1
|
Struijk C, Lydon KL, Husen M, Verdonk P, Michielsen J, van Wijnen AJ, Krych AJ, Saris DB. Cellular Enhancement of Frozen Meniscus Allograft Combining Native Meniscus and Mesenchymal Stromal Cell Injections. Cartilage 2024:19476035231224802. [PMID: 38321966 PMCID: PMC11569627 DOI: 10.1177/19476035231224802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024] Open
Abstract
OBJECTIVE This proof-of-concept study investigated an improved cell-based injection therapy combining mesenchymal stem cells (MSCs) and meniscus cells (MCs) to support superior meniscus allograft repopulation and early revival compared to injecting MSCs alone. DESIGN In this controlled laboratory study, frozen meniscus allograft samples were injected vertically with a cell suspension containing different ratios of MSCs and MCs or control (lactated ringers) and cultured for 28 days. Samples were analyzed weekly for cell viability, migration, and metabolism using histological and biochemical assays. Tissue medium was analyzed for matrix metalloproteinase (MMP) expression using zymography. RESULTS Cellular repopulation of frozen allografts injected with different cell suspensions was validated by immunohistochemistry. Significant higher DNA content was evidenced in grafts treated with suspensions of MCs or MC:MSC (1:4 ratio). Cell metabolic activity was significantly different between all treated groups and control group after 1 week. Allografts injected with MCs showed significantly more cell proliferation than injections with MSCs. MMP2 activity was detected in medium of all grafts cellularized with MCs with or without MSCs. Scanning electron microscopy (SEM) analysis showed resolution of the needle puncture, but not in the control group. Cell labeling of MCs upon injection of mixed MC:MSC suspensions revealed a gradual increase in the cell ratio. CONCLUSIONS The findings of this study establish that injection of MCs with or without MSCs enhances the cellularity of meniscus allograft to support early graft revival and remodeling.
Collapse
Affiliation(s)
- Caroline Struijk
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, University of Antwerp, Antwerp, Belgium
| | | | - Martin Husen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopaedic Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Verdonk
- Department of Orthopedic Surgery, University of Antwerp, Antwerp, Belgium
- Orthoca, Antwerp, Belgium
| | - Jozef Michielsen
- Department of Orthopedic Surgery, University of Antwerp, Antwerp, Belgium
| | | | - Aaron J. Krych
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Daniel B.F. Saris
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Schwer J, Ignatius A, Seitz AM. The biomechanical properties of human menisci: A systematic review. Acta Biomater 2024; 175:1-26. [PMID: 38092252 DOI: 10.1016/j.actbio.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 01/08/2024]
Abstract
Biomechanical characterization of meniscal tissue ex vivo remains a critical need, particularly for the development of suitable meniscus replacements or therapeutic strategies that target the native mechanical properties of the meniscus. To date, a huge variety of test configurations and protocols have been reported, making it extremely difficult to compare the respective outcome parameters, thereby leading to misinterpretation. Therefore, the purpose of this systematic review was to identify test-specific parameters that contribute to uncertainties in the determination of mechanical properties of the human meniscus and its attachments, which derived from common quasi-static and dynamic tests in tension, compression, and shear. Strong evidence was found that the determined biomechanical properties vary significantly depending on the specific test parameters, as indicated by up to tenfold differences in both tensile and compressive properties. Test mode (stress relaxation, creep, cyclic) and configuration (unconfined, confined, in-situ), specimen shape and dimensions, preconditioning regimes, loading rates, post-processing of experimental data, and specimen age and degeneration were identified as the most critical parameters influencing the outcome measures. In conclusion, this work highlights an unmet need for standardization and reporting guidelines to facilitate comparability and may prove beneficial for evaluating the mechanical properties of novel meniscus constructs. STATEMENT OF SIGNIFICANCE: The biomechanical properties of the human meniscus have been studied extensively over the past decades. However, it remains unclear to what extent both test protocol and specimen-related differences are responsible for the enormous variability in material properties. Therefore, this systematic review analyzes the biomechanical properties of the human meniscus in the context of the underlying testing protocol. The most sensitive parameters affecting the determination of mechanical properties were identified and critically discussed. Currently, it is of utmost importance for scientists evaluating potential meniscal scaffolds and biomaterials to have a control group rather than a direct comparison to the literature. Standardization of both test procedures and reporting requirements is needed to improve and accelerate the development of meniscal replacement constructs.
