1
|
Saranya I, Selvamurugan N. Regulation of TGF-β/BMP signaling during osteoblast development by non-coding RNAs: Potential therapeutic applications. Life Sci 2024; 355:122969. [PMID: 39142506 DOI: 10.1016/j.lfs.2024.122969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Bone is a connective tissue that is metabolically active and serves multiple functions, including movement, structural support, and organ protection. It is comprised primarily of three types of bone cells, namely osteoblasts, osteocytes, and osteoclasts. Osteoblasts are bone-forming cells, and the differentiation of mesenchymal stem cells towards osteoblasts is regulated by several growth factors, cytokines, and hormones via various signaling pathways, including TGF-β/BMP (transforming growth factor-beta/bone morphogenetic protein) signaling as a primary one. Non-coding RNAs (ncRNAs), such as microRNAs and long ncRNAs, play crucial roles in regulating osteoblast differentiation via the TGF-β/BMP signaling cascade. Dysregulation of these ncRNAs leads to bone-pathological conditions such as osteoporosis, skeletal dysplasia, and osteosclerosis. This review provides a concise overview of the latest advancements in understanding the involvement of ncRNAs/TGF-β/BMP axis in osteoblast differentiation. These findings have the potential to identify new molecular targets for early detection of bone metabolism disorders and the development of innovative therapy strategies.
Collapse
Affiliation(s)
- Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
2
|
Sun Y, Chen P, Zhao B. Role of extracellular vesicles associated with microRNAs and their interplay with cuproptosis in osteoporosis. Noncoding RNA Res 2024; 9:715-719. [PMID: 38577024 PMCID: PMC10990744 DOI: 10.1016/j.ncrna.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Osteoporosis (OP)-associated fractures can result in severe morbidity and disability, reduced quality of life, and death. Previous studies have suggested that small noncoding RNAs, for example, small regulatory microRNAs (miRNAs), play a key role in OP by inhibiting target gene expression. Cuproptosis, a recently proposed copper-induced cell death pathway, is linked with OP. Here, we describe the contribution of exosomal miRNAs and cuproptosis to OP. First, we highlight the characteristics of exosomes and roles of exosome-related miRNAs. Next, we discuss the relationship between cuproptosis and OP. Subsequently, we analyze the crosstalk of exosomal miRNAs with cuproptosis in the development of OP. This review aims to investigate a new clinical treatment method for OP.
Collapse
Affiliation(s)
- Yong Sun
- Department of Sports Medicine, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Peng Chen
- Department of Orthopedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Bin Zhao
- Department of Sports Medicine, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
3
|
Arya PN, Saranya I, Selvamurugan N. Crosstalk between Wnt and bone morphogenetic protein signaling during osteogenic differentiation. World J Stem Cells 2024; 16:102-113. [PMID: 38455105 PMCID: PMC10915952 DOI: 10.4252/wjsc.v16.i2.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/26/2024] Open
Abstract
Mesenchymal stem cells (MSCs) originate from many sources, including the bone marrow and adipose tissue, and differentiate into various cell types, such as osteoblasts and adipocytes. Recent studies on MSCs have revealed that many transcription factors and signaling pathways control osteogenic development. Osteogenesis is the process by which new bones are formed; it also aids in bone remodeling. Wnt/β-catenin and bone morphogenetic protein (BMP) signaling pathways are involved in many cellular processes and considered to be essential for life. Wnt/β-catenin and BMPs are important for bone formation in mammalian development and various regulatory activities in the body. Recent studies have indicated that these two signaling pathways contribute to osteogenic differentiation. Active Wnt signaling pathway promotes osteogenesis by activating the downstream targets of the BMP signaling pathway. Here, we briefly review the molecular processes underlying the crosstalk between these two pathways and explain their participation in osteogenic differentiation, emphasizing the canonical pathways. This review also discusses the crosstalk mechanisms of Wnt/BMP signaling with Notch- and extracellular-regulated kinases in osteogenic differentiation and bone development.
