set, and the lack of a gold standard image analysis protocol to quantify histological outcomes. Herein, we present a standardized protocol for the image analysis of critical-sized bone defect samples stained with Goldner's Trichrome using the Osteomeasure and Aperio Image Scope image analysis systems. The results were critically examined to determine their reproducibility and accuracy for analyzing large bone defects.
Collapse
Affiliation(s)
- Flavia Medeiros Savi
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Felicity Lawrence
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Dietmar Werner Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia.,ARC Center for Additive Biomanufacturing, Queensland University of Technology, Kelvin Grove, Australia
| | - Maria Ann Woodruff
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia.,ARC Center for Additive Biomanufacturing, Queensland University of Technology, Kelvin Grove, Australia.,Biofabrication and Tissue Morphology Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Laura Jane Bray
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Marie-Luise Wille
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| |
Collapse
|
10
|
Khotib J, Lasandara CSC, Samirah S, Budiatin AS. Acceleration of Bone Fracture Healing through the Use of Natural Bovine Hydroxyapatite Implant on Bone Defect Animal Model. FOLIA MEDICA INDONESIANA 2019. [DOI: 10.20473/fmi.v55i3.15495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bone is an important organ for supports the body that stores reserve of calcium, phosphorus, and other minerals. In fracture conditions where bleeding, soft tissue edema, nerve damage, and blood vessels around the bone damage happen, they can cause the mobilization of these minerals in the surrounding tissue. One of the efforts made in the treatment of these fractures is reconnection, in which it works by filling of bone defect with a matrix and administration of anti-infection. Biomaterial filling in defective bone is thought to accelerate the healing process of bone fracture and prevent osteomyelitis. For this reason, this study evaluates the acceleration of bone fracture healing using natural hydroxyapatite (NHA) bone filler in rabbits with bone defect model. Fracture modeling was performed by surgical technique and drilling of bones with a 4.2 mm diameter to form a defect in the rabbit femur. Bone implant contained bovine hydroxyapatite-gelatin-glutaraldehyde (BHA implant) or bovine hydroxyapatite-gelatin-glutaraldehyde-gentamicin (BHA-GEN implant) that was inserted in bone defects. 27 rabbits were divided into 3 groups: the control group who had bone defect, the bone defect group was given BHA implant and the bone defect group was given BHA-GEN implant. Observation of osteoclast, osteoblast, osteocyte, BALP level, and bone morphological integrity was carried out on the 14th, 28th, and 42nd days after surgery. Histological observation of rabbit femur showed a significant difference on the number of osteoclast, osteoblast and osteocyte in all three groups. The BALP level also showed a significant difference in the group given the natural BHA bone implant compared to the control group on day 14 (p = 0.0361). Based on the result of the X-ray, there was also a better integration of rabbit femur bone in groups with the use of BHA or BHA-GEN bone implant. Thus, it can be concluded that the use of a natural BHA implant can accelerate the process of bone repair in the fracture of rabbit femur. In addition, BHA implants were compatible as a matrix for supporting the bone cell growth.
Collapse
|
11
|
Histologic and Radiographic Characteristics of Bone Filler Under Bisphosphonates. J Craniofac Surg 2019; 30:1085-1088. [PMID: 30908448 DOI: 10.1097/scs.0000000000005517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Dental implants and bone augmentation are well-established procedures used for oral rehabilitation. There is an increasing interest in biological mediators used topically for prevention of bone resorption maybe enhancement of osseointegration of dental implants. The purpose of the manuscript is to describe preliminarily the effect of bisphosphonates on the ossification pattern of bone grafts in a rat model. MATERIAL AND METHODS Twenty Wistar-derived male rats were divided into 2 groups study and control. Bone substitute was added to mandibular defects and was covered by a resorbable collagen membrane. In the study group, the membrane was soaked with bisphosphonates suspension. In the control group, the membrane was soaked with saline solution. Radiographic and histomorphometric evaluation were performed. RESULTS Radiographically, it was found that bone density was significantly higher in the study group. Histomorphometric analysis revealed a trend of higher bone volume fraction along with reduced bone substitute volume fraction in the study group, and increased number of osteoclasts and blood vessels in the control group. CONCLUSIONS Within the limitations of our study it was found that there is a trend of increasing bone quantity and radiographic bone density by application of bisphosphonates.