Collapse
Affiliation(s)
- Jonas Schwer
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research Ulm, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research Ulm, Ulm University Medical Center, Ulm, Germany
| | - Andreas Martin Seitz
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research Ulm, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
3
|
Xu Y, Li Y, Fu Y, Wang B, Lin T, Zou C, Huang G, Shen J, Yin J. Autologous menisci-cruciate ligament composite as a flap for soft tissue reconstruction following malignant bone tumor resection around the knee. Cancer Med 2023; 12:8027-8037. [PMID: 36622149 PMCID: PMC10134327 DOI: 10.1002/cam4.5591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Despite significant improvements in oncological treatment, the management of soft tissue defects following malignant tumor resection remains challenging. We investigated whether autologous menisci and cruciate ligament, which are traditionally discarded, can be recycled as a supplemental flap in repairing soft tissue defects following malignant bone tumor resection and endoprosthetic reconstruction around the knee. METHODS Four knee specimens were dissected to provide a basis for the design of the menisci-cruciate ligament composite. Then, 40 patients with bone malignancies around the knee were enrolled and underwent reconstruction with free or vascularized composite following malignant tumor resection. The clinical, radiographic, and functional outcomes of this technique were evaluated in >1-year follow-up in each patient and compared with 87 patients who suffered from bone malignancies around the knee and were treated by limb salvage but without composite at our center over the same period. During the follow-up, a composite from one patient who underwent secondary amputation was retrieved and examined for in vivo remodeling. RESULTS Fourteen patients were treated with vascularized composite transfer (10 distal femurs and 4 proximal tibias) and 26 patients with free composite transfer (19 distal femurs and 7 proximal tibias). The composite can be used to cover the area of soft tissue defect from 22 to 48.38 cm2 (34.67 ± 6.48 cm2 ). With contrast-enhanced ultrasound, peripheral rim healing and dotted blood flow signal at the side of anastomosis were detected on a patient 16 months after free composite transfer. Gross macroscopic remodeling and histopathologic analysis of a retrieved composite also indicated good healing with surrounding tissues and living cells in the composite. The complications and oncologic outcomes were comparable between study and control cohorts, but better Musculoskeletal Tumor Society (MSTS) score for patients reconstructed with composite (26.68 vs. 25.66, p = 0.004). Of note, MSTS score was higher for patients reconstructed with composite at distal femur subdivision compared with the same subdivision in the control cohort (26.97 vs. 25.90, p = 0.009). No statically significant difference was noted in complications, oncologic, and functional outcomes for patients reconstructed with free or vascularized composite. CONCLUSION Autogenous menisci-cruciate ligament composite is an alternative option for soft tissue reconstruction. Either vascularized or free composite can be applied, depending on the size and localization of the defect.
Collapse
Affiliation(s)
- Yu Xu
- Department of Orthopedic Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yan Li
- Department of Orthopedic Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yiwei Fu
- Department of Orthopedic Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bo Wang
- Department of Orthopedic Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tiao Lin
- Department of Orthopedic Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Changye Zou
- Department of Orthopedic Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Gang Huang
- Department of Orthopedic Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jingnan Shen
- Department of Orthopedic Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Junqiang Yin
- Department of Orthopedic Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Spierings J, Velthuijs W, Mansoor A, Bertrand ME, Uquillas JA, Ito K, Janssen RPA, Foolen J. A decellularized and sterilized human meniscus allograft for off-the-shelf meniscus replacement. J Exp Orthop 2022; 9:116. [PMID: 36464727 PMCID: PMC9719875 DOI: 10.1186/s40634-022-00555-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Meniscus tears are one of the most frequent orthopedic knee injuries, which are currently often treated performing meniscectomy. Clinical concerns comprise progressive degeneration of the meniscus tissue, a change in knee biomechanics, and an early onset of osteoarthritis. To overcome these problems, meniscal transplant surgery can be performed. However, adequate meniscal replacements remain to be a great challenge. In this research, we propose the use of a decellularized and sterilized human meniscus allograft as meniscal replacement. METHODS Human menisci were subjected to a decellularization protocol combined with sterilization using supercritical carbon dioxide (scCO2). The decellularization efficiency of human meniscus tissue was evaluated via DNA quantification and Hematoxylin & Eosin (H&E) and DAPI staining. The mechanical properties of native, decellularized, and decellularized + sterilized meniscus tissue were evaluated, and its composition was determined via collagen and glycosaminoglycan (GAG) quantification, and a collagen and GAG stain. Additionally, cytocompatibility was determined in vitro. RESULTS Human menisci were decellularized to DNA levels of ~ 20 ng/mg of tissue dry weight. The mechanical properties and composition of human meniscus were not significantly affected by decellularization and sterilization. Histologically, the decellularized and sterilized meniscus tissue had maintained its collagen and glycosaminoglycan structure and distribution. Besides, the processed tissues were not cytotoxic to seeded human dermal fibroblasts in vitro. CONCLUSIONS Human meniscus tissue was successfully decellularized, while maintaining biomechanical, structural, and compositional properties, without signs of in vitro cytotoxicity. The ease at which human meniscus tissue can be efficiently decellularized, while maintaining its native properties, paves the way towards clinical use.