Collapse
Affiliation(s)
- Pakkath Narayanan Arya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India.
| |
Collapse
|
4
|
Liu XP, Li JQ, Li RY, Cao GL, Feng YB, Zhang W. Loss of N-acetylglucosaminyl transferase V is involved in the impaired osteogenic differentiation of bone marrow mesenchymal stem cells. Exp Anim 2023; 72:413-424. [PMID: 37019682 PMCID: PMC10435351 DOI: 10.1538/expanim.22-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
The imbalance of bone resorption and bone formation causes osteoporosis (OP), a common skeletal disorder. Decreased osteogenic activity was found in the bone marrow cultures from N-acetylglucosaminyl transferase V (MGAT5)-deficient mice. We hypothesized that MGAT5 was associated with osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and involved in the pathological mechanisms of osteoporosis. To test this hypothesis, the mRNA and protein expression levels of MGAT5 were determined in bone tissues of ovariectomized (OVX) mice, a well-established OP model, and the role of MGAT5 in osteogenic activity was investigated in murine BMSCs. As expected, being accompanied by the loss of bone mass density and osteogenic markers (runt-related transcription factor 2, osteocalcin and osterix), a reduced expression of MGAT5 in vertebrae and femur tissues were found in OP mice. In vitro, knockdown of Mgat5 inhibited the osteogenic differentiation potential of BMSCs, as evidenced by the decreased expressions of osteogenic markers and less alkaline phosphatase and alizarin red S staining. Mechanically, knockdown of Mgat5 suppressed the nuclear translocation of β-catenin, thereby downregulating the expressions of downstream genes c-myc and axis inhibition protein 2, which were also associated with osteogenic differentiation. In addition, Mgat5 knockdown inhibited bone morphogenetic protein (BMP)/transforming growth factor (TGF)-β signaling pathway. In conclusion, MGAT5 may modulate the osteogenic differentiation of BMSCs via the β-catenin, BMP type 2 (BMP2) and TGF-β signals and involved in the process of OP.
Collapse
Affiliation(s)
- Xiao-Po Liu
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang 050051, Hebei, P.R. China
- Department of Orthopedics, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Jia-Qi Li
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang 050051, Hebei, P.R. China
| | - Ruo-Yu Li
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang 050051, Hebei, P.R. China
| | - Guo-Long Cao
- Department of Orthopedics, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Yun-Bo Feng
- Department of Orthopedics, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Wei Zhang
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang 050051, Hebei, P.R. China
| |
Collapse
|
5
|
Kang HJ, Park SS, Tripathi G, Lee BT. Injectable demineralized bone matrix particles and their hydrogel bone grafts loaded with β-tricalcium phosphate powder and granules: A comparative study. Mater Today Bio 2022; 16:100422. [PMID: 36133794 PMCID: PMC9483747 DOI: 10.1016/j.mtbio.2022.100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Demineralized bone matrix (DBM), has been used as a bone-graft material because of its osteoconductivity and osteoinductivity. However, the previous research report that supports the single use of DBM is limited by its rapid resorption caused by the lack of calcium and phosphate. β-Tricalcium phosphate (TCP) is an enriched calcium phosphate material suitable for bone healing with osteoconductive properties. In this study, we have developed injectable bone graft by the loading two kinds of TCP in DBM particles and thermo-sensitive DBM-derived hydrogel (hDBM). TCP powder (pTCP) and TCP granules (gTCP) were loaded into hDBM and DBM, respectively. The bone formation effect was investigated according to the morphological features of TCP. Residual growth factor concentrations were investigated; microstructure and morphology were characterized by SEM. In-vitro studies showed that hDBM/DBM/pTCP and hDBM/DBM/gTCP bone grafts were biocompatible and could promote osteogenesis by up-regulating the expression of Runx2 and OPN, bone-related genes. In-vivo studies using the rabbit-femur defect model revealed that the implanted hDBM/DBM/pTCP bone graft showed similar histology to that of fibrous dysplasia with the expression of CD68, whereas hDBM/DBM/gTCP showed good bone formation. Loading of gTCP in place of pTCP was noticed as an effective way to improve bone regeneration in an injectable hDBM/DBM hydrogel-based bone graft.
