1
|
López-Cerdá S, Molinaro G, Tello RP, Correia A, Waris E, Hirvonen J, Barreto G, Santos HA. Antifibrotic and Pro-regenerative Effects of SMAD3 siRNA and Collagen I mRNA-Loaded Lipid Nanoparticles in Human Tenocytes. ACS APPLIED NANO MATERIALS 2024; 7:17736-17747. [PMID: 39144399 PMCID: PMC11320386 DOI: 10.1021/acsanm.4c02996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 08/16/2024]
Abstract
Tendinopathy involves the inflammation and degeneration of the tendon due to repetitive strain injury. Current treatments primarily target inflammation resolution, yet they do not aim at tissue regeneration. In this study, a microfluidics approach is harnessed to develop a platform of lipid nanoparticles (LNPs) loaded simultaneously with SMAD3 siRNA and collagen I mRNA, aiming to explore its potential dual antifibrotic and regenerative effects in human tenocytes. The developed LNPs displayed size homogeneity and colloidal stability and exhibited high cytocompatibility in human tenocytes. Moreover, LNPs allowed for efficient uptake and transfection efficiency of the RNAs. In the in vitro efficacy studies, the gene expression and production of SMAD3 and collagen I were tested by real-time quantitative chain polymerase reaction and immuno- and intracellular staining, revealing collagen I production enhancement, SMAD3 inhibition, and modulation of other tendon repair factors by the LNPs. Overall, the potential of this platform of RNA-loaded LNPs to be used as a dual therapeutic approach to prevent fibrosis and promote tissue remodeling in late stages of tendon diseases was confirmed.
Collapse
Affiliation(s)
- Sandra López-Cerdá
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Giuseppina Molinaro
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Rubén Pareja Tello
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Alexandra Correia
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Eero Waris
- Department
of Hand Surgery, University of Helsinki
and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Jouni Hirvonen
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Goncalo Barreto
- Translational
Immunology Research Program, Faculty of Medicine, University of Helsinki, PL 4 (Yliopistonkatu 3), 00014 Helsinki, Finland
- Medical
Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical
Engineering, Aalto University, 02150 Espoo, Finland
- Orton
Orthopedic Hospital, Tenholantie 10, 00280 Helsinki, Finland
| | - Hélder A. Santos
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Department
of Biomedical Engineering, The Personalized Medicine Research Institute
(PRECISION), University Medical Center Groningen
(UMCG), University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
2
|
Bowers K, Amelse L, Bow A, Newby S, MacDonald A, Sun X, Anderson D, Dhar M. Mesenchymal Stem Cell Use in Acute Tendon Injury: In Vitro Tenogenic Potential vs. In Vivo Dose Response. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9080407. [PMID: 36004932 PMCID: PMC9404841 DOI: 10.3390/bioengineering9080407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
Abstract
Stem cell therapy for the treatment of tendon injury is an emerging clinical practice in the fields of human and veterinary sports medicine; however, the therapeutic benefit of intralesional transplantation of mesenchymal stem cells in tendonitis cases is not well designed. Questions persist regarding the overall tenogenic potential and efficacy of this treatment alone. In this study, we aimed to isolate a rat mesenchymal stem cell lineage for in vitro and in vivo use, to assess the effects of growth factor exposure in vitro on cell morphology, behavior, and tendon-associated glycoprotein production, and to assess the therapeutic potential of intralesional stem cells, as a function of dose, in vivo. First, rat adipose-derived (rAdMSC) and bone marrow-derived (rBMSC) stem cell lineages were isolated, characterized with flow cytometric analysis, and compared in terms of proliferation (MTS assay) and cellular viability (calcein AM staining). Rat AdMSCs displayed superior proliferation and more homogenous CD 73, CD 44H, and CD 90 expression as compared to rBMSC. Next, the tenogenic differentiation potential of the rAdMSC lineage was tested in vitro through isolated and combined stimulation with reported tenogenic growth factors, transforming growth factor (TGF)-β3 and connective tissue growth factor (CTGF). We found that the most effective tenogenic factor in terms of cellular morphologic change, cell alignment/orientation, sustained cellular viability, and tendon-associated glycoprotein upregulation was TGFβ3, and we confirmed that rAdMSC could be induced toward a tenogenic lineage in vitro. Finally, the therapeutic potential of rAdMSCs as a function of dose was assessed using a rat acute Achilles tendon injury model. Amounts of 5 × 105 (low dose) and 4 × 106 (high dose) were used. Subjectively, on the gross morphology, the rAdMSC-treated tendons exhibited fewer adhesions and less scar tissue than the control tendons; however, regardless of the rAdMSC dose, no significant differences in histological grade or tissue collagen I deposition were noted between the rAdMSC-treated and control tendons. Collectively, rAdMSCs exhibited appropriate stem cell markers and tenogenic potential in vitro, but the clinical efficacy of intralesional implantation of undifferentiated cells in acute tendonitis cases could not be proven. Further investigation into complementary therapeutics or specialized culture conditions prior to implantation are warranted.