Collapse
Affiliation(s)
- Janne Spierings
- grid.6852.90000 0004 0398 8763Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands ,grid.6852.90000 0004 0398 8763Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wietske Velthuijs
- grid.6852.90000 0004 0398 8763Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Amal Mansoor
- grid.6852.90000 0004 0398 8763Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands ,grid.6852.90000 0004 0398 8763Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Jorge Alfredo Uquillas
- grid.6852.90000 0004 0398 8763Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands ,grid.6852.90000 0004 0398 8763Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- grid.6852.90000 0004 0398 8763Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands ,grid.6852.90000 0004 0398 8763Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rob P. A. Janssen
- grid.6852.90000 0004 0398 8763Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands ,grid.414711.60000 0004 0477 4812Maxima Medical Centre Eindhoven/Veldhoven, Eindhoven, The Netherlands ,grid.448801.10000 0001 0669 4689Health Innovations and Technology, Department of Paramedical Sciences, Fontys University of Applied Sciences, Eindhoven, The Netherlands
| | - Jasper Foolen
- grid.6852.90000 0004 0398 8763Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands ,grid.6852.90000 0004 0398 8763Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
5
|
Zihna G, Topuz B, Günal G, Aydin HM. Preparation of hybrid meniscal constructs using hydrogels and acellular matrices. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:587-611. [PMID: 36219154 DOI: 10.1080/09205063.2022.2135078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To search for a suitable meniscus repair material, acellular hybrid scaffolds consisting of in situ cross-linkable 3-D interpenetrating network structures were obtained by decellularization of the meniscus tissues followed by integration of the gel system. Decellularization efficiency was confirmed using a DNA quantification assay (82% decrease in DNA content) and histological stainings. In the second part of the study, the gelatin molecule was functionalized by adding methacrylic anhydride and the degree of functionalization was found to be 75% by (Proton-Nuclear Magnetic Resonance) 1H-NMR. Using this, a series of hybrid constructs named GelMA-Hybrid (G-Hybrid), GELMA/PEGDMA-Hybrid (PG-Hybrid), and GelMA/PEGDMA/HAMA-Hybrid (PGH-Hybrid) were prepared by cross-linking with UVA. Changes in the chemical structure were determined with Fourier Transform Infrared Spectrophotometer (FTIR). Water uptake capacities of cross-linked hybrid structures were measured in swelling studies, and it was found that hybrid scaffolds showed similar swelling properties compared to native counterparts. By compressive mechanical tests, enhanced mechanical properties were revealed in cross-linked scaffolds with PGH-Hybrid having the highest cross-link density. Protein denaturation and decomposition transition temperatures were improved by adding hydrogels to acellular scaffolds according to thermal gravimetric analyses (TGA). Cross-linked acellular scaffolds have exhibited a behavior close to native tissues with below 25% mass loss in phosphate buffer saline (PBS) and enzymatic solution. Cell viability was examined through Alamar Blue on the first day and cell viability in hybrid constructs was found to be above 80% while it was closer to the control group on the 7th day. It was concluded that the developed biomaterials could be used in meniscus tissue engineering with their tunable physicochemical and mechanical properties.