Collapse
Affiliation(s)
- Hoe-Jin Kang
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Seong-Su Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Garima Tripathi
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byong-Taek Lee
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea.,Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| |
Collapse
|
6
|
Ibrahim N'I, Mohd Noor H'I, Shuid AN, Mohamad S, Abdul Malik MM, Jayusman PA, Shuid AN, Naina Mohamed I. Osteoprotective Effects in Postmenopausal Osteoporosis Rat Model: Oral Tocotrienol vs. Intraosseous Injection of Tocotrienol-Poly Lactic-Co-Glycolic Acid Combination. Front Pharmacol 2021; 12:706747. [PMID: 34867320 PMCID: PMC8637158 DOI: 10.3389/fphar.2021.706747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis, the most common bone disease, is associated with compromised bone strength and increased risk of fracture. Previous studies have shown that oxidative stress contributes to the progression of osteoporosis. Specifically, for postmenopausal osteoporosis, the reduction in estrogen levels leads to increased oxidative stress in bone remodeling. Tocotrienol, a member of vitamin E that exhibits antioxidant activities, has shown potential as an agent for the treatment of osteoporosis. Most studies on the osteoprotective effects of tocotrienols had used the oral form of tocotrienols, despite their low bioavailability due the lack of transfer proteins and high metabolism in the liver. Several bone studies have utilized tocotrienol combined with a nanocarrier to produce a controlled release of tocotrienol particles into the system. However, the potential of delivering tocotrienol-nanocarrier combination through the intraosseous route has never been explored. In this study, tocotrienol was combined with a nanocarrier, poly lactic-co-glycolic acid (PLGA), and injected intraosseously into the bones of ovariectomized rats to produce targeted and controlled delivery of tocotrienol into the bone microenvironment. This new form of tocotrienol delivery was compared with the conventional oral delivery in terms of their effects on bone parameters. Forty Sprague-Dawley rats were divided into five groups. The first group was sham operated, while other groups were ovariectomized (OVX). Following 2 months, the right tibiae of all the rats were drilled at the metaphysis region to provide access for intraosseous injection. The estrogen group (OVX + ESTO) and tocotrienol group (OVX + TTO) were given daily oral gavages of Premarin (64.5 mg/kg) and annatto-tocotrienol (60 mg/kg), respectively. The locally administered tocotrienol group (OVX + TTL) was given a single intraosseous injection of tocotrienol-PLGA combination. After 8 weeks of treatment, both OVX + TTO and OVX + TTL groups have significantly lower bone markers and higher bone mineral content than the OVX group. In terms of bone microarchitecture, both groups demonstrated significantly higher trabecular separation and connectivity density than the OVX group (p < 0.05). Both groups also showed improvement in bone strength by the significantly higher stress, strain, stiffness, and Young's modulus parameters. In conclusion, daily oral tocotrienol and one-time intraosseous injection of tocotrienol-PLGA combination were equally effective in offering protection against ovariectomy-induced bone changes.
Collapse
Affiliation(s)
- Nurul 'Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Hasnul 'Iffah Mohd Noor
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ahmad Naqib Shuid
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Sharlina Mohamad
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Mohd Maaruf Abdul Malik
- Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Malaysia
| | - Putri Ayu Jayusman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Abstract
Osteoporosis significantly impacts the normal life of the elderly and is reported to be closely related to dysfunction of osteoblastic differentiation. Runt-related transcription factor-2 (Runx2) is a critical transcriptional factor involved in the regulation of osteoblast differentiation. Omarigliptin is a novel dipeptidyl peptidase-4 (DDP-4) inhibitor and this study proposes to probe into its possible therapeutic function against Osteoporosis by investigating its impacts on osteoblastic differentiation. Osteogenic medium was used to induce osteoblastic differentiation in MC3T3‑E1 cells, and was verified by the increased alkaline phosphatase (ALP) activity, enhanced mineralization, and promoted expression level of osteoblastic differentiation-related factors, including bone morphogenetic protein-2 (BMP-2), ALP, osteocalcin (Ocn), collagen type I alpha 1 (Col1a1), Collagen Type I alpha 2 (Col1a2), Runx2, osterix (Sp7), fibroblast growth factor receptor 2 (Fgfr2), and fibroblast growth factor receptor 3 (Fgfr3), accompanied by the activation of the p38 and Akt pathways. After treatment with Omarigliptin, the ALP activity and mineralization were further promoted, accompanied by the further upregulation of osteoblastic differentiation-related factors, and activation of the p38 and Akt pathways. Lastly, Omarigliptin-induced osteoblastic differentiation, promoted ALP activity, and increased expression levels of Sp7, Fgfr2, Fgfr3, BMP-2, Ocn, ALP, Col1a1, and Col1a2, in the osteogenic medium- cultured MC3T3‑E1 cells were dramatically abolished by the knockdown of Runx2. Taken together, our data reveal that Omarigliptin promoted osteoblastic differentiation by regulating Runx2.
