1
|
Mao Z, Yang Q, Meng X, Jiang D, Zhao F. Dynamic biomechanical effects of medial meniscus tears on the knee joint: a finite element analysis. J Orthop Surg Res 2025; 20:26. [PMID: 39780245 PMCID: PMC11715105 DOI: 10.1186/s13018-024-05401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Meniscus tears can change the biomechanical environment of the knee joint and might accelerate the development of osteoarthritis. The aim of this study was to investigate the dynamic biomechanical effects of different medial meniscus tear positions and tear gaps on the knee during walking. METHODS Seven finite element models of the knee joint were constructed, including the intact medial meniscus (IMM), radial stable tears in the anterior, middle, and posterior one-third regions of the medial meniscus (RSTA, RSTM, RSTP), and the corresponding unstable tears (RUTA, RUTM, RUTP). The seven models applied a 1000 N axial static load and a human walking load, as defined by the ISO14243-1 standard. RESULTS Compared with the results under static loading, the axial load ratio of the medial and lateral compartments was redistributed (ranging from 0.7:1 to 2.9:1). The stress concentration was in the middle and posterior portions of the lateral compartment, not in the anterior and middle portions of the medial compartment under dynamic analysis. Compared with that of the IMM, the maximum von Mises stress on the medial meniscus increased by approximately 24.68-57.14% in the RUTA, RUTM, and RSTM models, with a greater difference observed in the hoop stress on both sides of the radial tear. The peak radial tear gap appeared at GC6 and GC44, and the tear gap remained at a high level from GC30-GC60. CONCLUSIONS Radial tears should be considered for repair, and reinforced sutures should be placed on the anterior or middle regions of the meniscus. Greater attention should be given to the dynamic biomechanical effects on the knee joint during preoperative diagnosis and postoperative rehabilitation.
Collapse
Affiliation(s)
- Zuming Mao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Qiang Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiangyu Meng
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Dong Jiang
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.
| | - Feng Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
2
|
Zhao J, Xie Y, Qiao K, Shi M, Ning C, Guo Q, Zheng Y. Finite element analysis of meniscus contact mechanical behavior based on kinematic simulation of abnormal gait. Comput Methods Biomech Biomed Engin 2024; 27:1552-1562. [PMID: 38899984 DOI: 10.1080/10255842.2024.2368656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
The meniscus plays a crucial role in the proper functioning of the knee joint, and when it becomes damaged, partial removal or replacement is necessary to restore proper function. Understanding the stress and deformation of the meniscus during various movements is essential for developing effective materials for meniscus repair. However, accurately estimating the contact mechanics of the knee joint can be challenging due to its complex shape and the dynamic changes it undergoes during movement. To address this issue, the open-source software SCONE can be used to establish a kinematics model that monitors the different states of the knee joint during human motion and obtains relevant gait kinematics data. To evaluate the stress and deformation of the meniscus during normal human movement, values of different states in the movement gait can be selected for finite element analysis (FEA) of the knee joint. This analysis enables researchers to assess changes in the meniscus. To evaluate meniscus damage, it is necessary to obtain changes in its mechanical behavior during abnormal movements. This information can serve as a reference for designing and optimizing the mechanical performance of materials used in meniscus repair and replacement.