Collapse
Affiliation(s)
- Gizem Zihna
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Bengisu Topuz
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Gülçin Günal
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Halil Murat Aydin
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
- Centre for Bioengineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Ding Y, Zhang W, Sun B, Mo X, Wu J. Cyclic freeze–thaw grinding to decellularize meniscus for fabricating porous, elastic scaffolds. J Biomed Mater Res A 2022; 110:1824-1839. [PMID: 36082975 DOI: 10.1002/jbm.a.37435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yangfan Ding
- Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Biologial Science and Medical Engineering Donghua University Shanghai China
| | - Weixing Zhang
- Department of Critical Care Medicine, Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Biologial Science and Medical Engineering Donghua University Shanghai China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Biologial Science and Medical Engineering Donghua University Shanghai China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Biologial Science and Medical Engineering Donghua University Shanghai China
| |
Collapse
|
7
|
Ding G, Du J, Hu X, Ao Y. Mesenchymal Stem Cells From Different Sources in Meniscus Repair and Regeneration. Front Bioeng Biotechnol 2022; 10:796367. [PMID: 35573249 PMCID: PMC9091333 DOI: 10.3389/fbioe.2022.796367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/11/2022] [Indexed: 01/22/2023] Open
Abstract
Meniscus damage is a common trauma that often arises from sports injuries or menisci tissue degeneration. Current treatment methods focus on the repair, replacement, and regeneration of the meniscus to restore its original function. The advance of tissue engineering provides a novel approach to restore the unique structure of the meniscus. Recently, mesenchymal stem cells found in tissues including bone marrow, peripheral blood, fat, and articular cavity synovium have shown specific advantages in meniscus repair. Although various studies explore the use of stem cells in repairing meniscal injuries from different sources and demonstrate their potential for chondrogenic differentiation, their meniscal cartilage-forming properties are yet to be systematically compared. Therefore, this review aims to summarize and compare different sources of mesenchymal stem cells for meniscal repair and regeneration.
Collapse
Affiliation(s)
- Guocheng Ding
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jianing Du
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Yingfang Ao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
8
|
Ahmed E, Saleh T, Xu M. Recellularization of Native Tissue Derived Acellular Scaffolds with Mesenchymal Stem Cells. Cells 2021; 10:cells10071787. [PMID: 34359955 PMCID: PMC8304639 DOI: 10.3390/cells10071787] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
The functionalization of decellularized scaffolds is still challenging because of the recellularization-related limitations, including the finding of the most optimal kind of cell(s) and the best way to control their distribution within the scaffolds to generate native mimicking tissues. That is why researchers have been encouraged to study stem cells, in particular, mesenchymal stem cells (MSCs), as alternative cells to repopulate and functionalize the scaffolds properly. MSCs could be obtained from various sources and have therapeutic effects on a wide range of inflammatory/degenerative diseases. Therefore, in this mini-review, we will discuss the benefits using of MSCs for recellularization, the factors affecting their efficiency, and the drawbacks that may need to be overcome to generate bioengineered transplantable organs.