Collapse
Affiliation(s)
- Fake Liao
- Department of orthopedics, Longyan First Hospital Affiliated to Fujian Medical University, Longyan City, Fujian Province, No. 105, Jiuyi North Road, Zhongcheng, Xinluo District, 364000, China
| | - Xiunian Hu
- Department of orthopedics, Longyan First Hospital Affiliated to Fujian Medical University, Longyan City, Fujian Province, No. 105, Jiuyi North Road, Zhongcheng, Xinluo District, 364000, China
| | - Rijiang Chen
- Department of orthopedics, Longyan First Hospital Affiliated to Fujian Medical University, Longyan City, Fujian Province, No. 105, Jiuyi North Road, Zhongcheng, Xinluo District, 364000, China
| |
Collapse
|
8
|
Molecular insights for an anti-osteoporotic properties of Litsea glutinosa on Saos-2 cells: An in-vitro approach. J Ayurveda Integr Med 2021; 13:100501. [PMID: 34799209 PMCID: PMC8728066 DOI: 10.1016/j.jaim.2021.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/26/2023] Open
Abstract
Osteoporosis is a skeletal disease that is identified by the deterioration of micro-architecture of bone tissue, leading to enhanced bone brittleness and a consequential increase in fracture threat. There are many treatments available for osteoporosis such as bisphosphonate therapy, hormonal replacement therapy, herbal therapy etc. For decades, there are several herbs that are attributed to have anti-osteoporotic effects however the candidate genes involved in it remained unknown. In line with this, the present study is focused to elucidate the anti-osteoporotic property of Litsea glutinosa (LG). To understand the proliferative effect and identify involved players, gene expression was studied on the Saos-2 osteocytes in-vitro. The expression profile of candidate genes involved in different signaling pathways such as Egr-2, RUNX2, MAPK3, NFATc1, CREB, ERβ, along with proliferation and apoptotic markers in osteoporosis were selected for the study. The gene expression profile demonstrated a significant up-regulation of Egr-2, RUNX2, MAPK3, CREB, EBβ in the range of 1.5–2.2 folds, whereas NFATc1 was found to be down-regulated up to 0.4 times compared to control when treated with 250 μg/mL of LG. Besides this, anti-apoptosis effect of LG was also supported by flow cytometry results which also proved that LG induces proliferation and inhibits apoptosis, suggesting the proliferative role of LG. In conclusion, the present study gathers the potency of LG extract for its proliferative and anti-apoptotic effect on Saos-2 osteocytes and opens a new avenue for detailing the mechanistic actions of it on mitigating the pathophysiology of osteoporosis.
Collapse
|
9
|
Yang X, Mou D, Yu Q, Zhang J, Xiong Y, Zhang Z, Xing S. Nerve growth factor promotes osteogenic differentiation of MC3T3-E1 cells via BMP-2/Smads pathway. Ann Anat 2021; 239:151819. [PMID: 34391912 DOI: 10.1016/j.aanat.2021.151819] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Exogenous nerve growth factor (NGF) can induce osteogenic precursor cell differentiation and promote fracture healing. However, the molecular mechanism by which NGF induces osteogenesis is not well understood. BMP-2 has good osteogenic efficacy and is one of the most osteogenic-inducing growth factors known. Therefore, this study aimed to determine whether NGF induces osteogenic differentiation of mouse embryonic osteogenic precursor cell line MC3T3-E1 by BMP-2 and search further mechanisms of NGF on BMP-2. METHODS MC3T3-E1 cells were treated with NGF at a concentration gradient for indicated times, after which the cell viability was measured by CCK-8 kit. Osteogenic differentiation was detected with quantification of alkaline phosphatase (ALP) activity also visualized with ALP staining. The transcription and expression of relevant genes were detected by qPCR and western blotting, respectively. NGF's effect on BMP2 was studied with qPCR and luciferase reporter assay. The phosphorylation of Smads was probed with specific antibodies by western blotting, and the location of Smads was observed through immunofluorescence. RESULTS We found that NGF promoted proliferation and osteogenic differentiation of MC3T3-E1, increased the expression level of BMP-2, as well as the phosphorylation and nuclear translocation of Smad1/5/8. However, neutralization of BMP-2 with si-BMP-2 or BMP-2 signal inhibitors reversed NGF induced phosphorylation and nuclear translocation of Smad1/5/8, as well as the expression of Runx2, type I collagen, osteocalcin and osteopontin. In addition, si-BMP-2 abrogated NGF-induced ALP activity. CONCLUSION NGF induced osteogenic differentiation of MC3T3-E1 cells through BMP-2/Smads pathway and induction of Runx2. Our study would provide a theoretical basis for clinical treatment of fractures using NGF.