Collapse
Affiliation(s)
- Jianming Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Kun Qiao
- Tianjin Supermenis Medical Technology Co. Ltd., Tianjin, China
| | - Miaojie Shi
- Tianjin Supermenis Medical Technology Co. Ltd., Tianjin, China
| | - Chao Ning
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Quanyi Guo
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
3
|
Zhang H, Ma J, Tian A, lu B, Bai H, Dai J, Wu Y, Chen J, Luo W, Ma X. Analysis of cartilage loading and injury correlation in knee varus deformity. Medicine (Baltimore) 2024; 103:e38065. [PMID: 38728521 PMCID: PMC11081555 DOI: 10.1097/md.0000000000038065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Knee varus (KV) deformity leads to abnormal forces in the different compartments of the joint cavity and abnormal mechanical loading thus leading to knee osteoarthritis (KOA). This study used computer-aided design to create 3-dimensional simulation models of KOA with varying varus angles to analyze stress distribution within the knee joint cavity using finite element analysis for different varus KOA models and to compare intra-articular loads among these models. Additionally, we developed a cartilage loading model of static KV deformity to correlate with dynamic clinical cases of cartilage injury. Different KV angle models were accurately simulated with computer-aided design, and the KV angles were divided into (0°, 3°, 6°, 9°, 12°, 15°, and 18°) 7 knee models, and then processed with finite element software, and the Von-Mises stress distribution and peak values of the cartilage of the femoral condyles, medial tibial plateau, and lateral plateau were obtained by simulating the human body weight in axial loading while performing the static extension position. Finally, intraoperative endoscopy visualization of cartilage injuries in clinical cases corresponding to KV deformity subgroups was combined to find cartilage loading and injury correlations. With increasing varus angle, there was a significant increase in lower limb mechanical axial inward excursion and peak Von-Mises stress in the medial interstitial compartment. Analysis of patients' clinical data demonstrated a significant correlation between varus deformity angle and cartilage damage in the knee, medial plateau, and patellofemoral intercompartment. Larger varus deformity angles could be associated with higher medial cartilage stress loads and increased cartilage damage in the corresponding peak stress area. When the varus angle exceeds 6°, there is an increased risk of cartilage damage, emphasizing the importance of early surgical correction to prevent further deformity and restore knee function.
Collapse
Affiliation(s)
- Hongjie Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Tianjin Orthopedic Research Institute, Tianjin, PR China
- Kunming Medical University Affiliated Dehong Hospital/Dehongzhou People’s Hospital, Mangshi, China
| | - Jianxiong Ma
- Tianjin University Tianjin Hospital, Tianjin, PR China
- Tianjin Orthopedic Research Institute, Tianjin, PR China
| | - Aixian Tian
- Tianjin University Tianjin Hospital, Tianjin, PR China
- Tianjin Orthopedic Research Institute, Tianjin, PR China
| | - Bin lu
- Tianjin University Tianjin Hospital, Tianjin, PR China
- Tianjin Orthopedic Research Institute, Tianjin, PR China
| | - Haohao Bai
- Tianjin University Tianjin Hospital, Tianjin, PR China
- Tianjin Orthopedic Research Institute, Tianjin, PR China
| | - Jing Dai
- Tianjin Medical University, Tianjin, PR China
| | - Yanfei Wu
- Tianjin Medical University, Tianjin, PR China
| | - Jiahui Chen
- Tianjin Medical University, Tianjin, PR China
| | - Wei Luo
- Tianjin University Tianjin Hospital, Tianjin, PR China
| | - Xinlong Ma
- Tianjin University Tianjin Hospital, Tianjin, PR China
- Tianjin Orthopedic Research Institute, Tianjin, PR China
| |
Collapse
|
4
|
Lee HY, Bin SI, Kim JM, Lee BS, Kim SM, Lee SJ. Lateral Meniscal Allograft Transplantation Provides a Chondroprotective Effect on Articular Cartilage: Quantitative 3-T Magnetic Resonance Imaging T2 Mapping. Arthroscopy 2023; 39:1000-1007. [PMID: 36332852 DOI: 10.1016/j.arthro.2022.