Collapse
|
12
|
Qadir A, Gao Y, Suryaji P, Tian Y, Lin X, Dang K, Jiang S, Li Y, Miao Z, Qian A. Non-Viral Delivery System and Targeted Bone Disease Therapy. Int J Mol Sci 2019; 20:ijms20030565. [PMID: 30699924 PMCID: PMC6386958 DOI: 10.3390/ijms20030565] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 01/01/2023] Open
Abstract
Skeletal systems provide support, movement, and protection to the human body. It can be affected by several life suffering bone disorders such as osteoporosis, osteoarthritis, and bone cancers. It is not an easy job to treat bone disorders because of avascular cartilage regions. Treatment with non-specific drug delivery must utilize high doses of systemic administration, which may result in toxicities in non-skeletal tissues and low therapeutic efficacy. Therefore, in order to overcome such limitations, developments in targeted delivery systems are urgently needed. Although the idea of a general targeted delivery system using bone targeting moieties like bisphosphonates, tetracycline, and calcium phosphates emerged a few decades ago, identification of carrier systems like viral and non-viral vectors is a recent approach. Viral vectors have high transfection efficiency but are limited by inducing immunogenicity and oncogenicity. Although non-viral vectors possess low transfection efficiency they are comparatively safe. A number of non-viral vectors including cationic lipids, cationic polymers, and cationic peptides have been developed and used for targeted delivery of DNA, RNA, and drugs to bone tissues or cells with successful consequences. Here we mainly discuss such various non-viral delivery systems with respect to their mechanisms and applications in the specific targeting of bone tissues or cells. Moreover, we discuss possible therapeutic agents that can be delivered against various bone related disorders.
Collapse
Affiliation(s)
- Abdul Qadir
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
| | - Yongguang Gao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
| | - Patil Suryaji
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
| | - Ye Tian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
| | - Xiao Lin
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
| | - Kai Dang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
| | - Shanfeng Jiang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
| | - Yu Li
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
| | - Zhiping Miao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
| |
Collapse
|
13
|
Schlickewei C, Klatte TO, Wildermuth Y, Laaff G, Rueger JM, Ruesing J, Chernousova S, Lehmann W, Epple M. A bioactive nano-calcium phosphate paste for in-situ transfection of BMP-7 and VEGF-A in a rabbit critical-size bone defect: results of an in vivo study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:15. [PMID: 30671652 DOI: 10.1007/s10856-019-6217-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to prepare an injectable DNA-loaded nano-calcium phosphate paste that is suitable as bioactive bone substitution material. For this we used the well-known potential of calcium phosphate in bone contact and supplemented it with DNA for the in-situ transfection of BMP-7 and VEGF-A in a critical-size bone defect. 24 New Zealand white rabbits were randomly divided into two groups: One group with BMP-7- and VEGF-A-encoding DNA on calcium phosphate nanoparticles and a control group with calcium phosphate nanoparticles only. The bone defect was created at the proximal medial tibia and filled with the DNA-loaded calcium phosphate paste. As control, a bone defect was filled with the calcium phosphate paste without DNA. The proximal tibia was investigated 2, 4 and 12 weeks after the operation. A histomorphological analysis of the dynamic bone parameters was carried out with the Osteomeasure system. The animals treated with the DNA-loaded calcium phosphate showed a statistically significantly increased bone volume per total volume after 4 weeks in comparison to the control group. Additionally, a statistically significant increase of the trabecular number and the number of osteoblasts per tissue area were observed. These results were confirmed by radiological analysis. The DNA-loaded bone paste led to a significantly faster healing of the critical-size bone defect in the rabbit model after 4 weeks. After 12 weeks, all defects had equally healed in both groups. No difference in the quality of the new bone was found. The injectable DNA-loaded calcium phosphate paste led to a faster and more sustained bone healing and induced an accelerated bone formation after 4 weeks. The material was well integrated into the bone defect and new bone was formed on its surface. The calcium phosphate paste without DNA led to a regular healing of the critical-size bone defect, but the healing was slower than the DNA-loaded paste. Thus, the in-situ transfection with BMP-7 and VEGF-A significantly improved the potential of calcium phosphate as pasty bone substitution material.
Collapse
Affiliation(s)
- Carsten Schlickewei
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Till O Klatte
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Yasmin Wildermuth
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Georg Laaff
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Johannes M Rueger
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Johannes Ruesing
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - Svitlana Chernousova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - Wolfgang Lehmann
- Department of Trauma, Orthopaedics and Plastic Surgery, University Hospital Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany.
