1
|
Yu Y, Robinson DL, Ackland DC, Yang Y, Lee PVS. The influence of lumbar vertebra and cage related factors on cage-endplate contact after lumbar interbody fusion: An in-vitro experimental study. J Mech Behav Biomed Mater 2024; 160:106754. [PMID: 39317094 DOI: 10.1016/j.jmbbm.2024.106754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Lumbar interbody fusion (LIF) using interbody cages is an established treatment for lumbar degenerative disc disease, but fusion results are known to be affected by risk factors such as bone mineral density (BMD), endplate geometry and cage position. At present, direct measurement of endplate-cage contact variables that affect LIF have not been fully identified. The aim of this study was to use cadaveric experiments to investigate the dependency between BMD, endplate geometry, cage parameters like type, orientation, position, and contact variables like stress and area. One vertebral body specimen from each of the five lumbar positions was harvested from five male donors. The lower half of each vertebra was potted and placed in a material testing machine (Instron 8874). A spinal cage was clamped to the machine then lowered to bring it into contact against the superior endplate. A lockable ball-joint was used to rotate the cage such that its inferior surface was congruent with the local endplate surface. A pressure sensor (Tekscan) was placed between the cage and endplate to record contact area and the peak and average contact pressures. Axial compression of 400 N was performed for five positions using a straight cage, and in one anterior position using a curved cage. The linear mixed model was utilised to perform data analyses for experimental results with statistical significance set at p < 0.05. The results indicated two trends toward significance for contact area, one for volumetric BMD (vBMD) of the vertebra (p = 0.081), and another for predicted contact area (p = 0.057). Peak contact pressure correlated significantly with vBMD (p = 0.041), and there was a trend between average contact pressure and lateral position of cage (p = 0.051). In addition, predicted contact area correlated significantly with cage orientation (p < 0.001). These results indicated that high vBMD of vertebra and a medially positioned cage led to higher contact pressures. Logically, low vBMD of vertebra and transverse cage orientation increased the contact area between the cage and endplate. In conclusion, the study identified significant influence of vBMD of vertebra, cage position and orientation on cage-endplate contact which may help to inform cage selection and design for LIF.
Collapse
Affiliation(s)
- Yihang Yu
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Dale L Robinson
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - David C Ackland
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yi Yang
- Department of Orthopaedics, The Royal Melbourne Hospital, Parkville, VIC, 3052, Australia
| | - Peter Vee Sin Lee
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
2
|
Nurmukhametov R, De Jesus Encarnacion Ramirez M, Dosanov M, Medetbek A, Kudryakov S, Reyes Soto G, Ponce Espinoza CB, Mukengeshay JN, Mpoyi Cherubin T, Nikolenko V, Gushcha A, Sharif S, Montemurro N. Exploring Pathways for Pain Relief in Treatment and Management of Lumbar Foraminal Stenosis: A Review of the Literature. Brain Sci 2024; 14:740. [PMID: 39199435 PMCID: PMC11352478 DOI: 10.3390/brainsci14080740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Lumbar foraminal stenosis (LFS) involves the narrowing of neural foramina, leading to nerve compression, significant lower back pain and radiculopathy, particularly in the aging population. Management includes physical therapy, medications and potentially invasive surgeries such as foraminotomy. Advances in diagnostic and treatment strategies are essential due to LFS's complexity and prevalence, which underscores the importance of a multidisciplinary approach in optimizing patient outcomes. METHOD This literature review on LFS employed a systematic methodology to gather and synthesize recent scientific data. A comprehensive search was conducted across PubMed, Scopus and Cochrane Library databases using specific keywords related to LFS. The search, restricted to English language articles from 1 January 2000 to 31 December 2023, focused on peer-reviewed articles, clinical trials and reviews. Due to the heterogeneity among the studies, data were qualitatively synthesized into themes related to diagnosis, treatment and pathophysiology. RESULTS This literature review on LFS analyzed 972 articles initially identified, from which 540 remained after removing duplicates. Following a rigorous screening process, 20 peer-reviewed articles met the inclusion criteria and were reviewed. These studies primarily focused on evaluating the diagnostic accuracy, treatment efficacy and pathophysiological insights into LFS. CONCLUSION The comprehensive review underscores the necessity for precise diagnostic and management strategies for LFS, highlighting the role of a multidisciplinary approach and the utility of a unified classification system in enhancing patient outcomes in the face of this condition's increasing prevalence.