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/04/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE This study aimed to assess the cartilage status in patients who underwent isolated lateral meniscus allograft transplantation (MAT) using preoperative and postoperative quantitative 3-T magnetic resonance imaging T2 mapping at midterm follow-up period. METHODS Patients who underwent lateral MAT without cartilage treatment procedures between 2010 and 2019 were assessed by quantitative magnetic resonance imaging preoperatively and postoperatively. On the sagittal section image following the center of the lateral femoral condyle, the weight-bearing area of the articular cartilage was divided into 6 segments based on the meniscal coverage area from anterior to posterior direction. The mean T2 values of each of the 6 segments were measured for 3 regions of interest: overall, deep, and superficial layers. The change in T2 values was statistically analyzed by paired t-tests. The Lysholm score was used to evaluate clinical function. RESULTS A total of 105 patients were included in the study. The mean follow-up period was 3.2 years (range 2.0-5.4 years). Among the 6 segments, the mean T2 value showed significant improvement in the overall layer of F2 (the middle weight-bearing area of femoral condyle) and TP3 (the posterior weight-bearing area of tibia condyle) segments (P = .013 and .021, respectively) and the superficial layer of the F3 (the posterior weight-bearing area of femoral condyle) segments (P = .028). The mean T2 value of all the other segments did not show a statistically significant change. The mean Lysholm score significantly improved from 66.5 ± 15.8 to 89.3 ± 10.0 (P < .001). Overall, 73.3% and 96.2% of the patients met the minimal clinically important difference and patient acceptable symptomatic state, respectively. CONCLUSIONS The mean T2 value of the articular cartilage of the weight-bearing area was either maintained or showed statistically significant improvement depending on the location following isolated lateral MAT. Thus, the transplanted meniscus seems to have a chondroprotective effect on the weight-bearing cartilage. LEVEL OF EVIDENCE Level IV, retrospective therapeutic case series.
Collapse
Affiliation(s)
- Hyo Yeol Lee
- Department of Orthopaedic Surgery, Eulji Medical Center Daejeon Hospital, Eulji University College of Medicine, Daejeon, Republic of Korea; Department of Orthopaedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seong-Il Bin
- Department of Orthopaedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Jong-Min Kim
- Department of Orthopaedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bum-Sik Lee
- Department of Orthopaedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Min Kim
- Department of Orthopaedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Orthopaedic Surgery, Wonkwang University Sanbon Hospital, College of Medicine, Wonkwang University, Gunpo, Republic of Korea
| | - Seon-Jong Lee
- Department of Orthopaedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Medial meniscus posterior root tears and partial meniscectomy significantly increase stress in the knee joint during dynamic gait. Knee Surg Sports Traumatol Arthrosc 2022; 31:2289-2298. [PMID: 36534149 DOI: 10.1007/s00167-022-07285-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE As a simple and invasive treatment, arthroscopic medial meniscal posterior horn resections (MMPHRs) can relieve the obstructive symptoms of medial meniscus posterior root tears (MMPRTs) but with the risk of aggravating biomechanical changes of the joint. The aim of this study was to analyze dynamic simulation of the knee joint after medial meniscus posterior root tear and posterior horn resection. METHODS This study established static and dynamic models of MMPRTs and MMPHRs on the basis of the intact medial meniscus model (IMM). In the finite element analysis, the three models were subjected to 1000 N axial static load and the human walking gait load defined by the ISO14243-1 standard to evaluate the influence of MMPRTs and MMPHRs on knee joint mechanics during static standing and dynamic walking. RESULTS In the static state, the load ratio of the medial and lateral compartments remained nearly constant (2:1), while in the dynamic state, the load ratio varied with the gait cycle. After MMPHRs, at 30% of the gait cycle, compared with the MMPRTs condition, the maximum von Mises stress of the lateral meniscus (LM) and the lateral tibial cartilage (LTC) were increased by 166.0% and 50.0%, respectively, while they changed by less than 5% during static analysis. The maximum von Mises stress of the medial meniscus (MM) decreased by 55.7%, and that of the medial femoral cartilage (MFC) increased by 53.5%. CONCLUSION After MMPHRs, compared with MMPRTs, there was no significant stress increase in articular cartilage in static analysis, but there was a stress increase and concentration in both medial and lateral compartments in dynamic analysis, which may aggravate joint degeneration. Therefore, in clinical treatments, restoring the natural structure of MMPRTs is first recommended, especially for physically active patients.