Collapse
Affiliation(s)
- Ebtehal Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt;
| | - Tarek Saleh
- Department of Animal Surgery, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt;
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Correspondence: or ; Tel.: +1-513-558-4725; Fax: +1-513-558-2141
| |
Collapse
|
9
|
Abstract
BACKGROUND In spite of advances in the treatment of cartilage defects using cell and scaffold-based therapeutic strategies, the long-term outcome is still not satisfying since clinical scores decline years after treatment. Scaffold materials currently used in clinical settings have shown limitations in providing suitable biomechanical properties and an authentic and protective environment for regenerative cells. To tackle this problem, we developed a scaffold material based on decellularised human articular cartilage. METHODS Human articular cartilage matrix was engraved using a CO2 laser and treated for decellularisation and glycosaminoglycan removal. Characterisation of the resulting scaffold was performed via mechanical testing, DNA and GAG quantification and in vitro cultivation with adipose-derived stromal cells (ASC). Cell vitality, adhesion and chondrogenic differentiation were assessed. An ectopic, unloaded mouse model was used for the assessment of the in vivo performance of the scaffold in combination with ASC and human as well as bovine chondrocytes. The novel scaffold was compared to a commercial collagen type I/III scaffold. FINDINGS Crossed line engravings of the matrix allowed for a most regular and ubiquitous distribution of cells and chemical as well as enzymatic matrix treatment was performed to increase cell adhesion. The biomechanical characteristics of this novel scaffold that we term CartiScaff were found to be superior to those of commercially available materials. Neo-tissue was integrated excellently into the scaffold matrix and new collagen fibres were guided by the laser incisions towards a vertical alignment, a typical feature of native cartilage important for nutrition and biomechanics. In an ectopic, unloaded in vivo model, chondrocytes and mesenchymal stromal cells differentiated within the incisions despite the lack of growth factors and load, indicating a strong chondrogenic microenvironment within the scaffold incisions. Cells, most noticeably bone marrow-derived cells, were able to repopulate the empty chondrocyte lacunae inside the scaffold matrix. INTERPRETATION Due to the better load-bearing, its chondrogenic effect and the ability to guide matrix-deposition, CartiScaff is a promising biomaterial to accelerate rehabilitation and to improve long term clinical success of cartilage defect treatment. FUNDING Austrian Research Promotion Agency FFG ("CartiScaff" #842455), Lorenz Böhler Fonds (16/13), City of Vienna Competence Team Project Signaltissue (MA23, #18-08).
Collapse
|
10
|
Repopulation of decellularised articular cartilage by laser-based matrix engraving. EBioMedicine 2021; 64:103196. [PMID: 33483297 PMCID: PMC7910698 DOI: 10.1016/j.ebiom.2020.103196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/25/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
Background In spite of advances in the treatment of cartilage defects using cell and scaffold-based therapeutic strategies, the long-term outcome is still not satisfying since clinical scores decline years after treatment. Scaffold materials currently used in clinical settings have shown limitations in providing suitable biomechanical properties and an authentic and protective environment for regenerative cells. To tackle this problem, we developed a scaffold material based on decellularised human articular cartilage. Methods Human articular cartilage matrix was engraved using a CO2 laser and treated for decellularisation and glycosaminoglycan removal. Characterisation of the resulting scaffold was performed via mechanical testing, DNA and GAG quantification and in vitro cultivation with adipose-derived stromal cells (ASC). Cell vitality, adhesion and chondrogenic differentiation were assessed. An ectopic, unloaded mouse model was used for the assessment of the in vivo performance of the scaffold in combination with ASC and human as well as bovine chondrocytes. The novel scaffold was compared to a commercial collagen type I/III scaffold. Findings Crossed line engravings of the matrix allowed for a most regular and ubiquitous distribution of cells and chemical as well as enzymatic matrix treatment was performed to increase cell adhesion. The biomechanical characteristics of this novel scaffold that we term CartiScaff were found to be superior to those of commercially available materials. Neo-tissue was integrated excellently into the scaffold matrix and new collagen fibres were guided by the laser incisions towards a vertical alignment, a typical feature of native cartilage important for nutrition and biomechanics. In an ectopic, unloaded in vivo model, chondrocytes and mesenchymal stromal cells differentiated within the incisions despite the lack of growth factors and load, indicating a strong chondrogenic microenvironment within the scaffold incisions. Cells, most noticeably bone marrow-derived cells, were able to repopulate the empty chondrocyte lacunae inside the scaffold matrix. Interpretation Due to the better load-bearing, its chondrogenic effect and the ability to guide matrix-deposition, CartiScaff is a promising biomaterial to accelerate rehabilitation and to improve long term clinical success of cartilage defect treatment. Funding Austrian Research Promotion Agency FFG (“CartiScaff” #842455), Lorenz Böhler Fonds (16/13), City of Vienna Competence Team Project Signaltissue (MA23, #18-08)