Collapse
Affiliation(s)
- Renat Nurmukhametov
- 2nd National Clinical Centre, Federal State Budgetary Research Institution, Russian Research Center of Surgery Named after Academician B.V. Petrovsky, 103274 Moscow, Russia
- Department of Neurosurgery, Russian People’s Friendship University, 121359 Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, 103220 Moscow, Russia
| | | | - Medet Dosanov
- 2nd National Clinical Centre, Federal State Budgetary Research Institution, Russian Research Center of Surgery Named after Academician B.V. Petrovsky, 103274 Moscow, Russia
| | - Abakirov Medetbek
- 2nd National Clinical Centre, Federal State Budgetary Research Institution, Russian Research Center of Surgery Named after Academician B.V. Petrovsky, 103274 Moscow, Russia
| | - Stepan Kudryakov
- 2nd National Clinical Centre, Federal State Budgetary Research Institution, Russian Research Center of Surgery Named after Academician B.V. Petrovsky, 103274 Moscow, Russia
| | - Gervith Reyes Soto
- Department of Head and Neck, Unidad de Neurociencias, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - Claudia B. Ponce Espinoza
- Department of Head and Neck, Unidad de Neurociencias, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | | | | | - Vladimir Nikolenko
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, 103220 Moscow, Russia
| | - Artem Gushcha
- Department of Neurosurgery, Research Center of Neurology, 103220 Moscow, Russia
| | - Salman Sharif
- Department of Neurosurgery, Liaquat National Hospital and Medical College, Karachi 16250, Pakistan
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), 56100 Pisa, Italy
| |
Collapse
|
3
|
Deng L, Wang C, Sun H, Lv N, Shen Y, Qian Z, Liu H. Effects of Cage Implantation Depth on Sagittal Parameters and Functional Outcomes in Posterior Lumbar Interbody Fusion for the Treatment of L4-L5 Lumbar Degenerative Spondylolisthesis. Orthop Surg 2024; 16:1327-1335. [PMID: 38650172 PMCID: PMC11144510 DOI: 10.1111/os.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
OBJECTIVE In the treatment of lumbar degenerative spondylolisthesis (LDS) with Posterior lumbar interbody fusion (PLIF) surgery, interbody fusion implants play a key role in supporting the vertebral body and facilitating fusion. The objective of this study was to assess the impact of implantation depth on sagittal parameters and functional outcomes in patients undergoing PLIF surgery. METHODS This study reviewed 128 patients with L4-L5 LDS between January 2016 and August 2019. All patients underwent an open PLIF surgery that included intravertebral decompression, implantation of pedicle screws and cage. We grouped according to the position of the center of the cage relative to the L5 vertebral endplate. Patients with the center of the cage located at the anterior 1/2 of the upper end plate of the L5 vertebral body were divided into Anterior group, and located at the posterior 1/2 of the upper end plate of the L5 vertebral body were divided into Posterior group. The lumbar lordosis (LL), segmental lordosis (SL), sacral slope (SS), pelvic incidence (PI), pelvic tilt (PT) and slope degree (SD) was measured for radiographic outcomes. We used the visual analog scale (VAS) and the oswestry disability index (ODI) score to assess functional outcomes. Paired t-test was used to compare imaging and bedside data before and after surgery between the two groups, and independent sample t-test, χ2 test and Fisher exact test were used to compare the data between the two groups. RESULT The mean follow-up of Anterior group was 44.13 ± 9.23 months, and Posterior group was 45.62 ± 10.29 months (P > 0.05). The LL, SL, PT, SS, SD and PI-LL after operation showed great improvements, relative to the corresponding preoperative values in both groups (P < 0.05). Compared to Posterior group, Anterior group exhibited far enhanced SL (15.49 ± 3.28 vs. 13.67 ± 2.53, P < 0.05), LL (53.47 ± 3.21 vs. 52.08 ± 3.15, P < 0.05) outcomes and showed depressed PI-LL (8.87 ± 5.05 vs. 10.73 ± 5.39, P < 0.05) outcomes at the final follow-up. Meanwhile, the SL in Anterior group (16.18 ± 3.99) 1 months after operation were also higher than in Posterior group (14.12 ± 3.57) (P < 0.05). We found that VAS and ODI at the final follow-up in Anterior group (3.62 ± 0.96, 25.19 ± 5.25) were significantly lower than those in Posterior group (4.12 ± 0.98, 27.68 ± 5.13) (P < 0.05). CONCLUSIONS For patients with LDS, the anteriorly placed cage may provide better improvement of SL after PLIF surgery. Meanwhile, the anteriorly placed cage may achieve better sagittal parameters of LL and PI-LL and functional outcomes at the final follow-up.
Collapse
Affiliation(s)
- Lei Deng
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chengyue Wang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Haifu Sun
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Nanning Lv
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yang Shen
- Department of UltrasoundChangshu Hospital affiliated to Nanjing University of Chinese MedicineSuzhouChina
| | - Zhonglai Qian
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hao Liu
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
4
|
Mizukoshi R, Yagi M, Yamada Y, Yokoyama Y, Yamada M, Watanabe K, Nakamura M, Nagura T, Jinzaki M. Gender differences in spinal mobility during postural changes: a detailed analysis using upright CT. Sci Rep 2024; 14:9154. [PMID: 38644423 PMCID: PMC11033253 DOI: 10.1038/s41598-024-59840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024] Open
Abstract
Lumbar spinal alignment is crucial for spine biomechanics and is linked to various spinal pathologies. However, limited research has explored gender-specific differences using CT scans. The objective was to evaluate and compare lumbar spinal alignment between standing and sitting CT in healthy individuals, focusing on gender differences. 24 young and 25 elderly males (M) and females (F) underwent standing and sitting CT scans to assess lumbar spinal alignment. Parameters measured and compared between genders included lumbar lordosis (LL), sacral slope (SS), pelvic tilt (PT), pelvic incidence (PI), lordotic angle (LA), foraminal height (FH), and bony boundary area (BBA). Females showed significantly larger changes in SS and PT when transitioning from standing to sitting (p = .044, p = .038). A notable gender difference was also observed in the L4-S LA among the elderly, with females showing a significantly larger decrease in lordotic angle compared to males (- 14.1° vs. - 9.2°, p = .039*). Females consistently exhibited larger FH and BBA values, particularly in lower lumbar segments, which was more prominent in the elderly group (M vs. F: L4/5 BBA 80.1 mm2 [46.3, 97.8] vs. 109.7 mm2 [74.4, 121.3], p = .019 in sitting). These findings underline distinct gender-related variations in lumbar alignment and flexibility, with a focus on noteworthy changes in BBA and FH in females. Gender differences in lumbar spinal alignment were evident, with females displaying greater pelvic and sacral mobility. Considering gender-specific characteristics is crucial for assessing spinal alignment and understanding spinal pathologies. These findings contribute to our understanding of lumbar spinal alignment and have implications for gender-specific spinal conditions and treatments.
Collapse
Affiliation(s)
- Ryo Mizukoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjyuku, Tokyo, Japan
- Department of Orthopaedic Surgery, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Mitsuru Yagi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjyuku, Tokyo, Japan.
- Department of Orthopaedic Surgery, School of Medicine, International University of Health and Welfare, Chiba, Japan.