Collapse
|
6
|
Wu Y, Jin X, Zhao X, Wang Y, Bai H, Lu B, Tong X, Ma J, Ma X. Computer-aided Design of Distal Femoral Osteotomy for the Valgus Knee and Effect of Correction Angle on Joint Loading by Finite Element Analysis. Orthop Surg 2022; 14:2904-2913. [PMID: 36151783 PMCID: PMC9627055 DOI: 10.1111/os.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022] Open
Abstract
Objective Lateral open‐wedge distal femoral osteotomy (DFO) has been used to treat valgus deformity of the knee, with good clinical outcomes. However, there is a lack of biomechanical studies regarding the angle of correction. The objective of this study was to apply computer‐aided design (CAD) for osteotomy planning in a three‐dimensional (3D) anatomical model and to assess the biomechanical differences among the varying correction angles on joint loading by finite element analysis (FEA). Methods To model different angles of lateral open‐wedge DFO correction, the CAD software package Mimics 21.0 was used to accurately simulate the operated knee. The femur was cut to 0°, 2°, 4°, 6°, 8°, and 10° of varus (equivalent to hip‐knee‐ankle angles of 180°, 178°, 176°, 174°, 172°, and 170°, respectively). The original knee model and the corrected models were processed by FE software. Then, the FE models were subjected to an axial force to obtain the von Mises stress (VMS) and shear stress distributions within the femoral cartilages and menisci. Results Under a compressive load of 740 N, the highest VMS in lateral and medial compartments of the intact knee model was 3.418 and 3.303 MPa. The maximum value of both the VMS and the shear stress in the lateral compartment decreased as the varus angle increased, but the corresponding values in the medial compartment increased. When the hip‐knee‐ankle (HKA) angle was 180°, the VMS in the lateral and medial compartments was balanced (3.418 and 3.303 MPa, respectively). Meanwhile, when the HKA angle was 178° (3.488 and 3.625 MPa, respectively), the shear stress in the lateral and medial compartments was balanced. In addition, the magnitude of change in the stress was significantly higher in the medial compartment (90.9%) than in the lateral compartment (19.3%). Conclusion The optimal correction angle of the valgus knee is close to neutral alignment or slightly varus (0° ‐ 2°). Overcorrection is not recommended, as it can result in a steep increase of the stress within the medial compartment and may accelerate the process of medial compartment OA.
Collapse
Affiliation(s)
- Yanfei Wu
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China.,Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xin Jin
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xingwen Zhao
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China.,Tianjin Hospital, Tianjin University, Tianjin, China
| | - Ying Wang
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Haohao Bai
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Bin Lu
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xue Tong
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Jianxiong Ma
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xinlong Ma
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China.,Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Di Paolo S, Grassi A, Lucidi GA, Macchiarola L, Dal Fabbro G, Zaffagnini S. Biomechanics of the lateral meniscus: evidences from narrative review. ANNALS OF JOINT 2022; 7:19. [PMID: 38529143 PMCID: PMC10929336 DOI: 10.21037/aoj-20-123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/18/2021] [Indexed: 03/27/2024]
Abstract
Lateral meniscus plays a crucial role in the knee stability and function. Although complex settings are required for lateral meniscus biomechanical assessment, such characteristics have been investigated over time to optimize the daily clinical practice surgical procedure. The aim of the present study was to provide an overview of literature knowledge regarding the biomechanics of lateral meniscus and give further insights about novel experimental analyses. Studies regarding lateral meniscus mobility, effect on knee laxity, and contact mechanics were included in the review. The effect of meniscal lesion, meniscal repair, partial meniscectomy, and meniscus allograft transplantation were retrieved for either in vivo, cadaveric, or in-silico computational settings. Knee laxity was evaluated both in presence of isolated meniscal tears and in anterior cruciate ligament (ACL) deficient knees. Surgical navigation systems and robots were mainly used for the investigations in vivo and in cadaveric studies, while accelerometers emerged as an alternative for ambulatory assessments. Contact mechanics was only assessed in cadaveric and computational studies. Great effort has been put into exploring lateral meniscus biomechanics from multiple perspectives. Strong evidence emerged regarding the importance of lateral meniscus repair: increased knee stability at high degrees of knee flexion and reduction of peak contact pressures on tibial cartilage were the most reported benefits. The meniscus allograft transplantation also emerged as a concrete solution for irreparable tears and further studies are needed to investigate its long-term influence on knee stability.
