1
|
Bao X, Liu C, Liu H, Wang Y, Xue P, Li Y. Association between polymorphisms of glucagon-like peptide-1 receptor gene and susceptibility to osteoporosis in Chinese postmenopausal women. J Orthop Surg Res 2024; 19:869. [PMID: 39716293 DOI: 10.1186/s13018-024-05361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND The influence of the glucagon-like peptide-1 receptor (GLP-1R) on bone metabolism is well-established. However, it has been observed that single nucleotide polymorphisms (SNPs) in the GLP-1R gene can partially affect its function. Therefore, this study aims to investigate the association between SNPs in the GLP-1R gene and postmenopausal osteoporosis (PMOP) within the Chinese Han population. METHODS This study employed a cross-sectional case-control design, recruiting a total of 152 participants, including 76 patients with osteoporosis (OP) (case group) and 76 healthy individuals (control group). Seven tag SNPs of GLP-1R were selected from the National Center of Biotechnology Information and Genome Variation Server. The association between GLP-1R polymorphisms and PMOP risk was assessed using different genetic models and haplotypes, while also exploring SNP-SNP and SNP-environment interactions. RESULTS Our results showed that minor alleles A at rs3765468, A at rs3765467 and G at rs4714210 showed significant associations with an increased risk of OP. Individuals with rs3765468 AG-AA genotype and rs3765467 AG-AA genotype exhibited a significantly higher risk of PMOP. Moreover, haplotype analysis revealed a significant association of the GACACA haplotype on PMOP risk (P = 0.033). Additionally, a multiplicative interaction was observed between rs3765468 and rs3765467 that was associated with an increased risk of PMOP (Pinteraction = 0.012). CONCLUSIONS Specific SNPs in the GLP-1R gene were linked to an increased risk of PMOP. This study improves our understanding of the genetic basis of PMOP in this population and suggests that genetic screening can identify individuals at risk for developing PMOP, enabling early prevention.
Collapse
Affiliation(s)
- Xiaoxue Bao
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, Hebei, China
| | - Chang Liu
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huiming Liu
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
- Department of Prosthodontics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Wang
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, Hebei, China
| | - Peng Xue
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, Hebei, China
| | - Yukun Li
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China.
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Angelozzi M, Karvande A, Lefebvre V. SOXC are critical regulators of adult bone mass. Nat Commun 2024; 15:2956. [PMID: 38580651 PMCID: PMC10997656 DOI: 10.1038/s41467-024-47413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
Pivotal in many ways for human health, the control of adult bone mass is governed by complex, incompletely understood crosstalk namely between mesenchymal stem cells, osteoblasts and osteoclasts. The SOX4, SOX11 and SOX12 (SOXC) transcription factors were previously shown to control many developmental processes, including skeletogenesis, and SOX4 was linked to osteoporosis, but how SOXC control adult bone mass remains unknown. Using SOXC loss- and gain-of-function mouse models, we show here that SOXC redundantly promote prepubertal cortical bone mass strengthening whereas only SOX4 mitigates adult trabecular bone mass accrual in early adulthood and subsequent maintenance. SOX4 favors bone resorption over formation by lowering osteoblastogenesis and increasing osteoclastogenesis. Single-cell transcriptomics reveals its prevalent expression in Lepr+ mesenchymal cells and ability to upregulate genes for prominent anti-osteoblastogenic and pro-osteoclastogenic factors, including interferon signaling-related chemokines, contributing to these adult stem cells' secretome. SOXC, with SOX4 predominantly, are thus key regulators of adult bone mass.
Collapse
Affiliation(s)
- Marco Angelozzi
- Department of Surgery, Division of Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Anirudha Karvande
- Department of Surgery, Division of Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Véronique Lefebvre
- Department of Surgery, Division of Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
3
|
SOXC Transcription Factors as Diagnostic Biomarkers and Therapeutic Targets for Arthritis. Int J Mol Sci 2023; 24:ijms24044215. [PMID: 36835620 PMCID: PMC9967432 DOI: 10.3390/ijms24044215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common disorders that disrupt the quality of life of millions of people. These two chronic diseases cause damage to the joint cartilage and surrounding tissues of more than 220 million people worldwide. Sex-determining region Y-related (SRY) high-mobility group (HMG) box C, SOXC, is a superfamily of transcription factors that have been recently shown to be involved in various physiological and pathological processes. These include embryonic development, cell differentiation, fate determination, and autoimmune diseases, as well as carcinogenesis and tumor progression. The SOXC superfamily includes SOX4, SOX11, and SOX12, all have a similar DNA-binding domain, i.e., HMG. Herein, we summarize the current knowledge about the role of SOXC transcription factors during arthritis progression and their potential utilization as diagnostic biomarkers and therapeutic targets. The involved mechanistic processes and signaling molecules are discussed. SOX12 appears to have no role in arthritis, however SOX11 is dysregulated and promotes arthritic progression according to some studies but supports joint maintenance and protects cartilage and bone cells according to others. On the other hand, SOX4 upregulation during OA and RA was documented in almost all studies including preclinical and clinical models. Molecular details have indicated that SOX4 can autoregulate its own expression besides regulating the expression of SOX11, a characteristic associated with the transcription factors that protects their abundance and activity. From analyzing the currently available data, SOX4 seems to be a potential diagnostic biomarker and therapeutic target of arthritis.