| |
Collapse
|
14
|
Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater 2018; 77:1-14. [PMID: 30031162 DOI: 10.1016/j.actbio.2018.07.036] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
Abstract
Calcium phosphate is applied in many products in biomedicine, but also in toothpastes and cosmetics. In some cases, it is present in nanoparticulate form, either on purpose or after degradation or mechanical abrasion. Possible concerns are related to the biological effect of such nanoparticles. A thorough literature review shows that calcium phosphate nanoparticles as such have no inherent toxicity but can lead to an increase of the intracellular calcium concentration after endosomal uptake and lysosomal degradation. However, cells are able to clear the calcium from the cytoplasm within a few hours, unless very high doses of calcium phosphate are applied. The observed cytotoxicity in some cell culture studies, mainly for unfunctionalized particles, is probably due to particle agglomeration and subsequent sedimentation onto the cell layer, leading to a very high local particle concentration, a high particle uptake, and subsequent cell death. There is no risk from an oral uptake of calcium phosphate nanoparticles due to their rapid dissolution in the stomach. The risk from dermal or mucosal uptake is very low. Calcium phosphate nanoparticles can enter the bloodstream by inhalation, but no adverse effects have been observed, except for a prolonged exposition to high particle doses. Calcium phosphate nanoparticles inside the body (e.g. after implantation or due to abrasion) do not pose a risk as they are typically resorbed and dissolved by osteoclasts and macrophages. There is no indication for a significant influence of the calcium phosphate phase or the particle shape (e.g. spherical or rod-like) on the biological response. In summary, the risk associated with an exposition to nanoparticulate calcium phosphate in doses that are usually applied in biomedicine, health care products, and cosmetics is very low and most likely not present at all. STATEMENT OF SIGNIFICANCE Calcium phosphate is a well-established biomaterial. However, there are occasions when it occurs in a nanoparticulate form (e.g. as nanoparticle or as nanoparticulate bone substitution material) or after abrasion from a calcium phosphate-coated metal implant. In the light of the current discussion on the safety of nanoparticles, there have been concerns about potential adverse effects of nano-calcium phosphate, e.g. in a statement of a EU study group from 2016 about possible dangers associated with non-spherical nano-hydroxyapatite in cosmetics. In the US, there was a discussion in 2016 about the dangers of nano-calcium phosphate in babyfood. In this review, the potential exposition routes for nano-calcium phosphate are reviewed, with special emphasis on its application as biomaterial.
Collapse
|
15
|
Ferguson J, Diefenbeck M, McNally M. Ceramic Biocomposites as Biodegradable Antibiotic Carriers in the Treatment of Bone Infections. J Bone Jt Infect 2017; 2:38-51. [PMID: 28529863 PMCID: PMC5423569 DOI: 10.7150/jbji.17234] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Local release of antibiotic has advantages in the treatment of chronic osteomyelitis and infected fractures. The adequacy of surgical debridement is still key to successful clearance of infection but local antibiotic carriers seem to afford greater success rates by targeting the residual organisms present after debridement and delivering much higher local antibiotic concentrations compared with systemic antibiotics alone. Biodegradable ceramic carriers can be used to fill osseous defects, which reduces the dead space and provides the potential for subsequent repair of the osseous defect as they dissolve away. A dissolving ceramic antibiotic carrier also raises the possibility of single stage surgery with definitive closure and avoids the need for subsequent surgery for spacer removal. In this article we provide an overview of the properties of various biodegradable ceramics, including calcium sulphate, the calcium orthophosphate ceramics, calcium phosphate cement and polyphasic carriers. We summarise the antibiotic elution properties as investigated in previous animal studies as well as the clinical outcomes from clinical research investigating their use in the surgical management of chronic osteomyelitis. Calcium sulphate pellets have been shown to be effective in treating local infection, although newer polyphasic carriers may support greater osseous repair and reduce the risk of further fracture or the need for secondary reconstructive surgery. The use of ceramic biocomposites to deliver antibiotics together with BMPs, bisphosphonates, growth factors or living cells is under investigation and merits further study. We propose a treatment protocol, based on the Cierny-Mader classification, to help guide the appropriate selection of a suitable ceramic antibiotic carrier in the surgical treatment of chronic osteomyelitis.
Collapse
Affiliation(s)
- Jamie Ferguson
- The Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals Foundation NHS Trust, Oxford, United Kingdom
| | - Michael Diefenbeck
- The Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals Foundation NHS Trust, Oxford, United Kingdom
| | - Martin McNally
- The Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals Foundation NHS Trust, Oxford, United Kingdom
| |
Collapse
|
16
|
Targeted Delivery Systems for Molecular Therapy in Skeletal Disorders. Int J Mol Sci 2016; 17:428. [PMID: 27011176 PMCID: PMC4813278 DOI: 10.3390/ijms17030428] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 01/11/2023] Open
Abstract
Abnormalities in the integral components of bone, including bone matrix, bone mineral and bone cells, give rise to complex disturbances of skeletal development, growth and homeostasis. Non-specific drug delivery using high-dose systemic administration may decrease therapeutic efficacy of drugs and increase the risk of toxic effects in non-skeletal tissues, which remain clinical challenges in the treatment of skeletal disorders. Thus, targeted delivery systems are urgently needed to achieve higher drug delivery efficiency, improve therapeutic efficacy in the targeted cells/tissues, and minimize toxicities in non-targeted cells/tissues. In this review, we summarize recent progress in the application of different targeting moieties and nanoparticles for targeted drug delivery in skeletal disorders, and also discuss the advantages, challenges and perspectives in their clinical translation.
Collapse
|