Collapse
Affiliation(s)
- Stefano Di Paolo
- Department for Life Quality Studies, University of Bologna, Bologna, Italy
| | - Alberto Grassi
- 2nd Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gian Andrea Lucidi
- 2nd Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Macchiarola
- 2nd Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giacomo Dal Fabbro
- 2nd Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Zaffagnini
- 2nd Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Seitz AM, Schwer J, de Roy L, Warnecke D, Ignatius A, Dürselen L. Knee Joint Menisci Are Shock Absorbers: A Biomechanical In-Vitro Study on Porcine Stifle Joints. Front Bioeng Biotechnol 2022; 10:837554. [PMID: 35372324 PMCID: PMC8968420 DOI: 10.3389/fbioe.2022.837554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this biomechanical in vitro study was to answer the question whether the meniscus acts as a shock absorber in the knee joint or not. The soft tissue of fourteen porcine knee joints was removed, leaving the capsuloligamentous structures intact. The joints were mounted in 45° neutral knee flexion in a previously validated droptower setup. Six joints were exposed to an impact load of 3.54 J, and the resultant loss factor (η) was calculated. Then, the setup was modified to allow sinusoidal loading under dynamic mechanical analysis (DMA) conditions. The remaining eight knee joints were exposed to 10 frequencies ranging from 0.1 to 5 Hz at a static load of 1210 N and a superimposed sinusoidal load of 910 N (2.12 times body weight). Forces (F) and deformation (l) were continuously recorded, and the loss factor (tan δ) was calculated. For both experiments, four meniscus states (intact, medial posterior root avulsion, medial meniscectomy, and total lateral and medial meniscectomy) were investigated. During the droptower experiments, the intact state indicated a loss factor of η = 0.1. Except for the root avulsion state (−15%, p = 0.12), the loss factor decreased (p < 0.046) up to 68% for the total meniscectomy state (p = 0.028) when compared to the intact state. Sinusoidal DMA testing revealed that knees with an intact meniscus had the highest loss factors, ranging from 0.10 to 0.15. Any surgical manipulation lowered the damping ability: Medial meniscectomy resulted in a reduction of 24%, while the resection of both menisci lowered tan δ by 18% compared to the intact state. This biomechanical in vitro study indicates that the shock-absorbing ability of a knee joint is lower when meniscal tissue is resected. In other words, the meniscus contributes to the shock absorption of the knee joint not only during impact loads, but also during sinusoidal loads. The findings may have an impact on the rehabilitation of young, meniscectomized patients who want to return to sports. Consequently, such patients are exposed to critical loads on the articular cartilage, especially when performing sports with recurring impact loads transmitted through the knee joint surfaces.
Collapse
|
9
|
Seyedpour SM, Nafisi S, Nabati M, Pierce DM, Reichenbach JR, Ricken T. Magnetic Resonance Imaging-based biomechanical simulation of cartilage: A systematic review. J Mech Behav Biomed Mater 2021; 126:104963. [PMID: 34894500 DOI: 10.1016/j.jmbbm.2021.104963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 11/19/2022]
Abstract
MRI-based mathematical and computational modeling studies can contribute to a better understanding of the mechanisms governing cartilage's mechanical performance and cartilage disease. In addition, distinct modeling of cartilage is needed to optimize artificial cartilage production. These studies have opened up the prospect of further deepening our understanding of cartilage function. Furthermore, these studies reveal the initiation of an engineering-level approach to how cartilage disease affects material properties and cartilage function. Aimed at researchers in the field of MRI-based cartilage simulation, research articles pertinent to MRI-based cartilage modeling were identified, reviewed, and summarized systematically. Various MRI applications for cartilage modeling are highlighted, and the limitations of different constitutive models used are addressed. In addition, the clinical application of simulations and studied diseases are discussed. The paper's quality, based on the developed questionnaire, was assessed, and out of 79 reviewed papers, 34 papers were determined as high-quality. Due to the lack of the best constitutive models for various clinical conditions, researchers may consider the effect of constitutive material models on the cartilage disease simulation. In the future, research groups may incorporate various aspects of machine learning into constitutive models and MRI data extraction to further refine the study methodology. Moreover, researchers should strive for further reproducibility and rigorous model validation and verification, such as gait analysis.