Collapse
|
4
|
Stevanovic M, Lazic A, Schwirtlich M, Stanisavljevic Ninkovic D. The Role of SOX Transcription Factors in Ageing and Age-Related Diseases. Int J Mol Sci 2023; 24:851. [PMID: 36614288 PMCID: PMC9821406 DOI: 10.3390/ijms24010851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The quest for eternal youth and immortality is as old as humankind. Ageing is an inevitable physiological process accompanied by many functional declines that are driving factors for age-related diseases. Stem cell exhaustion is one of the major hallmarks of ageing. The SOX transcription factors play well-known roles in self-renewal and differentiation of both embryonic and adult stem cells. As a consequence of ageing, the repertoire of adult stem cells present in various organs steadily declines, and their dysfunction/death could lead to reduced regenerative potential and development of age-related diseases. Thus, restoring the function of aged stem cells, inducing their regenerative potential, and slowing down the ageing process are critical for improving the health span and, consequently, the lifespan of humans. Reprograming factors, including SOX family members, emerge as crucial players in rejuvenation. This review focuses on the roles of SOX transcription factors in stem cell exhaustion and age-related diseases, including neurodegenerative diseases, visual deterioration, chronic obstructive pulmonary disease, osteoporosis, and age-related cancers. A better understanding of the molecular mechanisms of ageing and the roles of SOX transcription factors in this process could open new avenues for developing novel strategies that will delay ageing and prevent age-related diseases.
Collapse
Affiliation(s)
- Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Andrijana Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | | |
Collapse
|
5
|
Jones K, Ramirez-Perez S, Niu S, Gangishetti U, Drissi H, Bhattaram P. SOX4 and RELA Function as Transcriptional Partners to Regulate the Expression of TNF- Responsive Genes in Fibroblast-Like Synoviocytes. Front Immunol 2022; 13:789349. [PMID: 35529852 PMCID: PMC9074688 DOI: 10.3389/fimmu.2022.789349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
SOX4 belongs to the group C of the SOX transcription factor family. It is a critical mediator of tumor necrosis factor alpha (TNF)-induced transformation of fibroblast-like s-ynoviocytes (FLS) in arthritis. In this study we investigated the genome wide association between the DNA binding and transcriptional activities of SOX4 and the NF-kappaB signaling transcription factor RELA/p65 downstream of TNF signaling. We used ChIP-seq assays in mouse FLS to compare the global DNA binding profiles of SOX4 and RELA. RNA-seq of TNF-induced wildtype and SoxC-knockout FLS was used to identify the SOX4-dependent and independent aspects of the TNF-regulated transcriptome. We found that SOX4 and RELA physically interact with each other on the chromatin. Interestingly, ChIP-seq assays revealed that 70.4% of SOX4 peak summits were within 50bp of the RELA peak summits suggesting that both proteins bind in close-proximity on regulatory sequences, enabling them to co-operatively regulate gene expression. By integrating the ChIP-seq results with RNA-seq from SoxC-knockout FLS we identified a set of TNF-responsive genes that are targets of the RELA-SOX4 transcriptional complex. These TNF-responsive and RELA-SOX4-depenedent genes included inflammation mediators, histone remodeling enzymes and components of the AP-1 signaling pathway. We also identified an autoregulatory mode of SoxC gene expression that involves a TNF-mediated switch from RELA binding to SOX4 binding in the 3' UTR of Sox4 and Sox11 genes. In conclusion, our results show that SOX4 and RELA together orchestrate a multimodal regulation of gene expression downstream of TNF signaling. Their interdependent activities play a pivotal role in the transformation of FLS in arthritis and in the inflammatory pathology of diverse tissues where RELA and SOX4 are co-expressed.
Collapse
Affiliation(s)
- Kyle Jones
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Sergio Ramirez-Perez
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean Niu
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Umesh Gangishetti
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Veterans Affairs, Atlanta VA Medical Center, Decatur, GA, United States
| | - Pallavi Bhattaram
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|