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi Shinjyuku, Tokyo, Japan
| | - Yoichi Yokoyama
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi Shinjyuku, Tokyo, Japan
| | - Minoru Yamada
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi Shinjyuku, Tokyo, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjyuku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjyuku, Tokyo, Japan
| | - Takeo Nagura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjyuku, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi Shinjyuku, Tokyo, Japan.
| |
Collapse
|
5
|
Konbaz F, Aldakhil S, Alhelal F, Abalkhail M, Bourghli A, Ateeq K, Aleissa S. Iatrogenic contralateral foraminal stenosis following lumbar spine fusion surgery: illustrative cases. JOURNAL OF NEUROSURGERY. CASE LESSONS 2023; 5:CASE2317. [PMID: 36941201 PMCID: PMC10550679 DOI: 10.3171/case2317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 03/22/2023]
Abstract
BACKGROUND Lumbar spine fusion is the mainstay treatment for degenerative spine disease. Multiple potential complications of spinal fusion have been found. Acute contralateral radiculopathy postoperatively has been reported in previous literature, with unclear underlying pathology. Few articles reported the incidence of contralateral iatrogenic foraminal stenosis after lumbar fusion surgery. The aim of current article is to explore the possible causes and prevention of this complication. OBSERVATIONS The authors present 4 cases in which patients developed acute postoperative contralateral radiculopathy requiring revision surgery. In addition, we present a fourth case in which preventive measures have been applied. The aim of this article was to explore the possible causes and prevention to this complication. LESSONS Iatrogenic foraminal stenosis of the lumbar spine is a common complication; preoperative evaluation and middle intervertebral cage positioning are needed to prevent this complication.
Collapse
Affiliation(s)
- Faisal Konbaz
- Department of Spine Surgery, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Sahar Aldakhil
- Department of Orthopedics, King Abdulaziz Medical City, Central Region, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Fahad Alhelal
- Department of Orthopedics, King Abdulaziz Medical City, Central Region, National Guard Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; and
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Majed Abalkhail
- Department of Orthopedics, King Abdulaziz Medical City, Central Region, National Guard Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; and
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Anouar Bourghli
- Department of Spine Surgery, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Khawlah Ateeq
- Department of Orthopedics, King Abdulaziz Medical City, Central Region, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Sami Aleissa
- Department of Orthopedics, King Abdulaziz Medical City, Central Region, National Guard Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; and
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Ding Q, Tang X, Zhang R, Wu H, Liu C. Do Radiographic Results of Transforaminal Lumbar Interbody Fusion Vary with Cage Position in Patients with Degenerative Lumbar Diseases? Orthop Surg 2022; 14:730-741. [PMID: 35302296 PMCID: PMC9002072 DOI: 10.1111/os.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Objective To investigate whether the radiographic results are affected by cage position in single‐level transforaminal lumbar interbody fusion (TLIF). Method Between January 2016 and June 2018, 130 patients (62 males and 68 females, average age: 55.28 ± 10.11 years) who underwent single‐level TLIF were analyzed retrospectively. Standing lateral radiographs of the lumbar spine were collected and evaluated preoperatively, postoperatively, and at the time of last follow‐up. Cage position in the fused segment was recorded using a central point ratio (CPR), which indicated the cage position. CPR is calculated by dividing the distance between the cage center point and the posterior extent of the superior endplate of the inferior vertebra by the length of the superior endplate of the inferior vertebra. Based on cage positions, the patients were divided into three groups: Anterior Group (n = 38); Middle Group (n = 68); and Posterior Group (n = 24). Segmental lumbar lordosis (SLL), foraminal height (FH), posterior disc height (PDH), and anterior disc height (ADH) were evaluated. A subanalysis was also performed on cage height within each group. Results The average follow‐up time of the patients was 35.20 ± 4.43 months. The mean values of CPR in Anterior Group, Middle Group, and Posterior Group were 0.64, 0.51, and 0.37, respectively. The FH, PDH, and ADH were significantly increased after TLIF in all groups (P < 0.05). There were significant differences in increase of SLL in Anterior Group (4.4°) and Middle Group (3.0°), but not in Posterior Group (0.3°). Furthermore, in the comparison of the three groups, the increase of SLL, FH, and PDH was statistically different (P < 0.05), while not for ADH (P > 0.05). The significant correlations in surgery were: CPR and ΔSLL (r = 0.584, P < 0.001), CPR and ΔFH (r = −0.411, P < 0.001), and CPR and ΔPDH (r = −0.457, P < 0.001). However, ADH had a positive correlation with cage height when the cage was located in anterior and middle of the endplate. Moreover, cage height had a positive correlation with SLL when the cage was located anteriorly and had a negative correlation with SLL when the cage was located posteriorly. FH and PDH both had a positive correlation with cage height in any cage position. Conclusion The cage located in different positions has different effects on radiographic results in single‐level TLIF. A thicker cage located anteriorly will gain maximum SLL and avoid the reduction of FH and PDH.