Collapse
Affiliation(s)
- S M Seyedpour
- Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany; Biomechanics Lab, Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
| | - S Nafisi
- Faculty of Pharmacy, Istinye University, Maltepe, Cirpici Yolu B Ck. No. 9, 34010 Zeytinburnu, Istanbul, Turkey
| | - M Nabati
- Department of Mechanical Engineering, Faculty of Engineering, Boğaziçi University, 34342 Bebek, Istanbul, Turkey
| | - D M Pierce
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, CT, 06269, USA; Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA
| | - J R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany; Center of Medical Optics and Photonics, Friedrich Schiller University Jena, Germany; Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, Germany
| | - T Ricken
- Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany; Biomechanics Lab, Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany.
| |
Collapse
|
10
|
Macchiarola L, Di Paolo S, Grassi A, Dal Fabbro G, Lucidi GA, Cucurnia I, Zaffagnini S. In Vivo Kinematic Analysis of Lateral Meniscal Allograft Transplantation With Soft Tissue Fixation. Orthop J Sports Med 2021; 9:23259671211000459. [PMID: 34095325 PMCID: PMC8142005 DOI: 10.1177/23259671211000459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Lateral meniscal deficiency increases the pivot shift in the knee, and although meniscal allograft transplantation (MAT) is a well-established procedure with satisfactory clinical results, biomechanical studies have failed to show whether this procedure is able to restore knee kinematics. Purpose: To assess, in vivo, the kinematic effect of lateral MAT in anterior cruciate ligament–intact knees, with a particular focus on the pivot-shift maneuver. Study Design: Controlled laboratory study. Methods: Enrolled in this study were 10 consecutive patients undergoing lateral MAT. A surgical navigation system was used to acquire and quantify the following variables: anterior-posterior displacement at 30° of flexion (AP30) and 90° of flexion (AP90), varus-valgus rotation at 0° of flexion (VV0) and 30° of flexion, and dynamic laxity on the pivot-shift test, which was determined through anterior displacement of the lateral tibial compartment (APlat) and posterior acceleration of the lateral tibial compartment during tibial reduction (ACC). Data from before and after MAT were compared. Results: From pre- to postoperatively, there was a significant decrease in tibial translation of 2.8 mm (43%; P = .005) for AP30 and 1.9 mm (38%; P = .018) for AP90 as well as a significant difference of 3.6° (64%; P = .001) for VV0. There was also a significant pre- to postoperative reduction in the pivot shift of 7.4 mm (39%; P = .021) for APlat and 302.9 mm/s2 (75%; P = .005) for ACC. Conclusion: Lateral MAT improved knee kinematic parameters at time zero after surgery; the biomechanical effect of MAT was particularly evident during the pivot-shift maneuver.
