1
|
Belgiovine C, Mebelli K, Raffaele A, De Cicco M, Rotella J, Pedrazzoli P, Zecca M, Riccipetitoni G, Comoli P. Pediatric Solid Cancers: Dissecting the Tumor Microenvironment to Improve the Results of Clinical Immunotherapy. Int J Mol Sci 2024; 25:3225. [PMID: 38542199 PMCID: PMC10970338 DOI: 10.3390/ijms25063225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 01/03/2025] Open
Abstract
Despite advances in their diagnosis and treatment, pediatric cancers remain among the leading causes of death in childhood. The development of immunotherapies and other forms of targeted therapies has significantly changed the prognosis of some previously incurable cancers in the adult population. However, so far, the results in pediatric cohorts are disappointing, which is mainly due to differences in tumor biology, including extreme heterogeneity and a generally low tumor mutational burden. A central role in the limited efficacy of immunotherapeutic approaches is played by the peculiar characteristics of the tumor microenvironment (TME) in pediatric cancer, with the scarcity of tumor infiltration by T cells and the abundance of stromal cells endowed with lymphocyte suppressor and tumor-growth-promoting activity. Thus, progress in the treatment of pediatric solid tumors will likely be influenced by the ability to modify the TME while delivering novel, more effective therapeutic agents. In this review, we will describe the TME composition in pediatric solid tumors and illustrate recent advances in treatment for the modulation of immune cells belonging to the TME.
Collapse
Affiliation(s)
- Cristina Belgiovine
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, University of Pavia, 27100 Pavia, Italy
- SC Chirurgia Pediatrica, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Kristiana Mebelli
- SC Chirurgia Pediatrica, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Alessandro Raffaele
- SC Chirurgia Pediatrica, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Marica De Cicco
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Jessica Rotella
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Pedrazzoli
- Medical Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Marco Zecca
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giovanna Riccipetitoni
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, University of Pavia, 27100 Pavia, Italy
- SC Chirurgia Pediatrica, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Patrizia Comoli
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
2
|
Sim I, Choe W, Ri J, Su H, Moqbel SAA, Yan W. Chitosan oligosaccharide suppresses osteosarcoma malignancy by inhibiting CEMIP via the PI3K/AKT/mTOR pathway. Med Oncol 2023; 40:294. [PMID: 37668818 PMCID: PMC10480286 DOI: 10.1007/s12032-023-02165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
Osteosarcoma is a malignant bone tumor that is prone to metastasize early and primarily affects children and adolescents. Cell migration-inducing protein (CEMIP) plays a crucial role in the progression and malignancy of various tumor diseases, including osteosarcoma. Chitosan oligosaccharide (COS), an oligomer isolated from chitin, has been found to have significant anti-tumor activity in various cancers. This study investigates the effects of COS on CEMIP expression in osteosarcoma and explores the underlying mechanism. In present study, in vitro experiments were conducted to confirm the inhibitory activity of COS on human osteosarcoma cells. Our results demonstrate that COS possesses inhibitory effects against human osteosarcoma cells and significantly suppresses CEMIP expression in vitro. Next, we studied the inhibition of the expression of CEMIP by COS and then performed bioinformatics analysis to explore the potential inhibitory mechanism of COS against signaling pathways involved in regulating CEMIP expression. Bioinformatics analysis predicted a close association between the PI3K signaling pathway and CEMIP expression and that the inhibitory effect of COS on CEMIP expression may be related to PI3K signaling pathway regulation. The results of this study show that COS treatment significantly inhibits CEMIP expression and the PI3K/AKT/mTOR signaling pathway, as observed both in vitro and in vivo. This study demonstrates that COS could inhibit the expression of CEMIP, which is closely related to osteosarcoma malignancy. This inhibitory effect may be attributed to the inhibition of the PI3K/AKT/mTOR signaling pathway in vitro and in vivo.