Collapse
|
11
|
Filardo G, Petretta M, Cavallo C, Roseti L, Durante S, Albisinni U, Grigolo B. Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold. Bone Joint Res 2019; 8:101-106. [PMID: 30915216 PMCID: PMC6397325 DOI: 10.1302/2046-3758.82.bjr-2018-0134.r1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objectives Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts young patients at higher risk of undergoing meniscal surgery and, therefore, at higher risk of osteoarthritis. In this study, we undertook proof-of-concept research to develop a cellularized human meniscus by using 3D bioprinting technology. Methods A 3D model of bioengineered medial meniscus tissue was created, based on MRI scans of a human volunteer. The Digital Imaging and Communications in Medicine (DICOM) data from these MRI scans were processed using dedicated software, in order to obtain an STL model of the structure. The chosen 3D Discovery printing tool was a microvalve-based inkjet printhead. Primary mesenchymal stem cells (MSCs) were isolated from bone marrow and embedded in a collagen-based bio-ink before printing. LIVE/DEAD assay was performed on realized cell-laden constructs carrying MSCs in order to evaluate cell distribution and viability. Results This study involved the realization of a human cell-laden collagen meniscus using 3D bioprinting. The meniscus prototype showed the biological potential of this technology to provide an anatomically shaped, patient-specific construct with viable cells on a biocompatible material. Conclusion This paper reports the preliminary findings of the production of a custom-made, cell-laden, collagen-based human meniscus. The prototype described could act as the starting point for future developments of this collagen-based, tissue-engineered structure, which could aid the optimization of implants designed to replace damaged menisci. Cite this article: G. Filardo, M. Petretta, C. Cavallo, L. Roseti, S. Durante, U. Albisinni, B. Grigolo. Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold. Bone Joint Res 2019;8:101–106. DOI: 10.1302/2046-3758.82.BJR-2018-0134.R1.
Collapse
Affiliation(s)
- G Filardo
- Applied and Translational Research (ATR) Center, IRCCS - Istituto Ortopedico Rizzoli, Bologna, Italy
| | - M Petretta
- Laboratory RAMSES, Laboratorio RAMSES, Rizzoli Research, Innovation & Technology Department (RIT), IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; RegenHu Ltd, Villaz-St-Pierre, Switzerland
| | - C Cavallo
- Laboratorio RAMSES, Rizzoli Research, Innovation & Technology Department (RIT), IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - L Roseti
- Laboratorio RAMSES, Rizzoli Research, Innovation & Technology Department (RIT), IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - S Durante
- Struttura Complessa Radiologia Diagnostica ed Interventistica, Dipartimento Patologie Ortopediche-Traumatologiche Complesse, IRCCS - Istituto Ortopedico Rizzoli, Bologna, Italy
| | - U Albisinni
- Struttura Complessa Radiologia Diagnostica ed Interventistica, Dipartimento Patologie Ortopediche-Traumatologiche Complesse, IRCCS - Istituto Ortopedico Rizzoli, Bologna, Italy
| | - B Grigolo
- Laboratorio RAMSES, Rizzoli Research, Innovation & Technology Department (RIT), IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
12
|
Tissue-Engineered Grafts from Human Decellularized Extracellular Matrices: A Systematic Review and Future Perspectives. Int J Mol Sci 2018; 19:ijms19124117. [PMID: 30567407 PMCID: PMC6321114 DOI: 10.3390/ijms19124117] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering and regenerative medicine involve many different artificial and biologic materials, frequently integrated in composite scaffolds, which can be repopulated with various cell types. One of the most promising scaffolds is decellularized allogeneic extracellular matrix (ECM) then recellularized by autologous or stem cells, in order to develop fully personalized clinical approaches. Decellularization protocols have to efficiently remove immunogenic cellular materials, maintaining the nonimmunogenic ECM, which is endowed with specific inductive/differentiating actions due to its architecture and bioactive factors. In the present paper, we review the available literature about the development of grafts from decellularized human tissues/organs. Human tissues may be obtained not only from surgery but also from cadavers, suggesting possible development of Human Tissue BioBanks from body donation programs. Many human tissues/organs have been decellularized for tissue engineering purposes, such as cartilage, bone, skeletal muscle, tendons, adipose tissue, heart, vessels, lung, dental pulp, intestine, liver, pancreas, kidney, gonads, uterus, childbirth products, cornea, and peripheral nerves. In vitro recellularizations have been reported with various cell types and procedures (seeding, injection, and perfusion). Conversely, studies about in vivo behaviour are poorly represented. Actually, the future challenge will be the development of human grafts to be implanted fully restored in all their structural/functional aspects.
Collapse
|