Collapse
Affiliation(s)
- Kristin Bowers
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
- Correspondence:
| | - Lisa Amelse
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Austin Bow
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Steven Newby
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Amber MacDonald
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Xiaocun Sun
- Office of Information and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - David Anderson
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Madhu Dhar
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| |
Collapse
|
3
|
Ahangar P, Strudwick XL, Cowin AJ. Wound Healing from an Actin Cytoskeletal Perspective. Cold Spring Harb Perspect Biol 2022; 14:a041235. [PMID: 35074864 PMCID: PMC9341468 DOI: 10.1101/cshperspect.a041235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wound healing requires a complex cascade of highly controlled and conserved cellular and molecular processes. These involve numerous cell types and extracellular matrix molecules regulated by the actin cytoskeleton. This microscopic network of filaments is present within the cytoplasm of all cells and provides the shape and mechanical support required for cell movement and proliferation. Here, an overview of the processes of wound healing are described from the perspective of the cell in relation to the actin cytoskeleton. Key points of discussion include the role of actin, its binding proteins, signaling pathways, and events that play significant roles in the phases of wound healing. The identification of cytoskeletal targets that can be used to manipulate and improve wound healing is included as an emerging area of focus that may inform future therapeutic approaches to improve healing of complex wounds.
Collapse
Affiliation(s)
- Parinaz Ahangar
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| | - Xanthe L Strudwick
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| | - Allison J Cowin
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| |
Collapse
|
4
|
Choi JH, Shim IK, Shin MJ, Lee YN, Koh KH. Stem cell sheet interpositioned between the tendon and bone would be better for healing than stem cell sheet overlaid above the tendon-to-bone junction in rotator cuff repair of rats. PLoS One 2022; 17:e0266030. [PMID: 35324992 PMCID: PMC8947210 DOI: 10.1371/journal.pone.0266030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Although stem cells might enhance natural enthesis healing in surgical rotator cuff repair, not much attention has been given to the delivery and location of delivering stem cells. The purpose of this study to know where to locate those stem cells during repair. METHODS Animal model of chronic rotator cuff tear was created in 24 rats. Adipose-derived stem cells were engineered as a sheet and transplanted 1) between a torn tendon and humerus (interposition group) or 2) over a repaired tendon-to-bone junction (overlay group) at the time of surgical repair. Tracking of stem cells with overexpression of green fluorescent protein (GFP) were carried out at the time of sacrifice in additional 4 shoulders in each group. Histological and Biomechanical evaluation was performed to compare the differences in tendon-to-bone healing. RESULTS Histology showed increased fibrocartilage, a clear boundary at the mineralized fibrocartilage, abundant collagen type III, and higher total scores, especially in the interposition group. GFP-overexpression was observed at the transplanted site at 2 weeks after repair. Although two groups where stem cell sheets applied showed higher load to failure than the repair-only group, the load to failure was not different between the interposition and overlay group. CONCLUSION In the chronic rotator cuff repair model, stem cell sheets enhanced regeneration of the tendon-to-bone junction. This regeneration was effective when the stem cell sheet was interpositioned at the tendon-to-bone interface. LEVEL OF EVIDENCE Basic Science Study; In Vivo Animal Model; Histology and Biomechanics.
Collapse
Affiliation(s)
- Jae hee Choi
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Kyong Shim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Yu Na Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoung Hwan Koh
- Department of Orthopaedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Species variations in tenocytes' response to inflammation require careful selection of animal models for tendon research. Sci Rep 2021; 11:12451. [PMID: 34127759 PMCID: PMC8203623 DOI: 10.1038/s41598-021-91914-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/24/2021] [Indexed: 01/23/2023] Open
Abstract
For research on tendon injury, many different animal models are utilized; however, the extent to which these species simulate the clinical condition and disease pathophysiology has not yet been critically evaluated. Considering the importance of inflammation in tendon disease, this study compared the cellular and molecular features of inflammation in tenocytes of humans and four common model species (mouse, rat, sheep, and horse). While mouse and rat tenocytes most closely equalled human tenocytes’ low proliferation capacity and the negligible effect of inflammation on proliferation, the wound closure speed of humans was best approximated by rats and horses. The overall gene expression of human tenocytes was most similar to mice under healthy, to horses under transient and to sheep under constant inflammatory conditions. Humans were best matched by mice and horses in their tendon marker and collagen expression, by horses in extracellular matrix remodelling genes, and by rats in inflammatory mediators. As no single animal model perfectly replicates the clinical condition and sufficiently emulates human tenocytes, fit-for-purpose selection of the model species for each specific research question and combination of data from multiple species will be essential to optimize translational predictive validity.