Collapse
Affiliation(s)
- IlJin Sim
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
- Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029 China
- Clinical Institute, Pyongyang Medical University, Pyongyang, 999093 Democratic People’s Republic of Korea
| | - WonGyom Choe
- Clinical Institute, Pyongyang Medical University, Pyongyang, 999093 Democratic People’s Republic of Korea
| | - JinJu Ri
- Department of Cardiology, Pyongyang Medical University Hospital, Pyongyang, 999093 Democratic People’s Republic of Korea
| | - Hang Su
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
- Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029 China
| | - Safwat Adel Abdo Moqbel
- Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029 China
- Department of Emergency Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| | - WeiQi Yan
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Campus, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
- Zhejiang University School of Medicine, Zhejiang University Huajiachi Campus, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029 China
- The BioMed Innovation Institute of Hangzhou Medical College, Hangzhou, 310010 China
| |
Collapse
|
3
|
Chen H, Wang Q, Liu J, Chen Y, Zhang Q, Chai L, Wang Y, Li D, Qiu Y, Li M. CEMIP as a prognostic biomarker for cancers: a meta- and bioinformatic analysis. Expert Rev Mol Diagn 2022; 22:1107-1115. [PMID: 36631437 DOI: 10.1080/14737159.2022.2168191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Cell migration-inducing and hyaluronan-binding protein (CEMIP) is overexpressed in several cancers and is related to prognosis in cancer patients. Here, we conducted a meta-analysis to explore the prognostic effects of CEMIP in cancer patients. METHODS Relevant published studies were systematically searched in four databases. The role of CEMIP was evaluated using pooled hazard ratios (HRs), odd ratios (ORs), and 95% confidence intervals (95% CIs). The Cancer Genome Atlas (TCGA) was used to investigate the prognostic value of CEMIP in various cancers. RESULTS 11 literatures with 1355 patients were included in this meta-analysis. The results showed that overexpression of CEMIP was significantly associated with poor OS (HR = 3.03; 95% CI: 2.00-4.59; p < 0.001), DFS (HR = 3.38; 95% CI: 2.41-4.74; p < 0.001). Elevated CEMIP expression is associated with advanced clinical stage, lymph node metastasis, and poor histological grade. In addition, TCGA datasets were used to verify that CEMIP was found highly expressed in multiple cancers and was associated with poorer survival. CONCLUSION The results demonstrated that CEMIP could be a novel prognostic biomarker for cancer patients. However, because the included studies mainly focused on Asian populations, further research is needed to verify its applicability.
Collapse
Affiliation(s)
- Huan Chen
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qingting Wang
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jin Liu
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuqian Chen
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qianqian Zhang
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Limin Chai
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Wang
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Danyang Li
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuanjie Qiu
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Manxiang Li
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Domanegg K, Sleeman JP, Schmaus A. CEMIP, a Promising Biomarker That Promotes the Progression and Metastasis of Colorectal and Other Types of Cancer. Cancers (Basel) 2022; 14:cancers14205093. [PMID: 36291875 PMCID: PMC9600181 DOI: 10.3390/cancers14205093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary CEMIP (cell migration-inducing and hyaluronan-binding protein) has been implicated in the pathogenesis of numerous diseases, including colorectal and other forms of cancer. The molecular functions of CEMIP are currently under investigation and include the degradation of the extracellular matrix component hyaluronic acid (HA), as well as the regulation of a number of signaling pathways. In this review, we survey our current understanding of how CEMIP contributes to tumor growth and metastasis, focusing particularly on colorectal cancer, for which it serves as a promising biomarker. Abstract Originally discovered as a hypothetical protein with unknown function, CEMIP (cell migration-inducing and hyaluronan-binding protein) has been implicated in the pathogenesis of numerous diseases, including deafness, arthritis, atherosclerosis, idiopathic pulmonary fibrosis, and cancer. Although a comprehensive definition of its molecular functions is still in progress, major functions ascribed to CEMIP include the depolymerization of the extracellular matrix component hyaluronic acid (HA) and the regulation of a number of signaling pathways. CEMIP is a promising biomarker for colorectal cancer. Its expression is associated with poor prognosis for patients suffering from colorectal and other types of cancer and functionally contributes to tumor progression and metastasis. Here, we review our current understanding of how CEMIP is able to foster the process of tumor growth and metastasis, focusing particularly on colorectal cancer. Studies in cancer cells suggest that CEMIP exerts its pro-tumorigenic and pro-metastatic activities through stimulating migration and invasion, suppressing cell death and promoting survival, degrading HA, regulating pro-metastatic signaling pathways, inducing the epithelial–mesenchymal transition (EMT) program, and contributing to the metabolic reprogramming and pre-metastatic conditioning of future metastatic microenvironments. There is also increasing evidence indicating that CEMIP may be expressed in cells within the tumor microenvironment that promote tumorigenesis and metastasis formation, although this remains in an early stage of investigation. CEMIP expression and activity can be therapeutically targeted at a number of levels, and preliminary findings in animal models show encouraging results in terms of reduced tumor growth and metastasis, as well as combating therapy resistance. Taken together, CEMIP represents an exciting new player in the progression of colorectal and other types of cancer that holds promise as a therapeutic target and biomarker.