Collapse
Affiliation(s)
- Qing Ding
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhuo Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
He L, Xiang Q, Yang Y, Tsai TY, Yu Y, Cheng L. The anterior and traverse cage can provide optimal biomechanical performance for both traditional and percutaneous endoscopic transforaminal lumbar interbody fusion. Comput Biol Med 2021; 131:104291. [PMID: 33676337 DOI: 10.1016/j.compbiomed.2021.104291] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Transforaminal lumbar interbody fusion (TLIF) is a well-established surgical treatment for patients with lumbar degenerative disc disease; however, the optimal position for the interbody fusion cage in TLIF procedures for reducing cage-related complications remains uncertain. The present study aims to compare the biomechanical effects between different cage positions in TLIF and percutaneous endoscopic-TLIF (PE-TLIF). METHOD An intact finite element model of L3-L5 from computed tomography images of a 25-year-old healthy male without any lumbar disease was reconstructed and validated. TLIF and PE-TLIF were performed on L4-L5 with bilateral pedicle screws fixation. Two surgical finite element models were subjected to loads with six degrees of freedom. The range of motion (ROM) and von Mises stress of the implantations and endplates were measured for the anterior, middle, and posterior district and the traverse or oblique direction of the cage respectively. RESULTS As the cage was implanted forward, the ROMs in the fused L4-L5 segments and the von Mises stress of the cage and endplates decreased while the von Mises stress of the screws increased; this was also shown in the traverse cage when compared with the oblique cage (A-90-compared with A-45- had a 31.3%, 1.7%, 12.6%, and 5.7% decrease in FL, EX, LB and AR). The ROMs (TLIF A-45 increase of 80.8%, 23.8%, and 12.2% in FL, EX, and LB when compared with PE-TLIF), cage stress, and endplate stress of PE-TLIF were lower than those of TLIF. CONCLUSIONS Considering the ROM of the fusion segments, implanting the cage in the anterior district in the traverse direction can effectively enhance the fusion segment stiffness, thus contributing to the stability of the lumbar spine after fusion. It can also cause less cage stress and endplate stress, which indicates its beneficial effect in avoiding cage injury or subsidence. However, the higher stress of the pedicle screws and rods indicates higher failure risk. PE-TLIF had better biomechanical performance than TLIF. Therefore, it is recommended that the surgeon implant the cage in the anterior district of the L5 vertebra's upper endplate in the traverse direction using the PE-TLIF technique.
Collapse
Affiliation(s)
- Lei He
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China; College of Civil Engineering, Tongji University, Shanghai, 200082, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji University School of Medicine, Shanghai, 200065, China
| | - Qingzhi Xiang
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yangyang Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Tsung-Yuan Tsai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yan Yu
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Liming Cheng
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji University School of Medicine, Shanghai, 200065, China
| |
Collapse
|