Collapse
Affiliation(s)
- Xuming Yang
- Orthopedics Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650035, Yunnan Province, China.
| | - Donggang Mou
- Orthopedics Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650035, Yunnan Province, China
| | - Qunying Yu
- Maternity Department, The Second Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Jimei Zhang
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650065, Yunnan Province, China
| | - Ying Xiong
- Orthopedics Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650035, Yunnan Province, China
| | - Zhimin Zhang
- Orthopedics Department, Yanshan County Hospital of Traditional Chinese Medicine, Wenshan Zhuang and Miao Autonomous Prefecture 663100, Yunnan Province, China
| | - Shan Xing
- Orthopedics Department, The Second People's Hospital of Yanshan County, Wenshan Zhuang and Miao Autonomous Prefecture 663101, Yunnan Province, China
| |
Collapse
|
10
|
Gao Y, Patil S, Jia J. The Development of Molecular Biology of Osteoporosis. Int J Mol Sci 2021; 22:8182. [PMID: 34360948 PMCID: PMC8347149 DOI: 10.3390/ijms22158182] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is one of the major bone disorders that affects both women and men, and causes bone deterioration and bone strength. Bone remodeling maintains bone mass and mineral homeostasis through the balanced action of osteoblasts and osteoclasts, which are responsible for bone formation and bone resorption, respectively. The imbalance in bone remodeling is known to be the main cause of osteoporosis. The imbalance can be the result of the action of various molecules produced by one bone cell that acts on other bone cells and influence cell activity. The understanding of the effect of these molecules on bone can help identify new targets and therapeutics to prevent and treat bone disorders. In this article, we have focused on molecules that are produced by osteoblasts, osteocytes, and osteoclasts and their mechanism of action on these cells. We have also summarized the different pharmacological osteoporosis treatments that target different molecular aspects of these bone cells to minimize osteoporosis.
Collapse
Affiliation(s)
- Yongguang Gao
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China;
| | - Suryaji Patil
- Lab for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Jingxian Jia
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China;
| |
Collapse
|
11
|
Wang S, Feng W, Liu J, Wang X, Zhong L, Lv C, Feng M, An N, Mao Y. Alginate oligosaccharide alleviates senile osteoporosis via the RANKL-RANK pathway in D-galactose-induced C57BL/6J mice. Chem Biol Drug Des 2021; 99:46-55. [PMID: 34145772 PMCID: PMC9544009 DOI: 10.1111/cbdd.13904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/06/2021] [Indexed: 11/30/2022]
Abstract
Osteoporosis is a systemic skeletal disorder characterized by reduced bone mineral density (BMD) and bone quality and increased bone porosity, which increase the risk of bone fracture. Inflammation, one of the important mechanisms related to aging, is associated with osteoporosis. Treatment with anti‐inflammatory agents is effective for alleviating senile osteoporosis. Alginate oligosaccharide (AOS) can prevent and treat diseases related to inflammation, oxidative stress, and immunity. This study evaluates the effect of AOS on osteoporosis and investigates the underlying mechanism. Osteoporosis model was induced by D‐galactose (D‐gal) (200 mg kg−1 day−1) for eight weeks. Three groups were administered via AOS (50, 100, and 150 mg kg−1 day−1) for four weeks, while a control group received sterile water (5 ml kg−1 day−1) for 8 weeks. The results showed that AOS improved bone density and bone microstructure in D‐gal‐induced osteoporosis mice. AOS inhibited osteoclast proliferation, probably through the suppression of receptor activator of nuclear factor‐kappa B ligand (RANKL)‐associated nuclear factor kappa B (NF‐κB) and c‐Fos signaling pathway. AOS also increased osteoprotegerin (OPG) expression and competitively inhibited the binding between RANK and RANKL in senile osteoporosis. Further, AOS decreased the secretion of serum osteocalcin and reduced bone conversion. Together, these results demonstrate the anti‐osteoporosis activity of AOS in mice with osteoporosis.
Collapse
Affiliation(s)
- Shan Wang
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Wenjing Feng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.,Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, 266021, China
| | - Jianya Liu
- Department of General Practice, Anyang District Hospital of Puyang City, Anyang, 455000, China
| | - Xufu Wang
- Department of Nuclear medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Lina Zhong
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chengxiu Lv
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Meiping Feng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Nina An
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yongjun Mao
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| |
Collapse
|