Collapse
Affiliation(s)
- Kevin Domanegg
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Jonathan P. Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT) Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence:
| | - Anja Schmaus
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT) Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
5
|
Cheng J, Zhang Y, Wan R, Zhou J, Wu X, Fan Q, He J, Tan W, Deng Y. CEMIP Promotes Osteosarcoma Progression and Metastasis Through Activating Notch Signaling Pathway. Front Oncol 2022; 12:919108. [PMID: 35957875 PMCID: PMC9361750 DOI: 10.3389/fonc.2022.919108] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/22/2022] [Indexed: 12/17/2022] Open
Abstract
Cell migration inducing protein (CEMIP) has been linked to carcinogenesis in several types of cancers. However, the role and mechanism of CEMIP in osteosarcoma remain unclear. This study investigated the role of CEMIP in the progression and metastasis of osteosarcoma, CEMIP was found to be overexpressed in osteosarcoma tissues when compared to adjacent non-tumor tissues, and its expression was positively associated with a poor prognosis in osteosarcoma patients. Silencing CEMIP decreased osteosarcoma cells proliferation, migration, and invasion, but enhanced apoptosis in vitro, and suppressed tumor growth and metastasis in vivo. Mechanistically, CEMIP promoted osteosarcoma cells growth and metastasis through activating Notch signaling pathway, silencing CEMIP would reduce the protein expression and activation of Notch/Jagged1/Hes1 signaling pathway in vitro and in vivo, activation of Notch signaling pathway could partially reversed cell proliferation and migration in shCEMIP osteosarcoma cells. In conclusion, our study demonstrated that CEMIP plays a substantial role in the progression of osteosarcoma via Notch signaling pathway, providing a promising therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Jun Cheng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Rongjun Wan
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhou
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qizhi Fan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jingpeng He
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Youwen Deng,
| |
Collapse
|
6
|
Zhang YS, Gong JS, Yao ZY, Jiang JY, Su C, Li H, Kang CL, Liu L, Xu ZH, Shi JS. Insights into the source, mechanism and biotechnological applications of hyaluronidases. Biotechnol Adv 2022; 60:108018. [PMID: 35853550 DOI: 10.1016/j.biotechadv.2022.108018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/10/2023]
Abstract
It has long been found that hyaluronidases exist in a variety of organisms, playing their roles in various biological processes including infection, envenomation and metabolic regulation through degrading hyaluronan. However, exploiting them as a bioresource for specific applications had not been extensively studied until the latest decades. In recent years, new application scenarios have been developed, which extended the field of application, and emphasized the research value of hyaluronidase. This critical review comprehensively summarizes existing studies on hyaluronidase from different source, particularly in their structures, action patterns, and biological functions in human and mammals. Furthermore, we give in-depth insight into the resource mining and protein engineering process of hyaluronidase, as well as strategies for their high-level production, indicating that mixed strategies should be adopted to obtain well-performing hyaluronidase with efficiency. In addition, advances in application of hyaluronidase were summarized and discussed. Finally, prospects for future researches are proposed, highlighting the importance of further investigation into the characteristics of hyaluronidases, and the necessity of investigating their products for the development of their application value.
Collapse
Affiliation(s)
- Yue-Sheng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Zhi-Yuan Yao
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chuan-Li Kang
- Shandong Engineering Laboratory of Sodium Hyaluronate and its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Lei Liu
- Shandong Engineering Laboratory of Sodium Hyaluronate and its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The prognosis of pediatric patients with metastatic solid tumors remains poor, necessitating development of novel therapeutic strategies. The biology of the pediatric tumor microenvironment (TME) presents obstacles for the efficacy of current therapeutic approaches including immunotherapies. Targeting various aspects of the TME in pediatric patients with solid tumors represents a therapeutic opportunity that may improve outcomes. Here we will discuss recent advances in characterization of the TME, and clinical advances in targeting the immune, vascular, and stromal aspects of the TME. RECENT FINDINGS Although immunotherapies have shown limited success in the treatment of pediatric solid tumor patients thus far, optimization of these approaches to overcome the TME shows promise. In addition, there is increasing focus on the myeloid compartment as a therapeutic target. Vascular endothelial growth factor (VEGF) targeting has resulted in responses in some refractory pediatric solid tumors. There has been relatively little focus on stromal targeting; however, emerging preclinical data are improving our understanding of underlying biology, paving the way for future therapies. SUMMARY Although translation of TME-targeting therapies for pediatric solid tumors is in the early stages, we are optimistic that continued exploration of approaches aimed at rebalancing the TME will lead to improved outcomes for this population.
Collapse
Affiliation(s)
- Kristin M Wessel
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|