Collapse
Affiliation(s)
- Luca Macchiarola
- Clinica Ortopedica e Traumatologica II, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Di Paolo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto Grassi
- Clinica Ortopedica e Traumatologica II, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giacomo Dal Fabbro
- Clinica Ortopedica e Traumatologica II, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gian Andrea Lucidi
- Clinica Ortopedica e Traumatologica II, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Ilaria Cucurnia
- Clinica Ortopedica e Traumatologica II, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Zaffagnini
- Clinica Ortopedica e Traumatologica II, Istituto Ortopedico Rizzoli, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
11
|
Kamei G, Ishikawa M, Shimizu R, Nakamae A, Adachi N. Simultaneous meniscal reconstruction using semitendinosus tendon and tissue-engineering cartilage implantation for extensive cartilage defect of lateral femoral condyle after lateral meniscus resection: A case report. J Orthop Sci 2021:S0949-2658(20)30361-4. [PMID: 33618942 DOI: 10.1016/j.jos.2020.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/22/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Goki Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Masakazu Ishikawa
- Department of Artificial Joints and Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryo Shimizu
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsuo Nakamae
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Anwar A, Hu Z, Zhang Y, Gao Y, Tian C, Wang X, Nazir MU, Wang Y, Zhao Z, Lv D, Zhang Z, Zhang H, Lv G. Multiple Subchondral Bone Cysts Cause Deterioration of Articular Cartilage in Medial OA of Knee: A 3D Simulation Study. Front Bioeng Biotechnol 2020; 8:573938. [PMID: 33163480 PMCID: PMC7583719 DOI: 10.3389/fbioe.2020.573938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
Aims To investigate the impact of subchondral bone cysts (SBCs) in stress-induced osseous and articular variations in cystic and non-cystic knee models using finite element analysis. Materials and Methods 3D knee joint models were reconstructed from computed tomography (CT) and magnetic resonance imaging (MRI). Duplicate 3D models were also created with a 3D sphere mimicking SBCs in medial tibia. Models were divided into three groups. In group A, a non-cystic knee model was used, whereas in groups B and C, SBCs of 4 and 12 mm size were simulated, respectively. Cyst groups were further divided into three sub-groups. Each of sub-group 1 was composed of a solitary SBC in the anterior half of tibia adjacent to joint line. In sub-group 2, a solitary cyst was modeled at a lower-joint location, and in sub-group 3, two SBCs were used. All models were vertically loaded with weights representing double- and single-leg stances. Results During single-leg stance, increase in subchondral bone stress in sub-groups B-1 and B-3 were significant (p = 0.044, p = 0.026). However, in sub-group B-2, a slight increase was observed than non-cystic knee model (9.93 ± 1.94 vs. 9.35 ± 1.85; p = 0.254). All the sub-groups in group C showed significantly increased articular stress (p < 0.001). Conversely, a prominent increase in peri-cystic cancellous bone stress was produced by SBCs in groups B and C (p < 0.001). Mean cartilage shear stress in sub-groups B-1 and B-2 (0.66 ± 0.56, 0.58 ± 0.54) was non-significant (p = 0.374, p = 0.590) as compared to non-cystic model (0.47 ± 0.67). But paired cysts of the same size (B-3) produced a mean stress of 0.98 ± 0.49 in affected cartilage (p = 0.011). Models containing 12 mm SBCs experienced a significant increase in cartilage stress (p = 0.001, p = 0.006, p < 0.001) in sub-groups C-1, C-2, and C-3 (1.25 ± 0.69, 1.01 ± 0.54, and 1.26 ± 0.59), respectively. Conclusion The presence of large-sized SBCs produced an increased focal stress effect in articular cartilage. Multiple cysts further deteriorate the condition by increased osseous stress effect and high tendency of peripheral cyst expansion in simulated cystic knee models than non-cystic knee models.
Collapse
Affiliation(s)
- Adeel Anwar
- Institute of Translational Medicine, China Medical University, Shenyang, China
| | - Zhenwei Hu
- Department of Orthopaedic Surgery, The Second Hospital of Chaoyang City, Chaoyang, China
| | - Yufang Zhang
- Department of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Yanming Gao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Cong Tian
- Department of Railway Vehicle, Ji Lin Railway Technology College, Ji Lin, China
| | - Xiuying Wang
- COMAC, Beijing Aircraft Technology Research Institute, Beijing, China
| | - Muhammad Umar Nazir
- Department of Anesthesia, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanfeng Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhi Zhao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Decheng Lv
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhen Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hu Zhang
- Department of Orthopaedic Surgery, The 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Gang Lv
- Institute of Translational Medicine, China Medical University, Shenyang, China
| |
Collapse
|