1
|
Rameshbabu AP, Bankoti K, Datta S, Subramani E, Apoorva A, Ghosh P, Jana S, Manchikanti P, Roy S, Chaudhury K, Dhara S. Bioinspired 3D porous human placental derived extracellular matrix/silk fibroin sponges for accelerated bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110990. [PMID: 32487403 DOI: 10.1016/j.msec.2020.110990] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/06/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022]
Abstract
Critical bone defects arising from traumatic injury and diseases are of major health concern since they are unable to heal spontaneously without clinical intervention. In this context, bone tissue engineering provides an attractive approach to treat bone defects by providing a bioactive template which has the potential to guide osseous tissue regeneration. In this study, porous hybrid placental extracellular matrix sponge (PIMS) was fabricated by a combinatorial method using silk fibroin (SF)/placental derived extracellular matrix and subsequently evaluated its efficacy towards bone tissue regeneration. The presence of intrinsic growth factors was evidenced by immunoblotting of the extracted proteins derived from the placental derived extracellular matrix. This growth factor rich PIMS lends a unique bioactive scaffolding to human amniotic mesenchymal stem cells (HAMSCs) which supported enhanced proliferation as well as superior osteogenic differentiation. Gene expression studies demonstrated significant up-regulation of osteogenic related genes in the PIMS group. PIMS when implanted in the chick chorioallantoic membrane, significantly attracted allantoic vessels revealing its potential to stimulate angiogenesis ex vivo. Furthermore, no severe immune response to the host was observed on subcutaneous implantation of PIMS in vivo. Instead, it supported the formation of blood vessels, revealing its outstanding biocompatibility. Additionally, critical tibial defects treated with PIMS demonstrated higher bone volume after six weeks when analyzed by micro-CT, which was accompanied by high mineral density. Histological and immunofluorescence studies validated the results and revealed enhanced osseous tissue regeneration after six weeks of surgery. All these findings recapitulated that the growth factors incorporated bioactive PIMS could perform as an appropriate matrix for osteogenic differentiation and efficient bone regeneration.
Collapse
Affiliation(s)
- Arun Prabhu Rameshbabu
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Kamakshi Bankoti
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sayanti Datta
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Elavarasan Subramani
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anupam Apoorva
- School of Bio Science, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Paulomi Ghosh
- CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032, India
| | - Subhodeep Jana
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Padmavati Manchikanti
- School of Energy Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sabyasachi Roy
- Department of Gynaecology, Midnapore Medical College, Paschim Medinipur 721101, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
2
|
Promoting osteoblast proliferation on polymer bone substitutes with bone-like structure by combining hydroxyapatite and bioactive glass. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:1-9. [DOI: 10.1016/j.msec.2018.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 08/14/2018] [Accepted: 11/03/2018] [Indexed: 12/30/2022]
|