Collapse
|
6
|
Haidari H, Kopecki Z, Sutton AT, Garg S, Cowin AJ, Vasilev K. pH-Responsive "Smart" Hydrogel for Controlled Delivery of Silver Nanoparticles to Infected Wounds. Antibiotics (Basel) 2021; 10:49. [PMID: 33466534 PMCID: PMC7824857 DOI: 10.3390/antibiotics10010049] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022] Open
Abstract
Persistent wound infections have been a therapeutic challenge for a long time. Current treatment approaches are mostly based on the delivery of antibiotics, but these are not effective for all infections. Here, we report the development of a sensitive pH-responsive hydrogel that can provide controlled, pH-triggered release of silver nanoparticles (AgNPs). This delivery system was designed to sense the environmental pH and trigger the release of AgNPs when the pH changes from acidic to alkaline, as occurs due to the presence of pathogenic bacteria in the wound. Our results show that the prepared hydrogel restricts the release of AgNPs at acidic pH (pH = 4) but substantially amplifies it at alkaline pH (pH = 7.4 and pH = 10). This indicates the potential use of the hydrogel for the on-demand release of Ag+ depending on the environmental pH. In vitro antibacterial studies demonstrated effective elimination of both Gram-negative and positive bacteria. Additionally, the effective antibacterial dose of Ag+ showed no toxicity towards mammalian skin cells. Collectively, this pH-responsive hydrogel presents potential as a promising new material for the treatment of infected wounds.
Collapse
Affiliation(s)
- Hanif Haidari
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (H.H.); (Z.K.); (S.G.); (A.J.C.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Zlatko Kopecki
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (H.H.); (Z.K.); (S.G.); (A.J.C.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Adam T. Sutton
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Sanjay Garg
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (H.H.); (Z.K.); (S.G.); (A.J.C.)
| | - Allison J. Cowin
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (H.H.); (Z.K.); (S.G.); (A.J.C.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Krasimir Vasilev
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
7
|
Strudwick XL, Cowin AJ. Multifunctional Roles of the Actin-Binding Protein Flightless I in Inflammation, Cancer and Wound Healing. Front Cell Dev Biol 2020; 8:603508. [PMID: 33330501 PMCID: PMC7732498 DOI: 10.3389/fcell.2020.603508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022] Open
Abstract
Flightless I is an actin-binding member of the gelsolin family of actin-remodeling proteins that inhibits actin polymerization but does not possess actin severing ability. Flightless I functions as a regulator of many cellular processes including proliferation, differentiation, apoptosis, and migration all of which are important for many physiological processes including wound repair, cancer progression and inflammation. More than simply facilitating cytoskeletal rearrangements, Flightless I has other important roles in the regulation of gene transcription within the nucleus where it interacts with nuclear hormone receptors to modulate cellular activities. In conjunction with key binding partners Leucine rich repeat in the Flightless I interaction proteins (LRRFIP)1/2, Flightless I acts both synergistically and competitively to regulate a wide range of cellular signaling including interacting with two of the most important inflammatory pathways, the NLRP3 inflammasome and the MyD88-TLR4 pathways. In this review we outline the current knowledge about this important cytoskeletal protein and describe its many functions across a range of health conditions and pathologies. We provide perspectives for future development of Flightless I as a potential target for clinical translation and insights into potential therapeutic approaches to manipulate Flightless I functions.
Collapse
Affiliation(s)
- Xanthe L Strudwick
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| |
Collapse
|
8
|
Jackson JE, Kopecki Z, Anderson PJ, Cowin AJ. Increasing the level of cytoskeletal protein Flightless I reduces adhesion formation in a murine digital flexor tendon model. J Orthop Surg Res 2020; 15:362. [PMID: 32854733 PMCID: PMC7450967 DOI: 10.1186/s13018-020-01889-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/13/2020] [Indexed: 12/29/2022] Open
Abstract
Background Surgical repair of tendons is common, but function is often limited due to the formation of flexor tendon adhesions which reduce the mobility and use of the affected digit and hand. The severity of adhesion formation is dependent on numerous cellular processes many of which involve the actin cytoskeleton. Flightless I (Flii) is a highly conserved cytoskeletal protein, which has previously been identified as a potential target for improved healing of tendon injuries. Using human in vitro cell studies in conjunction with a murine model of partial laceration of the digital flexor tendon, we investigated the effect of modulating Flii levels on tenocyte function and formation of adhesions. Methods Human tenocyte proliferation and migration was determined using WST-1 and scratch wound assays following Flii knockdown by siRNA in vitro. Additionally, mice with normal and increased levels of Flii were subjected to a partial laceration of the digital flexor tendon in conjunction with a full tenotomy to immobilise the paw. Resulting adhesions were assessed using histology and immunohistochemistry for collagen I, III, TGF-β1and -β3 Results Flii knockdown significantly reduced human tenocyte proliferation and migration in vitro. Increasing the expression of Flii significantly reduced digital tendon adhesion formation in vivo which was confirmed through significantly smaller adhesion scores based on collagen fibre orientation, thickness, proximity to other fibres and crimping. Reduced adhesion formation was accompanied with significantly decreased deposition of type I collagen and increased expression of TGF-β1 in vivo. Conclusions These findings suggest that increasing the level of Flii in an injured tendon may be beneficial for decreasing tendon adhesion formation.
Collapse
Affiliation(s)
- Jessica E Jackson
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Peter J Anderson
- Faculty of Medicine and Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia.
| |
Collapse
|